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Background. Findings and interpretations of myocardial perfusion imaging (MPI) studies
are documented in free-text MPI reports. MPI results are essential for research, but manual
review is prohibitively time consuming. This study aimed to develop and validate an automated
method to abstract MPI reports.

Methods. We developed a natural language processing (NLP) algorithm to abstract MPI
reports. Randomly selected reports were double-blindly reviewed by two cardiologists to val-
idate the NLP algorithm. Secondary analyses were performed to describe patient outcomes
based on abstracted-MPI results on 16,957 MPI tests from adult patients evaluated for sus-
pected ACS.

Results. The NLP algorithm achieved high sensitivity (96.7%) and specificity (98.9%) on
the MPI categorical results and had a similar degree of agreement compared to the physician
reviewers. Patients with abnormal MPI results had higher rates of 30-day acute myocardial
infarction or death compared to patients with normal results. We identified issues related to the
quality of the reports that not only affect communication with referring physicians but also
challenges for automated abstraction.

Conclusion. NLP is an accurate and efficient strategy to abstract results from the free-text
MPI reports. Our findings will facilitate future research to understand the benefits of MPI
studies but requires validation in other settings. (J Nucl Cardiol 2022;29:1178–87.)
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Abbreviations
ACS Acute coronary syndrome

AMI Acute myocardial infarction

EHR Electronic health record

ETT Exercise treadmill test

ED Emergency department

EF Ejection fraction

HEART History, Electrocardiogram, Age, Risk

factors, Troponin

MACE Major adverse cardiac events

MPI Myocardial perfusion imaging

NLP Natural language processing

INTRODUCTION

Myocardial perfusion imaging (MPI) is the most

common noninvasive cardiac test to evaluate emergency

department (ED) patients with suspected acute coronary

syndrome (ACS).1 Prior studies have demonstrated a

strong association of abnormal MPI studies with adverse

cardiovascular events during follow-up.2,3 There is still

much to learn regarding the effectiveness MPI and other

noninvasive cardiac tests related to patient outcomes,

care affordability, and the patients most likely to

benefit.4,5 Comparative effectiveness studies to assess

the value of MPI or other noninvasive tests in acute care

settings pose many challenges, including the high costs

of large randomized trials, and the confounding factors

associated with non-randomized study designs.4,6 Effi-

ciently capturing the results of large numbers of MPI

would provide the information necessary to do large-

scale observational studies to answer important clinical

questions about the clinical effectiveness, risks, and

benefits to patients.

MPI reports document crucial details on MPI testing

that are essential to downstream care. Such text-format-

ted reports are written in human language, which is

difficult for computers to process. Natural language

processing (NLP) is a subfield of artificial intelligence

and computer science focused on the interactions

between computers and natural (human) languages.

With electronic health records (EHR) being more

accessible, NLP has increased use in the clinical field.

For clinical research, NLP enabled computers to identify

and extract information that is unavailable or inaccurate

in structured data.7,8 When compared with manual

chart review of medical records, NLP is more efficient

and produces more consistent results.9

We previously developed NLP algorithms for the

extraction of cardiovascular variables, such as ejection

fraction, aspirin, and warfarin usages.10–12 Recently, we

demonstrated NLP’s ability to identify clinical variables

from the electrocardiogram treadmill test (ETT)

reports.13

In this study, we aim to derive and validate an

algorithm to identify and extract MPI results from MPI

reports. We applied the NLP algorithms to a large MPI

cohort and described whether NLP-classified risk is

associated with an increased risk of cardiac events. Our

study builds on previous research,13,14 and leverages a

unique dataset of a substantial patient cohort with MPI

testing.

METHODS

Study Setting

We performed this retrospective cohort study at Kaiser

Permanente Southern California (KPSC), an integrated health-

care organization with over 7,600 physicians, 15 hospitals, 234

medical offices, and approximately 1 million annual ED visits.

