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Background. Coronary computed tomography angiography (CCTA) is a well-established
non-invasive diagnostic test for the assessment of coronary artery diseases (CAD). CCTA not
only provides information on luminal stenosis but also permits non-invasive assessment and
quantitative measurement of stenosis based on radiomics.

Purpose. This study is aimed to develop and validate a CT-based radiomics machine
learning for predicting chronic myocardial ischemia (MIS).

Methods. CCTA and SPECT-myocardial perfusion imaging (MPI) of 154 patients with
CAD were retrospectively analyzed and 94 patients were diagnosed with MIS. The patients
were randomly divided into two sets: training (n = 107) and test (n = 47). Features were
extracted for each CCTA cross-sectional image to identify myocardial segments. Multivariate
logistic regression was used to establish a radiomics signature after feature dimension reduc-
tion. Finally, the radiomics nomogram was built based on a predictive model of MIS which in
turn was constructed by machine learning combined with the clinically related factors. We then
validated the model using data from 49 CAD patients and included 18 MIS patients from
another medical center. The receiver operating characteristic curve evaluated the diagnostic
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accuracy of the nomogram based on the training set and was validated by the test and vali-
dation set. Decision curve analysis (DCA) was used to validate the clinical practicability of the
nomogram.

Results. The accuracy of the nomogram for the prediction of MIS in the training, test and
validation sets was 0.839, 0.832, and 0.816, respectively. The diagnosis accuracy of the nomo-
gram, signature, and vascular stenosis were 0.824, 0.736 and 0.708, respectively. A significant
difference in the number of patients with MIS between the high and low-risk groups was
identified based on the nomogram (P < .05). The DCA curve demonstrated that the nomogram
was clinically feasible.

Conclusion. The radiomics nomogram constructed based on the image of CCTA act as a
non-invasive tool for predicting MIS that helps to identify high-risk patients with coronary
artery disease. (J Nucl Cardiol 2022;29:262–74.)

Key Words: Radiomics Æ coronary CT angiography Æ myocardial ischemia Æ nomogram Æ
machine learning

INTRODUCTION

Coronary artery disease (CAD) is the leading cause

of cardiovascular mortality and morbidity across the

globe.1 Majority of the CAD patients present with

clinically stable ischemic heart disease. The implemen-

tation of revascularization in these patients mainly refers

to the degree of myocardial ischemia (MIS) and not the

severity of CAD.2 The presence of moderate-to-severe

ischemia remains the mandatory criterion for percuta-

neous coronary intervention in stable CAD.3 Therefore,

the assessment of MIS in these patients has a direct

impact on the treatment of CAD.

Coronary computed tomography angiography

(CCTA) provides information on coronary artery anat-

omy and stenosis. Furthermore, it helps to detect and

evaluate coronary artery stenosis and atherosclerotic

plaque.4 Hence, CCTA is commonly used to assess

patients suspected of CAD and patients with low or

moderate levels of risk.5 However, coronary artery

stenosis and blood flow changes in the myocardium are

not related. Therefore, the hemodynamic significance in

assessing coronary artery lesions by CCTA alone

remains uncertain.6,7 This limitation is evident in

patients at high risk of CAD.8 Irrespective of the fact

that myocardial perfusion imaging using dual-source CT

directly visualizes myocardial iodine content and iden-

tifies MIS 9,10 it is difficult to distinguish sclerosis

artifact of the X-ray beam and perfusion defect of MIS

as they are similar and leads to a false-positive result.11

Conventional CCTA images show limited contrast and

hence the evaluation of MIS by visual changes on

myocardial tissue density becomes deficient. Thus, it is

important to combine other functional tests to assessMIS.12

Radiomics is a new quantitative imaging technol-

ogy that has been widely used in medical research due to

its cost-effectiveness and non-invasive nature.13,14

Radiomics refers to the extraction of quantitative

features from medical images to develop predictive or

prognostic models for disease treatment. Radiomics

analysis can be applied for preliminary diagnosis 15

including myocardial infarction,16 cardiomyopathy,17,18

myocarditis 19 and arrhythmia.20 However, to the best of

our knowledge, there no studies that quantitatively

assess MIS using radiomics. Also, we do not know

whether radiomics can differentiate between an MIS and

normal myocardium; however, we hypothesize that the

radiomics analysis of CCTA images can distinguish MIS

from normal myocardium, and the potential benefit of

this hypothesis is that CCTA is used as a one-stop non-

invasive examination to simultaneously examine coro-

nary artery anatomy and assess hemodynamic

information.

