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Coronary microvascular dysfunction (CMD) is a prevalent cause of ischemic heart disease and
is associated with poorer quality of life and worse patient outcomes. Both functional and
structural abnormalities of the microcirculation can generate ischemia in the absence of epi-
cardial stenosis or worsen concomitant obstructive coronary artery disease (CAD). The invasive
assessment of CMD allows for the evaluation of the entirety of the coronary vascular tree, from
the large epicardial vessels to the microcirculation, and enables the study of vasomotor function
through vasoreactivity testing. The standard evaluation of CMD includes vasomotor assessment
with acetylcholine, as well as flow- and resistance-derived indices calculated with either ther-
modilution or Doppler guidewires. Tailored treatment based upon the information gathered
from the invasive evaluation of CMD has been demonstrated to reduce the burden of angina;
therefore, a thorough understanding of these procedures is warranted with the aim of
improving the quality of life of the patient. This review summarizes the most widespread
approaches for the invasive evaluation of CMD, with a focus on patients with ischemia and non-
obstructive CAD.
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INTRODUCTION

Myocardial ischemia is a leading cause of morbidity

and mortality. Historically, epicardial coronary artery

stenoses have been considered the central cause of this

pathological condition. However, coronary microvascu-

lar dysfunction (CMD) is acknowledged as an important

contributor to myocardial ischaemia. CMD refers to a

broad spectrum of structural and functional disorders

affecting the coronary microcirculation, subsequently

leading to coronary blood flow impairment in response

to increased myocardial oxygen demand. The condition

can affect small pre-arterioles and arterioles, which are

the main drivers of coronary flow resistance, and

responsible for the regulation and distribution of flow

to the underlying myocardium, but also to the capillary

network. CMD can coexist with epicardial coronary

artery disease (CAD), in conjunction with other cardio-

vascular conditions, such as cardiomyopathies and

valvular diseases. Nevertheless, it can also occur in the

absence of significant epicardial CAD or structural heart

disease.

Recently, studies have highlighted the importance

of CMD as a cause of ischemia without obstructive

epicardial stenoses (ischemia with non-obstructive coro-

nary arteries, INOCA) in patients routinely investigated

in clinical practice. Patients with INOCA frequently

experience a high burden of symptoms with a reduced

quality of life, repeated hospitalizations, and unneces-

sary diagnostic procedures in both the short and long

terms. In an effort to improve the management of

patients with INOCA, consensus documents have been
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published with the aim of standardizing definitions and

providing evidence-based guidance.1

An appropriate evaluation of the coronary micro-

circulation and vasomotor function is key for the

optimal management of INOCA. The coronary micro-

circulation is beyond the resolution of conventional

invasive coronary angiography (0.5 mm). Therefore,

alternative diagnostic procedures are warranted.

Although several non-invasive modalities allow for the

assessment of CMD, invasive evaluation remains the

gold standard. Despite its obvious limitations and albeit

low risks, the invasive approach has several advantages

over non-invasive techniques, including the ability to

exclude functionally significant epicardial CAD in the

same procedure and the possibility to infuse intracoro-

nary vasoactive agents, such as acetylcholine. For these

reasons, the comprehensive assessment of patients with

INOCA and its classification into endotypes cannot be

properly performed without the invasive evaluation of

the coronary artery vasculature; hence, this approach is

endorsed by the current European and American guide-

lines of chronic coronary syndromes (CCS) and chest

pain.2,3

In this review, we will revisit invasive tools for

evaluation of CMD in the catheterization laboratory, in

conjunction with a discussion on the technical aspects

and value in daily clinical practice.

EVALUATION OF CORONARY VASOMOTOR
DISORDERS

Vasoreactivity testing is used to assess endothe-

lium-mediated vasodilation of the coronary arteries. At

rest, myocardial oxygen extraction is almost maximal

(&80%), so tissue oxygen supply is largely dependent

on coronary blood flow. Therefore, in instances of

increased demand, the only way to match myocardial

oxygen delivery is through increasing blood flow.

