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Abnormalities in the cardiac sympathetic nervous

(CSN) function have been documented in several heart

diseases and have been directly implicated in their

pathogenesis and disease progression.1 Noninvasive

nuclear imaging techniques using the norepinephrine

analog 123I-meta-iodobenzylguanidine (MIBG) may be

employed to characterize CSN abnormalities and have

demonstrated their usefulness for prognostication and

risk stratification for adverse cardiac events in patients

with heart failure (HF).2–5

This assessment may be of utmost importance in HF

patients with a very high risk of unfavorable outcome,

such as patients with severe aortic stenosis (AS) not

eligible for surgical valve replacement, who are candi-

dates for transcatheter aortic valve replacement

(TAVR).6,7 Despite the effectiveness of TAVR in nor-

malizing the gradient across the aortic valve, about 25%

of high-risk patients die from cardiovascular and non-

cardiovascular causes within the first year following the

procedure.8 Many Authors retain that adverse outcomes

are mainly driven by pre-existing conditions at the time

of TAVR procedure.9 In this setting, changes of the CNS

activity and the their potential clinical effects have been

poorly characterized.

The present study by Kadoya and colleagues

investigated changes in MIBG imaging parameters in

patients with severe AS treated with TAVR at their

institution.10 This was a prospective study designed to

collect information on early and late heart–mediastinum

ratio (H/M) and washout rate (WR) at baseline, within 2

weeks, and at 6-12 months after TAVR. Among 75

patients with complete imaging follow-up included in

the final analysis, late H/M significantly increased

within 2 weeks, and further increased at mid-term fol-

low-up suggesting a sustained improvement of CSN

function after TAVR. Multivariable regression analysis

revealed that the baseline mean aortic valve pressure

gradient (mPG) was an independent predictor of late H/

M increase at mid-term, and patients in the highest mPG

value tertile (C 58 mmHg) experienced the greatest

benefit in terms of late H/M improvement, suggesting

greater benefit of CSN function as the severity of AS

increases.

These results were consistent with a previous study

by the same group, which investigated the early effects

of TAVR on MIBG parameters in patients with severe

AS.11 In that analysis, the authors found a significant

increase of late H/M and a reduction of WR within 2

weeks after TAVR, and an independent association

between the AS severity expressed as aortic valve area

and the late H/M improvement. The present study con-

firms these preliminary findings and demonstrates that

the improvement in the H/M ratio is sustained at mid-

term follow-up.

Beyond the limitations related to the small sample

size and the inclusion of Japanese patients only, which

make the results purely exploratory and not generaliz-

able to other ethnicities, the authors should be

commended for their efforts in this prospective study

centered on the evaluation of a key pathophysiological

pathway of HF. Late H/M reflects the number of CSN

terminal endings, the noradrenaline reuptake from the

synaptic cleft by the uptake-1 transporter, and the

sympathetic nervous tone, and can demonstrate treat-

ment induced changes in cardiac adrenergic activity.1
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Several mechanisms have been proposed to explain

CNS overactivation in patients with severe AS, includ-

ing the suppression of the sympathoinhibitory

cardiovascular reflexes (e.g., arterial baroreceptor

reflex), the augmented sympathoexcitatory reflex (e.g.,

arterial chemoreceptor and cardiac sympathetic afferent

reflexes), and the central facilitation mediated by the

higher levels of angiotensin-II and cytokines or the

lower production of nitric oxide, which contribute to the

increased tone of sympathetic activity.12–14 The rapid

release of left ventricular pressure overload and the

improved hemodynamics following TAVR revert CNS

impairment early and that benefit seems to be sustained

at mid-term.

A significant reduction of WR at two weeks was

reported by another single-center study, which investi-

gated MIBG parameters in 31 consecutive AS patients

undergoing TAVR.15 This study also showed a signifi-

cant decrease in norepinephrine serum level after TAVR

and that norepinephrine level before TAVI was the only

independent predictor of changes in WR, suggesting that

improvement of WR reflected largely the inhibition of

CSN tone rather than improvement in terminal

function.16

These alterations of the sympathetic cascade are

thought to be early in HF pathophysiology, but may

expose myocardium to toxic amounts of noradrenalin

with a theoretical higher risk of arrhythmias and other

life-threatening events.16–18 The study by Kadoya and

colleagues suggests novel mechanisms that, together

with the hemodynamic effects of TAVR, reinforce the

pathophysiological basis of the beneficial effects of

TAVR, particularly in patients with more severe high-

gradient forms of AS.

Nevertheless, it is still unknown whether changes in

MIBG imaging parameters correspond to an outcome

benefit in the individual patient. In their manuscript, the

authors hypothesized several potential clinical implica-

tions but, to date, we do not have sufficient evidence to

implement this information in TAVR candidacy or

patient management after procedure.

In a previous study by the same group, 108 AS

patients were evaluated with MIBG imaging before and

soon after TAVR and followed to evaluate the occur-

rence of major adverse cardiac events (MACE), defined

as a composite of all-cause death, non-fatal myocardial

infarction, and HF hospitalization.19 After adjustment

for possible confounders, the improvement of late H/M

was significantly associated with MACE at a median 1-

year follow-up (adjusted HR: 0.233; 95% CI 0.064-

0.856), suggesting some usefulness for prognostic

stratification in patients candidates for TAVR. Con-

versely, in the present study focused on mid-term

changes of MIBG imaging, the authors did not provide

outcome information nor investigate the prognostic

implication of CNS re-assessment following TAVR,

which prevents a comprehensive appraisal of the clinical

perspectives of these results.

It should be emphasized that the final study popu-

lation included only 75 of the 183 AS patients who

underwent TAVR during the recruitment period. Seven

patients died after discharge and 21 required additional

medical treatments, which was an exclusion criterion for

subsequent MIBG evaluation in order to avoid con-

founding. Therefore, the improvement in MIBG

parameters might be restricted to less severe patients and

might not reflect CNS changes in the general AS pop-

ulation undergoing TAVR.

Eventually, we cannot overlook that most of the

evidence on this topic comes from studies conducted by

one group on the same cohort of patient. External studies

are advisable to confirm the validity of this preliminary

experience, and to evaluate the possible implications for

patient prognostic stratification and TAVR treatment

monitoring in a wider multicenter population.

There is still a long way to go before understanding

if, when and which patients with severe AS should be

evaluated with MIBG imaging in view of TAVR treat-

ment, as well as the cost-effectiveness to do so.
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