Furthermore, by correlating radiomics with clinical

data, we can establish disease prediction models.21,22

Hence, the study is aimed to develop and validate a

radiomics nomogram for predicting MIS using conven-

tional CCTA.

MATERIALS AND METHODS

Patients Information

We obtained study approval from the Ethics Committee

of ZJP hospital (Hangzhou, Zhejiang Province, China) with a

waiver for obtaining informed consent from the patients. We

retrospectively analyzed data of patients who underwent both

CCTA and myocardial perfusion imaging (MPI) at ZJP

hospital from May 2017 to March 2020. The period between

the two examinations was not more than 7 days. Patient

inclusion criteria were as follows: (1) patients without

myocardial infarction within the last three months, (2) patients

with typical or atypical symptoms of angina pectoris patients

persisting for[ 2 months, (3) patients with abnormalities in

ECG or treadmill exercise test, (4) good quality images of

CCTA includes no obvious motion artifact, no metal stent

artifact and the use of good contrast agent to improve the

visibility of the blood vessel (5) patients with no other heart

See related editorial, pp. 275–277
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disease. Patient exclusion criteria were as follows: (1) patients

with a history of coronary artery bypass or stent implantation,

(2) patients with rapid heart rate (heart rate greater than 85

beats per minute or arrhythmia, (3) patients with liver or

kidney dysfunction. In this study, we enrolled 154 patients

following the guidelines of the American Heart Association

(AHA) and 93 patients were diagnosed with MIS using single-

photon emission computed tomography (SPECT)-MPI, a gold

standard for the evaluation of MIS.4 Details of the MPI are

provided in the Supplementary Material. Also, we divided the

patients into two sets—training and test—in the ratio 7:3. The

training set consisted of patients enrolled between May 2017

and April 2019, whereas the test set composed of patients

enrolled between May 2019 and March 2020. The training set

was used to examine the robustness of radiomic features and to

construct a predictive model. The test set was used to verify the

reliability of the predictive model. We also collected CCTA

data from 49 patients between August 2018 and March 2020

from SYF hospital (Hangzhou, Zhejiang Province, China) for

external validation. The flowchart of the recruitment process

and research design is shown in Figure 1.

CCTA Acquisition

All patients underwent a prospective electrocardiogram

(ECG)-gated cardiac CT angiography by two different vendors

with C 64 detector rows (Aquilion One, Toshiba Medical

Systems, Otawara, Japan; Somatom Flash/Force, Siemens

Healthineers, Forchheim, Germany). Detailed information on

scanning parameters and CCTA are provided in the Supple-

mentary Material. After scanning, the best time phase of the

display of the coronary artery of imaging was chosen and

transferred into the workstation for reconstructing the coronary

artery with volume rendering, curved planar reconstruction,

and multi-planar reconstruction. The AHA recommends a 15-

segment coronary artery method,23 which was followed by two

experienced radiologists to evaluate vascular stenosis. When

Figure 1. Flowchart of patient recruitment and study design.
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there was a difference in opinion, they concluded after

discussing it in detail.

A modified Gensini scoring system 24 was used to include

heavier stenosis lesions in each vascular segment. The degree

of coronary artery stenosis in the lesion was scored as follows:

0 point—no abnormality; 1 point—stenosis between 1 and

49%; 2 points—stenosis from 50 to 74%; 3 point—stenosis

from 75 to 99%; 4 points—occlusion of the artery (100%). The

sum of the scores of each segment is the total score of the

patient. According to the improved Gensini scoring system,

coronary artery stenosis is graded as mild (1 to 14 point) and

severe stenosis ([ 14 points).