KPSC provides prepaid health care to over 4.7 million racially

and socio-economically diverse members in KPSC-owned

facilities and contracting facilities. In 2007, KPSC imple-

mented an EHR system based on an Epic Systems platform.

All KPSC ED sites use the same troponin lab assay (Beckman

Coulter Access AccuTnI?3). ED physicians at KPSC can

order noninvasive cardiac testing as part of the discharge and

follow-up plan of patients with suspected ACS. In May 2016,

KPSC implemented the HEART (History, Electrocardiogram,

Age, Risk factors, Troponin) score into routine ED care

allowing for a standardized risk assessment for patients with

suspected ACS.15 The KPSC Institutional Review Board

approved this study.

Study Population

We included all KPSC members aged 18 years or older

with an ED visit with clinically suspected ACS resulting in a

troponin lab order between 01/01/2015 and 11/30/2018, who

underwent an MPI within 30 days of their visit. We excluded

patients who were transferred from a non-KPSC hospital or

passed away during the ED visit. We also excluded patients

without KPSC health plan membership because our dataset

does not accurately capture comorbidities and patient out-

comes for non-members. MPI studies were identified using

Current Procedural Terminology (CPT�) codes (78451-

78452) or a referral order linked to the index ED visit.

We obtained demographic information such as age, sex,

and race from administrative records; smoking and family

history of coronary artery disease (CAD) from self-reported

fields in EHR; and medications from our prescription and

pharmacy systems. Body mass index (BMI) was measured

from ED intake documentation or the most recently available

visit. Troponin values were extracted from the lab data.

HEART scores calculated at the time of the index ED visit

were retrieved from the EHR. Comorbidities were defined

using the International Classification of Diseases Ninth/Tenth

See related editorial, pp. 1188–1190
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Revision, Clinical Modification (ICD-9/10-CM) codes inclu-

ded in the Elixhauser score.

MPI Reports

KPSC does not have structured reporting for MPI exams.

The MPI reports were dictated or written by the interpreting

physicians as unstructured or free-text formats. The MPI

reports were saved to the Epic Clarity system running on

Oracle Exadata.

Training and Validation Datasets

The necessary size for the validation dataset was 147,16

assuming a prevalence rate of non-normal MPI findings of

13%,17–19 an expected maximum marginal error of 0.1, and

NLP sensitivity and specificity of 95% compared with a

reference standard.13 We created training (n = 120) and

validation (n = 150) datasets by random sampling from the

study population. Two cardiologists (M.F. and M.S.L.) inde-

pendently reviewed the MPI reports in the training and

validation datasets. The cardiologists were blinded to each

other’s reviews and abstracted solely based on the reports. The

results of physician review were compared, and discrepancies

were resolved by consensus and discussion with the other

physician on the research team (R.F.R.). The adjudicated

results served as the reference standard against which NLP was

compared. We compared the agreements between the two

physician reviewers and calculated the weighted Cohen’s j20

and the intraclass correlation coefficient (ICC).21

NLP Algorithm Development

We developed an NLP-based algorithm to extract infor-

mation from the MPI reports. The basic NLP processes were

described previously.9,10 First, we converted the clinical notes

extracted from the EHR system into formats suitable for the

NLP search. A pre-processing step removed ill-formatted text

and detected sections and sentence boundaries. We created

terminologies for MPI-related information. Each report was

searched at different scales: section, sentence, and its neigh-

boring sentences. A relationship detection algorithm was

applied to identify the associated clinical entities. Negation

and temporal relationship algorithms were used to identify and

exclude negated, uncertain, historical, and future statements.

Negation algorithm handles double negations that are com-

monly occurred in MPI reports, e.g., ‘‘no significant

abnormality.’’ Regular expressions were used to capture the

semi-structured information, e.g., left ventricular ejection

fraction (EF) values. We extracted information that was

commonly available in MPI reports (Figure 1). We derive

the final set of variables based on the clinical logic described

below. For our study, our main aim was to identify patients

with evidence indicating concerns of ACS. Therefore, we

categorized our MPI results as follows:

Ischemia an ischemic or reversible defect was identified.