Coronary perfusion is dictated by the arterioles and

small arterioles (\ 400 lm) that make up most of the

resistance circuit of the heart. The variations in vascular

tone of these vessels is responsible for the regulation and

distribution of blood flow in the underlying capillary

bed. Continuous changes in smooth muscle tone allows

for the maintenance of a constant blood flow across a

wide range of perfusion pressures. Moreover, when

myocardial oxygen demand increases, arteriolar vasodi-

lation enables the matching of these requirements.4 In

this setting, the vascular endothelium plays a central

role. Endothelial cells integrate several stimuli, such as

mechanical (shear stress), chemical (local oxygen con-

centration), and neurohormonal (acetylcholine) signals.

These inputs lead to the production of nitric oxide (NO)

and endothelium-derived hyperpolarizing factors which

induce vasodilation of the vascular smooth muscle of

large epicardial arteries and small arterioles.

The most widely utilized approach to explore

endothelium-mediated vasodilation in the catheteriza-

tion laboratory is with the intracoronary infusion of

Acetylcholine (Ach).5 Normal healthy endothelial cells

respond to Ach through liberation of vasoactive medi-

ators that induce arteriolar vasodilation. However, in the

presence of a dysfunctional endothelium failing to

produce such mediators, Ach directly stimulates mus-

carinic receptors in smooth muscle cells, thereby

inducing vasoconstriction.

Constriction of large epicardial vessels can be

directly assessed with standard invasive coronary

angiography or with the support of quantitative angio-

graphic analysis. However, constriction of the small

arterioles and quantification of coronary blood flow can

only be indirectly measured with dedicated intracoro-

nary wires.

Different approaches for vasoreactivity testing

using Ach are available. In the ENCORE trials (Eval-
uation of Nifedipine and Cerivastatin On Recovery of
coronary Endothelial function), continuous infusion

with a mechanical pump and a microcatheter into the

coronary artery was used.6,7 However, this technique is

cumbersome and has been largely substituted with

manual boluses of increasing concentrations of Ach.

Although traditionally a maximal dose of 100 mcg for

the left coronary artery (LCA) and 50 mcg for the right

coronary artery (RCA) have been used, contemporary

protocols using 200 mcg for the LCA and 100 mcg for

the RCA have demonstrated increased sensitivity, with-

out negatively impacting specificity.8 During Ach

testing, bradycardia or transient atrio-ventricular (AV)

block are frequent, yet normally not clinically relevant

or harmful. Self-limiting atrial fibrillation has also been

reported in up to 8% of procedures, especially if the

RCA is evaluated.

In patients with angina referred for coronary

angiography, the prevalence of vasomotor disorders is

high. In the study by Pargaonkar et al., 68.1% of patients

with angina and non-obstructive CAD exhibited

endothelial dysfunction, defined as a[ 20% narrowing

in luminal diameter in response to intracoronary Ach

administration. Additionally, in this study men appeared

to demonstrate an increased response to Ach, in com-

parison to women.9 In another study, Ong et al.

evaluated patients with angina and non-obstructive

CAD, and the prevalence of vasoconstriction secondary

to Ach was found to be similar (62%), with nearly half

of the cases presenting as microvascular spasm.10

Epicardial coronary spasm is the cause of vasospas-

tic angina (VSA), also known as Prinzmetal’s or variant

angina. The standardized criteria for VSA definition
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include the presence of angina, ischemic electrocardio-

graphic changes, and evidence of coronary spasm ([
90% of constriction in the epicardial vessels), either

spontaneously or in response to a provocative stimu-

lus.11 From a pathological standpoint, spasm is caused

by a triggering stimulus that excites hyperreactive

vascular smooth muscle cells. Several stimuli have been

identified, but the precise mechanism of smooth muscle

cells hyperreactivity is poorly understood.

Despite being often regarded as a disease limited to

the epicardial vessels, VSA is frequently associated with

underlying disturbances in the coronary microcircula-

tion. In the CORonary MICrovascular Angina
(CorMiCa) trial, patients with INOCA were evaluated

with vasoreactivity tests and an adenosine infusion to

measure coronary flow reserve (CFR) and the index of

microvascular resistance (IMR). In this study, 16.6% of

patients had isolated VSA, while 20.5% presented with

VSA in addition to CMD (defined as low CFR and/or

high IMR).12 Additionally, Suda et al. identified that

patients with VSA, who also exhibited high IMR ([18),

showed an increased incidence of major adverse car-

diovascular event (MACE) than those with VSA and

normal microvascular function.13 These findings empha-

size that for a correct evaluation of patients with INOCA

both epicardial vasomotor and microvascular function

should be assessed (Figure 1).