CCTA Image Features Extraction

The CCTA images of the arterial phase of each patient

were imported into the CQK analysis platform (CT Coronary

Artery Quantitative Analysis Kit, version 1.2, GE Healthcare)

in DICOM format for the automatic segmentation of myocar-

dial. A three-dimensional (3D) image of myocardium was

obtained. To reduce error of automatic image segmentation,

the 3D-image was manually modified by two experienced

radiologists who were blinded to the clinical information. The

manual correction steps included: (1) removing non-myocar-

dial tissue; (2) removing myocardial fibrous filaments; (3)

correcting segmentation errors in myocardial tissue, and finally

image preprocessing included resampling the image to 1 9 19

1 mm3 voxel size, and standardizing the gray level to 1 to 32

scales25 before feature extraction. The software package for

image analysis is attached to the CQK platform to extract

radiomics features. The 3D myocardial images included

Histogram, Haralick, FormFactor, gray level co-occurrence

matrix (GLCM), Run-length matrix (RLM) and gray level size

zone matrix features. These features characterize cancer

heterogeneity and potentially reflect changes in image struc-

ture.26 Besides, we used the features that are more robust after

manual correction by two radiologists27 to ensure reproducibil-

ity and repeatability of radiomics features. Spearman’s rank

correlation test was used to calculate the correlation coefficient

between feature set A (from Radiologist A) and feature set B

(from Radiologist B). Features with correlation coefficient[
0.8 were regarded as robust according to a rule of thumb.28

Radiomics Signature Establishment

The maximum relevance minimum redundancy (mRMR)

algorithm was used to extract the robust features in the training

set.29 The maximum relevance selection aimed to select

features that had a maximal correlation to the actual MIS. At

the same time, the minimum redundancy selection ensured that

the selected features had minimal redundancy among each

other. The mRMR method was used to obtain optimal features

set with high correlation and low redundancy.30 Then, the

typical gradient boosting decision tree algorithm was used to

reduce the dimension and construct the radiomics signature

using multivariate logistic regression. The signature model of

the training set that reflects MIS probability was used to

calculate the radiomics score (rad-score) that discriminates the

capacity of signature models in separating patients with MIS

and non-MIS. The formula of the model in the training set was

also used to calculate the score of the test set. Finally, the

accuracy of the radiomics signature in the training and test set

was calculated using the area under the curve (AUC) of the

receiver operating characteristic (ROC) curve. Furthermore,

we verified the clinical efficacy of the rad-score by performing

a stratified analysis of rad-score in patients with vascular

stenosis. Detailed information about dimensionality reduction

and radiomics signature is provided in the Supplementary

Material.

Construction and Evaluation of Radiomics
Nomogram

Multivariable logistic regression analysis was performed

to select independent predictors of MIS for each potential

predictive variable that the clinical factors (gender, age,

hypertension, diabetes, hyperlipidemia, smoking, alcohol

intake, the grade of vascular stenosis and radiomics signature)

in the training group. The co-linearity of each variable was

diagnosed using the variance inflation factor (VIF)22 and the

variable VIF [ 10 indicates severe multicollinearity.31

Machine learning was applied to develop a predictive model

for the MIS based on independent predictors, and a radiomics

nomogram was constructed. In this study, the machine learning

model was evaluated using tenfold cross-validation. 10% data

was used to test the model and the other 90% to create the

model. Different test and training set data were used for every

tenfold cross-validation and the average classification accuracy

calculated based on ten times tenfold cross-validation. Also,

several machine learning methods including support vector

machine (SVM), the K-nearest-neighbors (KNN) and Random

Forest were used to compare and select the best stable classifier

using relative standard deviation (RSD) and a bootstrap

approach. It should be noted that higher stability in the case

of classifiers corresponds to lower RSD values.32 The calibra-

tion curve was used to evaluate the calibration performance

and the Hosmer-Lemeshow test was used to analyze the

fitness. The nomogram’s diagnostic accuracy was evaluated

using the ROC curve. Based on the nomogram the risk score of

MIS was calculated for each patient. All patients were divided

into high-risk groups and low-risk groups based on the cut-off

value of the ROC curve. Based on the actual MIS patients in

different risk groups the clinical effect of the nomogram was

determined. The net benefit of the nomogram in training and

test sets were evaluated using the decline curve analysis

(DCA).33,34 The definitions of relevant clinical factors and

RSD are provided in the Supplementary Material.