Infarction no definitive ischemic finding, but a fixed or

irreversible defect was identified.

Non-diagnostic ischemia or infarction cannot be ruled out

due to the presence of artifacts or sub-optimal test quality.

Normal test quality was sufficient to rule out ischemia or

infarction.

For ischemic cases, we further identified ischemic loca-

tion, size, and severity. For unstated defect size, we estimated

it based on the number of left ventricular segments involved.

We used the 17-segments model to define the defect size as

small (involving 1-2 segments), medium (3-4 segments), and

large (C 5 segments).22 We dichotomized the defect size

results into ‘‘Small_medium’’ and ‘‘Large,’’ and the defect

severity into ‘‘Mild_moderate’’ and ‘‘Severe.’’ The EF result

was categorized into abnormal (B 40%), borderline (41%-

49%), and normal (C 50%).

MPI reports include equivocal findings. For instance,

‘‘There is a small sized mild severity, fixed defect in the

inferior wall likely due to soft tissue attenuation artifact,

although scar cannot be entirely excluded.’’ Therefore, we

built rules to provide a consistent summary interpretation. For

example, we used the wall motion and EF values to differen-

tiate defects resulting from ischemia from artifacts.23 If there

was no wall motion or EF abnormality, we considered the

defect to be an artifact. Since both resting and stress test are

needed to differentiate acute ischemia from old infarction, we

excluded MPI tests without both resting and stress test results.

The NLP algorithm was developed and iteratively improved

using the training dataset. We used the programming language

Python to pre-process MPI reports. In terminology develop-

ment, we used word embedding techniques, which capture the

underlying and context representation of words and phrases.

To extract information from MPI reports, we used Lingua-

matics I2E. We built a post-processing step, using Python to

integrate and finalize the results based on the information

extracted.

Criterion Validity of NLP Algorithm

We evaluated the performance of NLP against the

reference standard created by double-blinded review and

consensus among cardiologist reviewers. We compared the

agreements between the NLP results and the reference standard

using weighted Cohen’s j and the ICC. For the multi-class

MPI result, we dichotomized it by each class in order to

calculate the counts of true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) for each class.

Then for an individual class, we calculate its sensitivity,

specificity, and positive/negative predictive value (PPV/NPV).

We calculate the overall performance metrics based on the sum

of counts of TP, TN, FP, and FN as micro-averaged scores for

the MPI result. The micro-averaged scores are the preferred

performance metrics for multi-class classification with imbal-

anced data.24

Construct Validity of NLP Algorithm

We applied the NLP algorithms to the entire study cohort

and compared the patient characteristics and comorbidities

among the different MPI results. We treat the MPI result as a
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Table 1. Comparison of patient characteristics by NLP-identified myocardial perfusion imaging results

Characteristic Ischemia Infarction
Non-

diagnostics Normal Total

n (%) 2,729 (16.1) 2,070 (12.2) 262 (1.5) 11,896 (70.2) 16,957 (100)

Days between ED and MPI 2.1 ± 4.9 1.7 ± 4.1 3.2 (8.4) 2.4 ± 5.9 2.3 ± 5.6

Age 69.4 ± 11.9 70.8 ± 11.5 69.5 ± 12.1 68.3 ± 12.0 68.8 ± 11.9

Female 1,091 (40) 762 (36.8) 145 (55.3) 7,029 (59.1) 9,027 (53.2)

Hispanic 721 (26.4) 517 (25) 82 (31.3) 3,609 (30.3) 4,929 (29.1)

Race

White 1,685 (61.7) 1,211 (58.5) 155 (59.2) 7,109 (59.8) 10,160 (59.9)

Black 420 (15.4) 448 (21.6) 44 (16.8) 1,657 (13.9) 2,569 (15.2)

Asian 243 (8.9) 151 (7.3) 26 (9.9) 1,332 (11.2) 1,752 (10.3)

Alaska Native/Pacific

Islander

60 (2.2) 27 (1.3) 5 (1.9) 190 (1.6) 282 (1.7)