Alternatively, coronary vasomotor disorders can

solely affect the microcirculation, with a relative sparing

of large epicardial vessels. The standardized criteria for

defining microvascular spasm include the presence of

ischemic changes in the electrocardiogram and repro-

ducibility of symptoms during acetylcholine testing, in

the absence of epicardial spasm on coronary angiogra-

phy.14 Although it has been less studied than VSA, its

prevalence is almost equal as identified by Ong et al.10

Several pathogenic hypotheses exist, all of them placing

endothelial dysfunction at the core. It is known that

endothelial dysfunction is associated with cardiovascu-

lar risk factors,15 as well as with serum concentrations of

asymmetrical dimethylarginine (an inhibitor of nitric

oxide synthase)16 and decreased shear stress.17

State-of-the-art treatments for coronary vasomotor

disorders focus on the use of calcium channel blockers

to induce smooth muscle relaxation, but the association

of endothelial dysfunction with modifiable risk factors

may be a potential target for lifestyle changes and

pharmacotherapy, specifically directed to improve the

function of the vascular endothelium. Accordingly,

statins and angiotensin-converting enzyme inhibitors

might have a promising role in the management of this

disease. Other drugs (e.g., endothelin receptor antago-

nists) are under investigation, and future trials are

warranted to precisely address the benefits of these

treatments on symptoms and prognosis.

CORONARY FLOW-DERIVED PARAMETERS

Measuring flow is critical for the accurate evalua-

tion of coronary microvascular function. It is essential

that a normal coronary circulation supplies sufficient

blood flow to meet the myocardial demands of oxygen

Table 1. Definitions and cut-off of invasive parameters used for CMD assessment

Parameter Formula Units Most used cut-off

CFR (thermo) Tmn (rest)/Tmn (hyperemia) Non-

dimensional

\2.0

CFR (Doppler) CFVhyperemia/CFVrest Non-

dimensional

\2.5

Absolute Q Qi 9 Ti 9 1.08/T ml�min Not yet established

MRR (Qmax/Qrest) 9 (Parest/Pdhyper) Non-

dimensional

Not yet established

IMR Pdhyperemia 9 Tmn (hyperemia) Units of IMR [25

IMRcorr Pdhyperemia 9 Tmn (hyperemia) x ([1.35 9 Pd/Pa] - 0.32)

HMR Pdhyperemia/CFVhyperemia mmHg�cm�s [2.5

RRR CFR 9 (Pdrest/Pdhyperemia) Non-

dimensional

\3.5

CFR, coronary flow reserve; MRR, microvascular resistance ratio; IMR, index of microvascular resistance; IMRcorr, index of
microvascular resistance with Yong’s correction; HMR, hyperemic microvascular resistance; RRR, resistive reserve ratio; Tmn,
mean transit time; CFV, coronary flow velocity; Qi, saline infusion flow (standard: 20 mL�min); Ti, infusion temperature; T, mixing
temperature; Qmax maximum flow (hyperemia); Qrest, resting flow; Pa, aortic pressure; Pd distal coronary pressure
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under resting conditions. In addition, during exertion or

stress, the increase in the demand must be matched by a

proportional increase in flow. This dynamicity of blood

perfusion is one of the main singularities of the coronary

vascular bed. A number of flow-derived parameters

measured both at rest and during maximal hyperemia

allow for the estimation of various indices that charac-

terize microvascular function (Table 1).