Statistical Analysis

The statistical analyses were performed using SPSS

software 17.0 (IBM, Armonk, NY), GraphPad (San Diego,

CA), and R software (version 3.4.1; http://www.Rproject.org).

The normality of distribution was evaluated using the Kol-

mogorov–Smirnov test. A Chi-squared test was used for

categorical data. To determine whether the features were
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significantly different between groups student’s t-test was used

for normally distributed features. However, the Mann-Whitney

test was used otherwise. The ‘‘rms’’ package of R software

was used to construct the nomogram and plot the calibration.

Statistical significance was set at P\ .05.

RESULTS

Comparison of Patients’ Clinical Data

There were no significant differences in gender,

age, hypertension, hyperlipidemia, diabetes, smoking

and vascular stenosis between the training, test, and

validation sets (Table 1). However, between MIS and

non-MIS in the three set, there existed significant

differences in vascular stenosis and rad-score (0.8994

± 0.9148 vs - 0.1549 ± 1.293, 0.9931 ± 1.2369 vs.

0.4626 ± 0.8025, 0.8363 ± 0.8039 vs 0.1049 ± 0.7964, P
\ .05). The other factors showed no statistical differ-

ences (Table 2).

Radiomics Signature Development
and Accuracy

Figure 2 shows the radiomics workflow. A total of

378 texture features were extracted. Of these, 198

radiomic features retained robustness and reproducibil-

ity. Finally, eight optimal features were obtained by

dimensionality reduction. Details on dimensionality

reduction are provided in the Supplemental Material.

These eight features were used to construct the radio-

mics signature using multivariable logistic regression.

The AUC, specificity, and sensitivity of the signature in

the training set were 0.746%, 73.1%, and 68.1%,

respectively, while in the test set 0.727%, 79.3%, and

71.1%, respectively. There was a significant difference

in the rad-score between the non-MIS and MIS in the

mild vascular stenosis subgroup, and the same results

were found in the severe vascular stenosis subgroup (as

shown in Figures 3 and 4).

Development Radiomics Nomogram

The multiple logistic regression analysis showed

that vascular stenosis and rad-score were independent

predictors of MIS. The variance inflation factor (VIF)

values of vascular stenosis and rad-score were 1.003 and

1.024 respectively. This indicated that no serious co-

linearity existed between these factors (Table 3). Also,

we evaluated the RSD and accuracy for SVM, KNN, and

Random Forest algorithms. The RSD values were 2.688,

3.468, and 5.941 for SVM, KNN, and Random Forest

algorithms, respectively. The average AUC values were

0.838, 0.832 and 0.805 for SVM, KNN, and Random

Forest algorithms, respectively (Table S3). Accordingly,

the SVM was used to build the prediction models and

construct a nomogram model. The calibration curves

demonstrated good consistency between the predicted

and the actual MIS probability for the radiomics

nomogram in both training and test sets (Figure 5).

Table 1. Clinical characteristics of patients in the primary and internal validation cohorts

Variables

Training set
(n=107)

Test set
(n = 47)

Verification
(n=49)

P valueN (%) N (%) N (%)

Gender Male 75 (70.1) 29 (61.7) 29 (59.2) .302

Female 32 (29.9) 18 (38.3) 20 (40.8)

Age Year 60.5 ? 14.9 60.7 ? 13.4 64.1 ? 11.5 .342

Hypertension No 58 (54.2) 20 (42.6) 24 (49) .407

Yes 49 (45.8) 27 (57.4) 25 (51)