Others 321 (11.8) 233 (11.3) 32 (12.2) 1,608 (13.5) 2,194 (12.9)

Body mass index (kg�m-2)�

\18 27 (1) 25 (1.2) 4 (1.5) 102 (0.9) 158 (0.9)

C18 and\25 564 (20.7) 521 (25.2) 59 (22.5) 2,866 (24.1) 4,010 (23.6)

C 25 and\30 901 (33) 693 (33.5) 77 (29.4) 4,116 (34.6) 5,787 (34.1)

C 30 and\35 606 (22.2) 476 (23) 57 (21.8) 2,579 (21.7) 3,718 (21.9)

C 35 610 (22.4) 342 (16.5) 63 (24) 2,133 (17.9) 3,148 (18.6)

Missing 21 (0.8) 13 (0.6) 2 (0.8) 100 (0.8) 136 (0.8)

Smoking behavior

Current/passive 201 (7.4) 147 (7.1) 21 (8) 664 (5.6) 1,033 (6.1)

Former 1,237 (45.3) 985 (47.6) 113 (43.1) 4,304 (36.2) 6,639 (39.2)

Never 1,284 (47.1) 934 (45.1) 125 (47.7) 6,859 (57.7) 9,202 (54.3)

Missing 7 (0.3) 4 (0.2) 3 (1.1) 69 (0.6) 83 (0.5)

Family history of

coronary artery disease

1,107 (40.6) 784 (37.9) 93 (35.5) 4,443 (37.3) 6,427 (37.9)

Medications�

ACEi/ARB 1,889 (69.2) 1,397 (67.5) 150 (57.3) 6,070 (51) 9,506 (56.1)

Aldosterone 159 (5.8) 203 (9.8) 9 (3.4) 359 (3) 730 (4.3)

Beta blocker 2,221 (81.4) 1,647 (79.6) 170 (64.9) 5,587 (47) 9,625 (56.8)

Calcium channel blockers 849 (31.1) 565 (27.3) 72 (27.5) 3,219 (27.1) 4,705 (27.7)

Diuretics 1,348 (49.4) 1138 (55) 122 (46.6) 4,175 (35.1) 6,783 (40)

Vasodilators 285 (10.4) 202 (9.8) 24 (9.2) 696 (5.9) 1,207 (7.1)

Troponin (ng�mL-1) 0.2 ± 1.3 0.3 ± 3.2 0.1 ± 0.3 0.0 ± 0.9 0.1 ± 1.4

HEART score, n 803 604 74 4061 5542

5.5 ± 1.4 5.6 ± 1.4 5.3 ± 1.4 4.8 ± 1.3 5.0 ± 1.4

HEART score (risk groups)

Low (0-3) 59 (2.2) 35 (1.7) 7 (2.7) 616 (5.2) 717 (4.2)

Moderate (4-6) 553 (20.3) 423 (20.4) 57 (21.8) 3,051 (25.6) 4,084 (24.1)

High (C 7) 191 (7) 146 (7.1) 10 (3.8) 394 (3.3) 741 (4.4)

Missing 1,926 (70.6) 1,466 (70.8) 188 (71.8) 7,835 (65.9) 11,415 (67.3)

Elixhauser score 6.3 ± 3.2 6.6 ± 3.2 6.0 ± 3.1 5.0 ± 3.0 5.4 ± 3.1

Comorbidities

Atrial fibrillation 995 (36.5) 868 (41.9) 93 (35.5) 3,384 (28.4) 5,340 (31.5)

Congestive heart failure 812 (29.8) 909 (43.9) 58 (22.1) 1,307 (11) 3,086 (18.2)

Coronary artery disease 1,632 (59.8) 1,200 (58) 109 (41.6) 3,178 (26.7) 6,119 (36.1)

Diabetes 1,485 (54.4) 1,049 (50.7) 111 (42.4) 4,603 (38.7) 7,248 (42.7)