Figure 1. Acetylcholine testing. Figure demonstrating the invasive physiological assessment of
CMD and vasomotor disorders in a 65-year-old female, with repeated episodes of angina at rest.
Coronary angiography identified no obstructive CAD. In Panel A and Panel B, baseline coronary
angiography shows the wire advanced into the distal LAD and a resting ECG without repolarization
abnormalities. Following the infusion of intracoronary acetylcholine (up to 200 mcg, Panel C and
Panel D), the patient described chest pain with similar characteristics to her previous episodes,
supported by an ECG with pronounced ST-segment depression in the anterior leads. Coronary
angiography showed an absence of epicardial coronary spasm. After the infusion of intravenous
adenosine, CFR and IMR were calculated, with normal values (Panel E). A final diagnosis of
microvascular spasm was established.
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Coronary flow reserve

Coronary flow reserve (CFR) is a physiological

index which assesses the ability of the entire coronary

bed (both the epicardial vessels and the microvascula-

ture) to actively adapt its size to satisfy an increased

oxygen demand from the myocardium. Thus, once

severe obstructive disease of the epicardial arteries is

ruled out, reduced CFR is one of the hallmarks of

CMD.1 Measurements of CFR can be performed non-

invasively, using transthoracic Doppler

echocardiography,18 positron emission tomography

(PET), or stress cardiac magnetic resonance (CMR).

However, an invasive evaluation with either thermodi-

lution or Doppler flow velocity is endorsed by the

European Society of Cardiology (ESC) guidelines on

CCS and the 2021 American Heart Association/Amer-

ican College of Cardiology Guideline for the Evaluation

and Diagnosis of Chest Pain, with a IIa recommendation

in patients with persistent symptoms and angiographi-

cally normal coronary arteries or with moderate non-

flow-limiting stenosis.2,3

Invasive coronary function testing is usually per-

formed in the LAD artery, as it provides perfusion to a

larger myocardial mass. Still, additional studies in other

coronary territories may be appropriate if the initial

results are negative and clinical suspicion is high.

Steady-state hyperemia is achieved with an endothe-

lium-independent vasodilator, such as adenosine. An

intravenous infusion of 140 lg�Kg�min is commonly

used, although intracoronary boluses of up to 200 lg
may be an alternative.19

CFR determination with thermodilution requires a

pressure–temperature sensor guidewire (PressureWire

X, Abbott Vascular, Santa Clara, CA). At least three

consecutive intracoronary injections of saline at room

temperature must be performed in order to calculate the

time needed for the solution to travel from the tip of the

guiding catheter to the distal temperature sensor of the

wire, which is known as the mean transit time (Tmn).

CFR is calculated from dividing resting Tmn by hyper-

emic Tmn (CFR = Tmn (rest)/Tmn (hyperemia)). The

recommended cut-off value for thermodilution-based

CFR, suggestive of CMD, is 2.0.20

CFR can also be calculated using a Doppler wire

(ComboWire XT or Flowire, Philips Volcano Corpora-

tion, San Diego, CA, USA) as the ratio of the coronary

flow velocity (CFV) in hyperemia to rest (CFR =

CFVhyperemia/CFVrest). Studies assessing the prognostic

role of CFR determined by Doppler have used cut-off

values of 2.5 or lower.21 The process for CFR calcula-

tion using thermodilution and Doppler is depicted in

Figures 2 and 3.

Regarding the prognostic yield of CFR, in a meta-

analysis of 79 studies gathering 59,740 patients, Kel-

shiker et al. reported that an impaired CFR was related

to a higher incidence of MACE in patients with acute

coronary syndromes (ACS), heart failure, heart trans-

plant, and diabetes. Moreover, it was associated with a

higher all-cause mortality and MACE in patients without

obstructive CAD.22 Concordant studies across non-

invasive and invasive modalities support the notion that

abnormal CFR confers a worse prognosis in terms of

mortality and cardiac events, regardless of the presence

or absence of flow-limiting CAD, and that the more

severely impaired the global CFR is, the higher the

risk.23,24

Absolute coronary flow

Although CFR is one of the standard physiological

indexes to characterize CMD, it is not free from certain

limitations: (1) It is indirectly estimated as a surrogate of

true coronary flow; (2) its calculation requires the

achievement of steady-state hyperemia with adenosine,

which may be associated with several adverse effects25;