Hyperlipidemia No 84 (78.5) 34 (72.3) 36 (73.5) .648

Yes 23 (21.5) 13 (27.7) 13 (26.5)

Diabetes No 88 (82.2) 34 (72.3) 35 (71.4) .213

Yes 19 (17.8) 13 (27.7) 14 (28.6)

Alcohol intake in past 5 years No 83 (77.6) 32 (68.1) 34 (69.4) .365

Yes 24 (22.4) 15 (31.9) 15 (30.6)

Smoking in past 5 years No 74 (69.2) 32 (68.1) 38 (77.6) .503

Yes 33 (30.8) 15 (31.9) 11 (22.4)

Vascular stenosis Mild 49 (45.8) 22 (46.8) 24 (49) .935

Severe 58 (54.2) 25 (53.2) 25 (51)
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Figure 2. Workflow of the radiomics signature building and model construction.

Figure 3. A Diagnostic accuracy of the rad-score in the training set and B diagnostic accuracy of
the rad-score in the test set.
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Further, the Hosmer–Lemeshow test showed that there

was no statistical difference between the training and

test sets (P [ .05) indicating no deviation from

normality.

Performance of Radiomics Nomogram

The accuracy, specificity, and sensitivity of the

nomogram for predicting MIS in the training set were

0.839%, 71.4% and 84.6%, respectively. The accuracy,

specificity, and sensitivity of the nomogram for predict-

ing MIS in the test set were 0.832%, 68.4% and 82.1%,

respectively. The accuracy, specificity, and sensitivity of

the nomogram for predicting MIS in the validation set

were 0.816%, 70.5%, and 86%, respectively. DCA

curves also showed good net benefits in the three sets

(Figure 6). Also, we evaluated the accuracy of the

radiomics nomogram, radiomics signature and vascular

stenosis in all patients using the ROC curve and found

AUC to be 0.824, 0.736 and 0.708, respectively. Based

on the DeLong test, we found significant differences in

AUC between nomogram, vascular stenosis and signa-

ture (P\ .0001, .0026), and no significant difference in

AUC between vascular stenosis and label score (P =

.5579). Nomogram constructed using the training set

helped to divide the patients into high-risk and low-risk

groups according to the best diagnostic threshold (cut-

off value: 0.4388). We observed a significant difference

in the number of MIS cases between high-risk and low-

risk groups (P\ .001) (Figure 7).

DISCUSSION

This proof-of-concept study indicates that radiomics

combined with machine learning algorithms help us

differentiate non-MIS and MIS in CCTA images. This

image analysis extracts information that, in general, may

Table 3. Logistic regression analysis of predicting myocardial ischemia

Variable

Univariate logistic
regression

Multivariate logistic
regression

VIF
valueOR (95% CI)

P
value OR (95% CI)

P
value

Age (per 1 increase) 0.915 (0.866–0.967) .002* NA NA

Gender (male vs female) 0.175 (0.041–0.752) .019* NA NA

Hypertension (no vs yes) 1.2326 (0.315–4.826) .765 NA NA

Diabetes mellitus (no vs yes) 2.391 (0.552–10.357) .244 NA NA

Hyperlipidemia (no vs yes) 1.567 (0.342–7.171) .563 NA NA

Smoking in past 5 years (no vs yes) 0.997 (0.23–4.325) .996 NA NA

Alcohol intake in past 5 years (no

vs yes)

0.232 (0.052–1.033) .055 NA NA

Vascular stenosis (non or mild vs

severe)

8.709 (6.203–32.878) \ .001* 6.068 (5.762–

24.529)

\ 0.001*

1.003

Radiomics score (per 0.1 increase) 4.001 (2.032–7.878) \ .001* 3.817 (1.995–

7.306)

\ 0.001*

1.024

NA, not available as the variable was not included in the multivariate logistic regression
*P\0.05