Essential hypertension 2,348 (86) 1,754 (84.7) 211 (80.5) 8,982 (75.5) 13,295 (78.4)

Lipid disorder§ 2,345 (85.9) 1,769 (85.5) 206 (78.6) 9,275 (78) 13,595 (80.2)
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Table 1 continued

Characteristic Ischemia Infarction Non-
diagnostics

Normal Total

Renal insufficiency 1,098 (40.2) 861 (41.6) 93 (35.5) 2,974 (25) 5,026 (29.6)

Stroke 228 (8.4) 149 (7.2) 13 (5) 501 (4.2) 891 (5.3)

Values are mean ± SD or n (%), unless otherwise indicated. We calculated the P values using the v2 test for categorical variables
and ANOVA for numerical variables. All P values were\ .001 for variables listed in this table
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blockers
�BMI: the last measure before the ED encounter
�Medication usage in the 90 days before the ED visits
§Dyslipidemia/hyperlipidemia

Ischemia Infarction

MPI reports

Size of the 
defect

Artifact

Normal Non-
diagnostic

Severity of 
ischemia

EFWall motion 

Type and location of defect

Test type

Exclude rest-only test

Defect

Synthesis of extracted information

Figure 1. Diagram illustrates the NLP process on MPI reports. NLP extracted commonly available
information from the MPI reports. The extracted information was used to derive the final set of
variables based on the clinical logic. MPI, myocardial perfusion imaging; NLP, natural language
processing; EF, ejection fraction.

1182 Zheng et al Journal of Nuclear Cardiology�
Automated abstraction of myocardial perfusion imaging reports May/June 2022



nominal variable rather than an ordinal variable. We included

30-day acute myocardial infarction (AMI) or all-cause mor-

tality, from the date of MPI as a descriptive patient outcome, as

well as 30-day major adverse cardiac event (MACE) rates,

which was the composite of death, AMI, and any coronary

revascularization procedures. We calculated P values using the

v2 or the Fisher exact test for all the categorical variables and

the Wilcoxon test for all the continuous variables. We set the

significance threshold at 0.05. We used SAS version 9.4 (SAS

Institute, Cary, NC, USA) for data analysis.

RESULTS

Study Population

Our study population included 16,957 patients with

a mean age of 69 ± 12 years; 53 % were women, and

60% were white (Table 1). Over 45% of the study

population had a smoking history, 40% were obese, and

38% had a family history of CAD. The mean Elixhauser

score was 5.4 ± 3.1. The mean ± standard deviation and

median (interquartile range) days from ED to MPI tests

were 2.3 (5.6) and 0 (0, 1), respectively. One-third of the

patients had a HEART score, and among them, 73.7%

and 12.9% respectively had low and moderate-risk

HEART scores. The mean troponin level was 0.1 ng/

mL. The majority (97.2%) of these patients had a

troponin level \0.5 ng/mL (Supplemental Table S1).

These 16,957 MPI reports were written by 111 inter-

preting physicians.

Criterion Validity of NLP Algorithm

The two cardiologists had an excellent agreement

on the majority of the variables, with over 90% ICC and

j (Supplemental Table S2). They disagreed more on

ischemic severity, with 87.6% ICC and 87.3% j. NLP
had a similar level of agreement with the reference

standard as compared to the agreement between the two

cardiologist reviewers (Supplemental Table S2). NLP

had a perfect match on ejection fraction, over 95% ICC

and j on MPI result, ischemia, and ischemic size, and

over 90% ICC and j on ischemic severity, infarction,

and artifact.

Compared with the reference standard (n = 150),

NLP achieved 96.7% sensitivity and PPV, 98.9%

specificity, and NPV on MPI results using micro-

averaged evaluation metrics (Table 2). NLP achieved

100% sensitivity, 99.2% specificity, 96.9% PPV and

100% NPV on identifying ischemia cases. NLP had

lower sensitivity (50%) for non-diagnostic cases partly

due to the small number of non-diagnostic cases (n = 4).

NLP had a lower PPV (89.3%) for identifying infarction.