(3) thermodilution may overestimate CFR at higher

values and partly depends on operator’s injections,

resulting in a large intra-observer variability; and (4)

regarding Doppler-based measurements, obtaining a

stable signal may be challenging.26

To overcome these drawbacks a novel method has

been validated to directly quantify absolute coronary

blood flow (Q), being safe, highly reproducible, and

operator independent, without requiring adenosine

administration.27 The technique is based on continuous

thermodilution, achieving stable hyperemia by intra-

coronary infusion of saline at room temperature, at a rate

of 20 mL�min with a dedicated monorail catheter

(RayFlow, Hexacath, Paris, France). This double-lumen

infusion catheter carries 4 lateral outer side holes

through which saline can flow, providing homogenous

Figure 2. CFR calculation using thermodilution. Mean transit
times (Tmn) are calculated as the mean of 3 measures at rest
(blue) and after the induction of hyperemia with intravenous
adenosine (orange). CFR is defined as the ratio between resting
Tmn and hyperemic Tmn.
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mixing with blood, and 2 central holes between the outer

and inner lumens to enable a measurement of the

infusion temperature when the wire sensor is pulled back

into the infusion catheter.28

Absolute Q in mL�min can be calculated according

to the following formula:

Q ¼ Qi � Ti � 1:08=T ;

where Qi represents saline infusion flow (20 mL�min), Ti
stands for infusion temperature, and T is the mixing

temperature.29 An example of this calculation is shown

in Figure 4.

Nevertheless, the use of absolute Q in daily clinical

practice has been hampered since its normal values are

still a matter of debate. When exploring the relationship

between absolute Q and the standard physiological

indexes in the different endotypes of INOCA, Konst

et al. defined low and high absolute Q based on the 50th

percentile of the study population.30 In this work,

absolute Q was not associated with positive or negative

response to Ach, although a significant correlation

between Q and CFR was found and low Q was reported

as a predictor of angina severity. Also, a good correla-

tion between continuous thermodilution-based absolute

Q and [15O] H2O PET-derived flow measurement has

been described.26 The main limitation of continuous

thermodilution relates to the fact that it does not take

into account the amount of myocardial mass of the

perfusion territory, as well as a considerable inter-

individual variability, limiting the use of these mea-

surements for individual clinical decision-making.31

However, the association of this technique with non-

invasive methods to quantify myocardial mass, such as

computed tomography (CT) or CMR, has been proposed

to compare CFR measurements among different

myocardial territories and patients.32

CORONARY RESISTANCE-DERIVED
PARAMETERS

As an elegant analogy to the founding role of

Ohm’s law used in electrical circuits, the Hansen–

Poiseuille’s law (and more deeply the Navier–Stokes

equations) governs fluid dynamics. In all of these

mathematical interpretations of physical phenomena,

the concept of Resistance is established as the funda-

mental measurement of opposition to Flow.
Since the coronary microcirculation uses resistance

as the key determinant of myocardial blood flow

distribution, it is only natural that its estimation would

become of interest, largely increasing the field of

influence of coronary physiology and our understanding

of patterns of microvascular disease.

As resistance cannot be measured directly, it must

be estimated using the known relationships between

flow and pressure and presented in the form of a

mathematical index. As previously described, coronary

flow can be estimated invasively using two different

methods: Doppler and Thermodilution. From the com-

bination of these measurements with intracoronary

pressure estimations, numerous indices with the aim of

evaluating the resistance to coronary flow can be

derived.

Figure 3. CFR calculation using Doppler. From intracoronary Doppler flow signal, mean coronary
flow velocity (CFV) can be derived (blue line depicting the edge of Doppler curves) as the average
of several beats. CFR is calculated as the ratio between mean hyperemic CFV and mean resting
CFV.
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Index of microcirculatory resistance

The Index of Microcirculatory Resistance (IMR)