Figure 4. Violin maps of myocardial ischemia predictive
score using radiomics signature formula for the mild and
severe vascular stenosis subgroups. The red line indicates
median and the gray line represents quartile.
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Figure 5. Radiomics nomogram to detect myocardial ischemia (A). The radiomics nomogram was
developed in the training set with the rad-score and vascular stenosis stage. In the nomogram, we
draw a vertical line according to the value of rad-score to determine the corresponding value of
points. In the same way, the points of vascular stenosis stage were also determined. Then, total
points were the sum of the two points above. Finally, draw a vertical line according to the value of
total points to determine the probability of myocardial ischemia. The calibration curve of the
radiomics nomogram for myocardial ischemia in the training set (B) and test set (C). A dashed line
indicates the reference line where an ideal nomogram would lie. A dotted line indicates the
performance of nomogram, while the solid line indicates bias correction in the nomogram.
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Figure 6. ROC curves of radiomics nomogram to detect the presence of myocardial ischemia in
the training, test and validation set, respectively. The decision curve analysis of the training set A
shows if the threshold probability is between 0 and 0.86. The decision curve analysis of the test set
B shows if the threshold probability is between 0 and 0.64. The decision curve analysis of the
validation set C shows if the threshold probability is between 0 and 0.6. Using the radiomics
nomogram to predict myocardial ischemia is more beneficial than assuming that all patients suffer
from myocardial ischemia or no myocardial ischemia.

Figure 7. A ROC curves for stenosis, the radiomics signature and nomogram for predicting
myocardial ischemia in all 203 patients. B The risk classification performance of the nomogram in
all 203 patients.
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not be visible to the naked eye. Also, the radiomics

nomogram incorporating the radiomics signature and

CCTA parameters can identify the higher risk popula-

tion of MIS. This means that it is an accurate and

effective tool that predicts MIS in clinical routine. In

particular, the radiomics signature of participating in

constructing the nomogram also reflects the difference

between MIS and non-MIS in the vascular stenosis

subgroup, further revealing the prediction mechanism of

the nomogram.

CCTA is mainly used in patients with low-to-

intermediate cardiovascular risk and it determines the

degree of coronary artery stenosis from an anatomical

point of view. It is useful in routine follow-up exam-

ination of suspected CAD and prediction of high-risk

CAD. Also, CCTA is mostly used as the first-line

method for the evaluation and prognosis of patients with

possible CAD. However, CCTA cannot identify and

locate the target blood vessel meaning it cannot provide

information on the whole and local MIS directly. This

mismatch between results of CCTA and MIS is well

known.35 Hence, CCTA is usually performed in com-

bination with other functional tests to assess MIS.36

However, in this study, we used radiomics nomogram

instead of other functional tests to evaluate MIS. Using

SPECT-MPI as a reference standard, the nomogram

showed good recognition performance. Although

SPECT is the gold standard for diagnosing MIS,37 we

have to realize that SPECT-MPI has a low spatial

resolution and it cannot accurately display the anatom-

ical structure of the coronary artery and is highly

influenced by artifacts which results in false positives.

Thus, SPECT-MPI is not conducive to clinically eval-

uate early subendocardial ischemia. Also, its application

is limited due to the side effects of drugs and excessive

exposure to continuous scanning. Therefore, CCTA-

based radiomics analysis may be beneficial for patients

who cannot tolerate loads of heart imaging tests.

Furthermore, CCTA evaluates MIS along with stenosis.

Previous studies have confirmed that the evaluation

of plaque characteristics improves the predictive value

of lesion-specific ischemia in CCTA.38,39 But the

deficiency is that the evaluation is subjective and

different observers witness significant differences.