Table 2. Comparison of NLP to the reference standard (n = 150) for identifying the MPI results

Confusion matrix
NLP

Reference standard Normal Non-diagnostic Infarction Ischemia Total

Normal 87 0 2 0 89

Non-diagnostic 1 2 1 0 4

Infarction 0 0 25 1 26

Ischemia 0 0 0 31 31

Total 88 2 28 32 150

Accuracy measurements (95% CI)

MPI result TP TN FN FP Sensitivity Specificity PPV NPV

Normal* 87 60 2 1 97.8 (92.1-99.7) 98.4 (91.2-100) 97.8 (91.8-99.4) 98.4 (89.5-99.8)

Non-diagnostic* 2 146 2 0 50 (6.8-93.2) 100 (97.5-100) 100 98.7 (96.5-99.5)

Infarction* 25 121 1 3 96.2 (80.4-99.9) 97.6 (93.1-99.5) 89.3 (73.1-96.2) 99.2 (94.7-99.9)

Ischemia* 31 118 0 1 100 (83.8-99.9) 99.2 (96.9-100) 96.9 (81.5-99.5) 100

Micro-averaged� 145 445 5 5 96.7 (92.4-98.9) 98.9 (97.4-99.6) 96.7 (92.4-98.6) 98.9 (97.4-99.5)

CI, confidence interval; MPI, myocardial perfusion imaging; NLP, natural language processing; FN, false negative; FP, false positive;
TN, true negative; TP, true positive; NPV, negative predictive value; PPV, positive predictive value
*For evaluation purposes, we dichotomized the MPI result in the confusion matrix to calculate the counts of TP, TN, FN, FP; and
derive the performance metrics for each class
�The MPI result was evaluated using micro-averaging metrics, which were calculated based on the summarized counts of TP, TN,
FN, and FP
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Construct Validity of NLP Algorithm

In the overall study population, the percentages of

ischemia, infarction, non-diagnostic, and normal MPI

results as identified by NLP were 16.1%, 12.2%, 1.5%,

and 70.2%, respectively (Table 1). Compared with the

patient group with normal MPI results, the groups with

ischemia and infarction findings were more likely to be

male, have smoking history, and have cardiovascular-

related comorbidities and medications. Patients with

ischemia and non-diagnostic findings were more likely

to be obese with BMI C 35. Compare with other groups,

the non-diagnostic group had the highest mean and

median days (3.2 and 1) from ED to MPI test. Over 68%

of our sample had an undetectable troponin (\ 0.02

ng�mL-1) at the ED encounter, and approximately 50%

of the MPIs with ischemia or infarction did as well

(Supplemental Table S1). Patients who underwent MPI

had more cases of moderate (73.7%) and high (13.4%)

HEART scores compared with our general ED patients25

(Supplemental Table S3). Among the ischemia cases,

the majority had small- to medium-size defects and mild

to moderate severities (Supplemental Table S4).

Overall 30-day event rates for the study cohort were

4.1% for death/AMI and 5.5% for MACE (Table 3).

There were associations of increasing 30-day death/AMI

and MACE with MPI results from normal (1.4% and

1.6%) to infarction (7.3% and 8.1%), non-diagnostic

(10.7% and 14.1%), and ischemia (12.6% and 20.0%).

DISCUSSION

Artificial intelligence (AI), including machine

learning (ML) and NLP, has been increasingly adopted

within cardiology.26 In cardiovascular imaging, ML has

been used to extract imaging variables from raw images

and predict outcomes by combining with other clinical

variables.27 NLP is another AI-based tool that can

identify and extract variables from unstructured text data

such as clinical notes and radiology reports. However,

NLP is less discussed in cardiovascular imaging, espe-

cially in nuclear cardiovascular imaging.

In this study, we developed a computer-based

method to identify and extract information from the

free-text MPI reports. Compared with the reference

standard, the NLP algorithm accurately classified the

MPI results. NLP also achieved high accuracy in

extracting other clinical variables from the MPI reports,

such as ischemic size, severity, artifact, and EF values.