was firstly developed by Fearon et al. and is calculated

from estimates of maximal distal coronary flow during

hyperemia and pressure.33 In practice, using a pressure–

temperature sensor guidewire and after obtaining coro-

nary hyperemia, Tmn is calculated from the recorded

thermodilution curves. To calculate IMR, the measured

Figure 4. Continuous thermodilution for the calculation of absolute flow and resistance. Clinical
case depicting the measurement of absolute coronary flow and resistance using continuous
thermodilution. A dedicated monorail microcatheter (RayFlow, Hexacath, Paris, France) with
lateral holes allows for the continuous infusion of saline (Panel A). This microcatheter is advanced
over a pressure–temperature sensor guidewire (PressureWire X, Abbott Vascular, Santa Clara, CA,
USA), positioned toward the distal LAD in a patient with diffuse epicardial atherosclerosis (Panel
B). Then, a continuous infusion of saline is started at a rate of 20 ml�min. The distal tip of the wire
will measure the mixing temperature (resulting from the combination of infused saline with blood).
Subsequently, the sensor is withdrawn into the catheter to measure the infusion temperature. This
data will allow for the calculation of absolute coronary flow (Q, L�min) and absolute coronary
resistance (R, mmHg�L�min) (Panel C).
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distal pressure (Pd) is multiplied by the Tmn, as shown in

the following equation:

IMR ¼ Pdhyperemia � TmnðhyperemiaÞ:

When compared with CFR, IMR is less dependent

on hemodynamic conditions and can provide a more

reproducible assessment of the microcirculation34 and,

although a numeric division of a continuous variable has

its understandable drawbacks, the cut-off of B 25 is

currently used for ‘normal’ and [ 25 for increased

microvascular resistance.35,36 In the presence of an

epicardial stenosis, the subtended collateral flow might

hinder the estimation of the ‘real’ resistance without

invasively measuring the coronary wedge pressure

(Pw).37 To address this matter, Yong et al. developed
an equation to correct for the presence of a significant

epicardial stenosis, as shown38:

IMRcorr ¼ Pdhyperemia � TmnðhyperemiaÞ � ð½1:35� Pd=Pa�
� 0:32Þ:

There is ample evidence regarding the usefulness of

IMR in the context of obstructive CAD. In the study by

Echavarria-Pinto et al., an abnormal IMR was found in

up to one-third of symptomatic patients with stable CAD

and intermediate epicardial stenosis.39 In other studies,

IMR showed no significant correlation with FFR,40 nor

is it influenced by the angiographic severity of epicardial

lesions.[41] This independence from upstream epicardial

disease gives IMR some conceptual advantages. How-

ever, its prognostic role as an independent metric is still

a matter of debate. In the recent meta-analysis by

Kelshiker et al., the impact of an abnormal IMR on

patient prognosis was much lower than an abnormal

CFR (Hazard ratio for MACE of 1.02, compared with

3.4 for low CFR) and did not reach significance in a

subgroup analysis (in CCS or ACS).22 Furthermore, in a

study by Lee et al. of 867 patients, IMR was associated

with MACE in a subgroup of patients with only an

abnormal CFR.42 Promising results, however, have been

reported in the context of ST-segment elevation myocar-

dial infarction (STEMI), where IMR values after

primary PCI correlate with a larger infarct size, lower

left ventricular ejection fraction and less myocardial

viability.43,44 Moreover, a high IMR after revascular-

ization has been shown to be an independent predictor of

death and hospitalization from heart failure.45

In the setting of patients with INOCA, Lee et al.
conducted an invasive functional assessment of coronary

microcirculation in 139 patients with exertional chest

pain and normal epicardial arteries and identified the

prevalence of high IMR to be approximately 21%.46 The

recently published CorMiCa trial incorporated IMR as a

marker of CMD, along with reduced CFR. This study

identified that medical therapy resulted in a sustained

improvement in anginal symptoms and a better quality

of life, based on invasive functional assessments,

including IMR.47

Hyperemic microvascular resistance

Hyperemic Microvascular Resistance (HMR) is a

resistance index calculated from intracoronary Doppler

flow velocity and distal pressure during hyperemia,

following this equation48:

HMR ¼ Pdhyperemia=CFVhyperemia;

where Pd is the distal coronary pressure and CFV is

Doppler-measured flow velocity during maximal

hyperemia. HMR is measured in mmHg�cm�s, and val-

ues above 2.5 are considered abnormal.49

HMR only correlates modestly with IMR and

CFR.50 HMR has been found to be abnormal in

approximately 40% of patients with a normal CFR,

due to significantly lower average peak velocity values

at baseline.51 Combining CFR and HMR can enhance

the comprehension of microcirculatory function as,

owing to coronary autoregulation, CFR can still be

within normal limits despite increased microvascular

resistance. Patients with epicardial stenosis and high

HMR values exhibit a greater degree of reversible

ischemia than those with low HMR, as assessed by

myocardial perfusion scintigraphy.52

In STEMI patients, similarly to IMR, increased

HMR after successful primary PCI has been associated

with higher burden of microvascular injury (measured

on CMR) and worse outcomes.53 Conversely, the role of

HMR in INOCA is less well established, with most

studies focusing on the thermodilution-derived param-

eters (CFR, IMR). However, although recently the use

of intracoronary Doppler has dropped significantly,

these measurements are far from disappearing. Further

research in the field of INOCA using Doppler-derived

indices is expected in the near future.