Hence, CAD evaluation primarily depends on visual

evaluation of vascular stenosis, which is a reliable

indicator of clinical risk stratification in CAD patients.40

Based on the above knowledge, we constructed a

radiomics nomogram with vascular stenosis for the first

time and found that the diagnostic accuracy of the

nomogram was significantly higher than that of a single

radiomics signature model. Furthermore, it was noticed

that the diagnostic efficiency of the radiomics signature

was higher than that of vascular stenosis indicating that

the radiomics signature act as a potential biomarker for

predicting MIS. However, the radiomics signature does

not provide evidence for a direct assessment of MIS

when compared with fractional flow reserve (FFR). It is

encouraging to know that the score of the radiomics

signature showed a significant difference between MIS

and non-MIS in the mild or no visible vascular stenosis

subgroup indicating that the mathematical objectivity of

radiomics allows the use of conventional CCTA to

accurately assess MI rather than using other invasive

methods.41

The limitation of the contrast resolution of CT leads

to the difficulty of recognizing the theoretical density

difference between MIS and non-MIS by a vision in

conventional CCTA. But, this limitation was resolved by

increasing the contrast dose and the radiation dose

clinically.42 However, this increases the risk of radiation

dose and causes potential damage to the renal function.

Also, improvement in contrast noise not necessarily gets

translated into the improvement of visual accuracy, even

on delayed enhanced CCTA imaging. On the other hand,

radiomics suggest that such changes in visual unavail-

ability can be quickly identified by inexperienced

clinicians. This technique is beneficial because it is fast

and easy to perform, also does not require additional

scanning time, sequences, or contrast agents. It comple-

ments the conventional imaging approach and provides a

more sensitive marker of the degree of myocardial

microstructure disruption/abnormality. It is possible to

decode the huge radiomics statistics using ‘‘big data’’

and machine learning easier and also it provides

clinically relevant and useable outcomes. In the present

study, we found that the high-order radiomics features

are robust with respect to the reproducibility. Also, the

texture quantifiers are at advanced texture scale, such as

the GLCM or RLM, in particular, the demonstrated

diagnostic capability, and this is in concurrence with the

results of previous studies.43 It is proved that the

microstructural changes in the myocardium can be

reflected by high-order radiomics features.44,45

All the myocardium were extracted by the auto-

matic segment and it is one of the advantages of this

study and based on that radiomics feature analysis was

performed. When compared with a manual segment for

myocardium, the results of the automatic segment

myocardial radiomic analysis are stable as well as it

offers a convenient and quick application clinically. To

our knowledge, this study is the first radiological

analysis of MIS by myocardium through the automatic

segment. Previous texture analysis of myocardium is

limited to one single slice of CCTA image and when the

ischemic area is large this analysis fails to represent the

results of all MIS regions. The second major advantage

of our study is that MIS analysis was carried out with
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radiomics signature that was constructed from a large

number of texture features. The diagnostic accuracy of

radiomics signature was significantly improved when

compared with a single clinical biomarker such as

vascular stenosis or Agatston calcium score. Compared

with the diagnostic efficacy (AUC:0.84) of predict

model with MIS using fractional flow reserve combined

with quantitative plaque measurement by Damini et al.46

the radiomics nomogram not only showed good ability

to diagnose MIS but also stratified the high-risk popu-

lation. CT-based radiomics nomogram is the key non-

invasive and easy-to-use tool for clinicians. It acceler-

ates and simplifies the diagnosis process of CAD

patients, thus adding more value.

However, this study has some limitations. The study

population included patients with different clinical

characteristics that lead to selection bias. However, the

implementation of exclusion criteria limits the sources

of bias. Second, this is a retrospective study; neverthe-

less, the analysis of this cohort enables the establishment

of a preliminary radiomics nomogram and facilitates the

future refinement of the nomogram in a larger and more

diverse prospective study. Third, this radiomics quanti-

tative CCTA signature to predict ischemia was

developed and validated vs. subjective visual assessment

of ischemia. Finally, our study population was relatively

small. For future studies, we consider using a larger

sample size to investigate the potential of radiomics

features to differentiate various stages of MIS. Despite

these limitations, we are sure that our experience will

facilitate CCTA accurate detection of MIS. Our future

work will focus on validating the model.

In this study, we showed that by using relatively fast

and quantitative tools we can expand the clinical

potential feasibility of radiomics nomograms to identify

MIS patients. CCTA examination shows the potential

advantages of radiological image analysis by objective

and quantitative evaluation. Finally, it can help clini-

cians to make decisions on the diagnosis and treatment

of patients undergoing CTA examination.
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