To the best of our knowledge, this is the first study to use

a computer-based method for abstracting MPI reports.

This approach does not depend on any particular clinical

features from our institution. Therefore, it will also be

applicable to other healthcare institutions.

Based on the NLP-abstracted summary results from

the MPI reports, it showed that MPI had good differ-

entiating power in identifying patients at short-term

cardiac risk. There were significantly increasing 30-day

cardiac event rates with worsening MPI abnormalities.

Table 3. 30-day major adverse cardiac outcomes stratified by NLP-identified MPI results after an
emergency department visit for a suspected acute coronary syndrome

NLP identified MPI results

Characteristic % Ischemia Infarction
Non-

diagnostics Normal P value* Total n (%)

n (%) 2,729 (16.1) 2,070 (12.2) 262 (1.5) 11,896 (70.2) 16,957 (100)

Death or AMI 12.6 7.3 10.7 1.4 \ .001 695 (4.1)

Unstable angina 9.3 3.0 9.5 2.5 \ .001 640 (3.8)

MACE 20.0 8.1 14.1 1.6 \ .001 939 (5.5)

AMI 12.4 6.9 10.3 1.3 \.001 666 (3.9)

Death 0.5 0.6 0.4 0.1 \.001 39 (0.2)

Revascularization 10.8 1.3 8.4 0.3 \ .001 376 (2.2)

CABG 4.5 0.4 3.8 0.1 \ .001 152 (0.9)

PCI 6.5 0.9 4.6 0.2 \ .001 229 (1.4)

Data was presented as % unless otherwise indicated. Revascularization includes CABG and PCI
AMI, acute myocardial infarction; CABG, coronary artery bypass grafting; MPI, myocardial perfusion imaging; MACE, major
adverse cardiac events which include AMI, death, CABG, and coronary revascularization; PCI, percutaneous coronary
intervention
*Fisher’s exact test
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For instance, the patients with ischemia had 9-fold

increased 30-day death/AMI rates compared with

patients with normal MPI. Compared with our previous

studies, the 30-day death/AMI rates for MPI, ETT, and

overall ED populations were 4.1%, 0.3%,13 and 0.6%,25

respectively. The type of stress test ordered may reflect

the clinician’s perception of a patient’s risk.

Patients with non-diagnostic studies had high 30-

day death/AMI rates, even above those with a previous

infarct. These non-diagnostic patients were likely

heterogeneous since there were a variety of reasons

leading to a non-diagnostic MPI. Our results may

indicate a need for special attention to patients with

non-diagnostic MPI results, who may be at higher than

expected risk for adverse events.

Compare with previous studies on ED patients who

underwent MPI, the patients in this study were older

(mean age 69 vs 52-59), had more cardiovascular-

related comorbidities, and a much higher rate of

abnormal MPI findings (30% vs 8-20%) (Supplemental

Table S5).17–19,28–30 Conversely, the rate of abnormal

findings in our study was at the low end (30% vs 29-

49%) compared to studies in non-ED settings.31–33 The

differences in the patients’ characteristics of our study

from other studies might be related to the integrated

model in our institution. The findings in our institution

might argue against the national trend of using more

noninvasive imaging. For instance, while the US

observed a 5-fold increase in noninvasive imaging

testing from 1998 to 2008, the rate of ACS diagnosis

has dropped by half.34 The decrease in abnormal

findings may be attributed to testing younger and

healthier patients.