Resistive reserve ratio

The Resistive Reserve Ratio (RRR) is an integrated

index that uses thermodilution-derived CFR and coro-

nary distal pressure (Pd), measured at rest and during

hyperemia, and is calculated using the following

equation54:
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RRR ¼ CFR� Pdrest=Pdhyperemia

� �
:

RRR reflects both the vasodilatory capacity of the

coronary circulation and the disease burden of the

interrogated vessel, in a novel concept to overcome the

potential limitations of flow-derived and pressure-

derived indices. Coronary Flow Capacity (CFC) was

the first index to tackle this issue by combining CFR and

an absolute measure of hyperemic coronary flow.55

However, CFC requires a two-step dimensional mapping

process for interpretation, and clear cut-off values are

yet to be defined.

In a prospective multicenter international registry

enrolling 1245 patients with ACS and CCS, low RRR

values (\ 3.5) were found to be independently associ-

ated with long-term MACE, even in the presence of a

normal CFR and FFR.56 Specifically relating to patients

without obstructive CAD, a study by Toya et al. showed
superior prognostic performance of RRR than CFR in

predicting long-term survival.57 Whether RRR confers

real prognostic advantage over CFR is yet to be

determined by additional research.

Microvascular resistance reserve (MRR)

Overcoming some of the limitations of absolute Q,

MRR has recently been proposed as a specific index of

the microvasculature, independent of autoregulation and

myocardial mass, and is based upon operator-indepen-

dent measurements of absolute values of coronary flow

and pressure.58 It is defined as the ratio of true resting to

hyperemic microvascular resistance, expressed accord-

ing to the following formula:

MRR ¼ Qmax=Qrestð Þ � Parest=Pahyperemia

� �
;

where Pa,rest and Pa,hyperemia represent aortic pressure at

rest and at maximum hyperemia, respectively,

Pd,hyperemia represents distal coronary pressure

measured at hyperemia, and Qrest and Qmax are

measured resting and hyperemic blood flow.

Therefore, it can be also expressed in more general

terms as the ratio of CFR to FFR, corrected for the

driving pressures:

MRR ¼ CFR=FFRð Þ � Parest=Pdhyperemia

� �
:

De Bruyne et al. reported a strong correlation

between thermodilution-derived MRR and index values

measured with Doppler. Furthermore, they confirmed

that MRR is independent from epicardial resistance and

the lower the resulting FFR value the greater the

difference between MRR and CFR. However, MRR cut-

off values, as well as the clinical and prognostic

relevance of MRR compared with other established

indices of microvascular function, are not established.58

OTHER INDICES

Instantaneous hyperemic diastolic
velocity–pressure slope

The Instantaneous Hyperemic Diastolic Velocity–

Pressure Slope (IHSVPS) was first proposed by Mancini

et al. as an index to evaluate epicardial stenosis severity

that was not as dependent on hemodynamics as CFR.59

This concept was later applied to the microcirculation by

Figure 5. Flow–pressure loops for the calculation of IHDPVS
and microvascular conductance. An example of the calculation
of epicardial and microcirculatory vascular conductance based
on instantaneous hyperemic diastolic pressure velocity slopes
(IHDPVS), derived from the pressure–flow velocity relation-
ship. Panel A shows intracoronary Doppler measurements of
hyperemic coronary flow velocity, in addition to a distal and
aortic coronary pressure. Panel B shows a plot with hyperemic
coronary flow velocity (Y-axis) and pressure (X-axis). IHDVPS
is the slope of the pressure–flow relationship measured in mid
to end-diastole and is expressed as a beta coefficient of a
regression line, measured in cm�s�mmHg. Using distal coro-
nary pressure (Pd) for its calculation, IHDVPSPd provides an
estimation of microvascular conductance, whereas when using
aortic pressure (Pa), IHDVPSPa estimates the overall vascular
conductance. Separate assessment of epicardial conductance
can be performed based on IHDVPSPa and IHDVPSPd (see text
for details). Finally, the intercept of the slope with the X-axis
provides a theoretical measurement of zero-flow pressure
(Pzf), which has been used as a surrogate of extravascular
microcirculatory compression. Cepi epicardial conductance,
Cmicro microvascular conductance, Coverall overall vascular
conductance (combination of epicardial and microvascular).
Image taken with permission from N. Van Der Hoeven.
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Escaned et al., using either aortic or distal pressure in the
presence or absence of obstructive epicardial stenosis,

respectively. IHDVPS is currently calculated as part of

an intracoronary pressure–flow analysis using Pd and

flow velocity during mid and end-diastole and provides

an estimate of diastolic microvascular conductance

(Figure 5). It was first validated in post-heart transplant

patients, where it demonstrated a positive correlation

with arteriolar obliteration and capillary rarefaction

associated with allograft vasculopathy.60

Zero-flow Pressure

Zero-flow pressure (Pzf) is the measured pressure in

the absence of coronary flow and is caused by the

collapse of the coronary microcirculation due to

extravascular compression.61 As such, it can also be

used to diagnose microvascular injury and obstruction

and it has been found to correlate with perfusion defects

after primary PCI49 and infarct area extension in patients

with STEMI.62 Currently, its direct measurement is not

feasible. Therefore, it is extrapolated from the same

pressure–flow loops used to estimate IHDVPS.63

Minimal microvascular resistance

As an alternative to traditional means-per-beat

assessments of microcirculatory resistance, phasic anal-

ysis of the pressure–flow relationship during diastole can

provide a better insight into myocardial perfusion.

Minimal microvascular resistance (mMR) was proposed

by de Waard et al. as a method to identify microvascular

dysfunction during the wave-free period (similarly to the

instantaneous wave-free ratio) in the IDEAL study.64

Because it is unaffected by obstructions in the conduc-

tance epicardial arteries, it has some theoretical

advantages over other validated indices, such as CFR,

HMR, or IMR.

CLINICAL IMPLICATIONS

As discussed in the previous paragraphs, invasive

tests allow for the interrogation of microvascular func-

tionality from different perspectives. This is important,

as derangements of microvascular function may occur in

quite different clinical settings and through specific

dysfunction pathways. As demonstrated in clinical trials

in patients with CCS, outlining the presence of specific

endotypes (vasomotor or structural) contributes to better

control of angina by linking medical therapy to the

results of functional invasive testing. In addition to this,

the information obtained contributes to better risk

stratification of patients, although randomized trials

demonstrating a prognostic benefit of linked medical

therapies are still lacking. The latter consideration

applies in situations, such as STEMI, hypertensive heart

disease, heart failure with preserved ejection fraction,

allograft vasculopathy, and others. Yet, it is anticipated

that positive evidence of microvascular derangements

obtained in patients belonging to these subgroups will be

used in the future to test the value of novel therapeutic

approaches.

CONCLUSION

CMD has a high prevalence and extensive clinical

implications in daily practice. Both functional and

structural abnormalities of the microcirculation can

generate ischemia in the absence of epicardial stenosis

or worsen concomitant CAD in all of its presentations

(from CCS to ACS, including STEMI). The invasive

evaluation of CMD confers unique opportunities to

evaluate the coronary vascular tree as a whole, from

large epicardial vessels to the microcirculation, and

allows for vasoreactivity testing. Comprehensive eval-

uation of CMD includes vasomotor assessment using

acetylcholine, as well as flow-derived (CFR) and resis-

tance-derived (IMR, HMR) indices. In addition, several

additional parameters provide further information about

the dynamic properties of the coronary vasculature, and

relevant research in this field has been recently con-

ducted. Current evidence highlights that the information

gathered from this evaluation is essential for correct

clinical decision-making, with the aim of improving

patient’s symptoms and prognosis.
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