Nevertheless, MPI is still an important diagnostic

tool for downstream care. The clarity and completeness

of MPI reports are crucial for the risk assessment by the

referring providers. However, approximately half of the

reports do not adhere to recommended reporting stan-

dards, and referring providers frequently misestimate the

extent of the ischemia.14 Levy et al reviewed a set of

sample MPI reports from 44 sites in the Veterans Affairs

system.14 They found that less than 5% of the reports

had an explicit assessment of ischemic risk. However,

nearly all of the reports had the data elements to assess

the ischemic risk. We found similar and additional

challenges in implementing the NLP method. Even in

the same institution, there were substantial differences in

the format and quality of the MPI reports. We listed

three sample reports from this study in the Supplemental

Data S1, S2, and S3. As demonstrated in the sample

reports, MPI reports frequently had ambiguous and

hedging words that made accurate interpretation difficult

(Supplemental Data S1). Although the majority of these

reports described the location of the ischemia, they often

were not using the standard terms (Supplemental Data

S2). For reports with abnormal findings, the ischemic

size and severity were not always clearly stated. Despite

these challenges, we found that NLP could provide a

coherent summary interpretation by synthesizing the

data elements presented in the reports. As an automated

method, NLP offers low human review costs, higher

efficiency, and consistency.

The MPI reports included in this study were based

on conventional free-text reporting. This type of report

was generated by dictation or typing with full flexibility.

Over the past decades, a number of professional soci-

eties have promoted standardized and structured

reporting of MPI studies.22,35 Structured reports will

increase uniformity, reduce variability, and improve

readability compared to conventional reports. Since

structured reports were still written in natural language,

NLP is still necessary to process large numbers of such

reports, although it is less challenging to do so. In

addition, structured reporting is less likely to resolve all

problems in conventional reporting. First, there are

variations in structured reporting, such as templates,

required components and degrees of standardization.36

Second, despite the promotion of structured reporting,

some physicians still favor free-text based reporting.37

Finally, despite improved compliance, the proportion of

non-compliant reports still stands at 43% in nuclear

cardiology laboratories that applied for accreditation.38

Therefore, in studies performed across multiple institu-

tions, the NLP algorithm must adapt to these

heterogeneous types of reports.

Our study has some unique strengths. We validated

our algorithm on a large and diverse population within

an integrated care system with a comprehensive EHR.

Moreover, our prepaid health plan reduced the racial-

specific difference in seeking medical care. Furthermore,

few studies have focused on the prognostic value of MPI

in short-term cardiac events in a population referred

from ED with suspected ACS. Our study was able to

assess the short-term cardiac outcomes due to the large

size of our study population, despite the low event rates.

Study Limitations

Our study has some limitations. MPI results were

based on the reading physicians’ interpretations, rather

than adjudicated by a core lab. Variations in the

accuracy of the test interpretation are expected among

physicians. We did not have resources to validate the

written MPI reports by re-examining the MPI images.

We limited our analyses using the ischemia/infarction

related findings since it is often the only information

used in clinical decision making by the referring

providers. The other variables extracted by NLP could

Journal of Nuclear Cardiology� Zheng et al 1185

Volume 29, Number 3;1178–87 Automated abstraction of myocardial perfusion imaging reports



augment the MPI results for a better outcome prediction.

Nevertheless, the NLP-extracted variables were not

comprehensive. We did not include variables that the

MPI reports did not consistently document. Moreover,

we limited our analyses on the short-term outcomes

since it was the main clinical interest in managing the

ED population. Finally, the language and style of

reporting can be different across institutions. Our NLP

algorithm might perform differently in other testing

datasets.

CONCLUSION

The conventional MPI reports documented by

dictation or typing are highly variable based on physi-

cian preferences and practices complicating the

interpretation of results either by referring physicians,

researchers, or by automated abstraction. We developed

and validated an automated NLP algorithm to abstract

the conventional MPI reports with high accuracy. This

computational tool could support a population-based

studies of MPI results, which would be otherwise

infeasible to capture due to the resources needed for

manual chart review of thousands of results. Structured

reporting could further assist these efforts.

NEW KNOWLEDGE GAINED

Natural language processing provides an efficient

way to categorize MPI reports as well as identify and

extract other variables from a large number of conven-

tional free-text MPI reports found in electronic health

records. Automated abstraction of MPI reports by NLP

will facilitate future research to inform how best to

manage patients with suspected ACS and to make

informed clinical recommendations about which patients

may benefit most from MPI.
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