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Positron emission tomography (PET) is increasingly

applied to assess myocardial perfusion in conjunction

with global and regional myocardial blood flow (MBF)

quantitation in mL�g�min in patients with suspected and/

or known CAD.1,2 While the stress-related regional

myocardial perfusion defects commonly identify the

‘‘culprit’’ or the most-advanced CAD lesion in multi-

vessel disease, the hemodynamic significance of less-

severe, intermediate CAD lesions with still homogenous

radiotracer uptake may be identified by corresponding

regional reductions in hyperemic MBF and/or myocar-

dial flow reserve (MFR = MBF-stress/MBF-rest).2,3 In

this respect, the concurrent assessment of PET-deter-

mined MFR has been appreciated to provide not only the

additional diagnostic value, but it carries also important

prognostic information in patients with subclinical and

clinically manifest CAD.4,5 The reproducibility of such

MBF quantitation with PET has been performed mainly

in healthy volunteers with and without cardiovascular

risk factors.6 These data have convincingly demon-

strated that PET-determined serial MBFs during

pharmacologic-stimulated hyperemia and at rest can be

employed reliably and are reproducible for quantitation

of effects of preventive medical intervention, gastric-

bypass-induced weight loss, and/or behavioral

interventions related to weight, diet, and physical

activity on coronary circulatory dysfunction.1,7 Subse-

quently, the reproducibility of PET-flow studies among

different software tools was investigated.8–11 For

example, Slomka et al.8 compared MBF values obtained

from three software tools such as QPET, syngo MBF,

and PMOD in individuals with or without obstructive

CAD. And indeed, the global and regional MBF and

MFR values did closely correlate between the three

software packages (correlation coefficient r2 for global

values ranging from 0.88 to 0.92 and for regional

values from 0.78 to 0.94, respectively), which was

reflected by similar mean MFR values (QPET:

3.39 ± 1.22, Syngo MBF: 3.41 ± 0.76, and PMOD:

3.66 ± 1.19, respectively).

In this issue of the Journal of Nuclear Cardiology,

Monroy-Gonzalez et al.12 report that in patients with

normal stress-rest PET perfusion images, two out of

three comparisons were outside the limits of agreement,

while in patients with reversible perfusion deficits sug-

gesting ischemia, comparisons of all software packages

of global hyperemic MBFs and MFR were outside the

limits of established agreement. In addition, there was

an agreement of hyperemic MBFs and MFR mostly only

for the LAD distribution. Such observations outline that

results of MBF quantitation with different software

packages are not necessarily interchangeable. Such

observations may contradict the results from Slomka

et al.’s study,8 which described quite similar MFR val-

ues for each vascular territory except for some

disagreement in respect of the RCA distribution due to

the influence of high spill-over fraction, a problem

familiarly known for 13N-ammonia PET images. PET-

flow studies with other positron-emitting radiotracers

such as 82Rubidium and 15O-water also yielded a good-

to-excellent agreement between the observations made

using different software packages.11,13,14 The reason for

these discordant observations may remain uncertain and
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may be related to methodological differences or reori-

entation, contour detection, left ventricular

segmentation, and the sampling of the left ventricle

blood pool time activity curve as per the authors’

statement.12 Overall, the contrasting observations in

MBF quantitation with different software packages may

be surprising at first sight, but they may be reconciled

when looking more into the details. For example, there

is a distinct variability of individual hyperemic MBF as

expressed by the coefficient of variation (COV) ranging

0.49 to 1.34 for hyperemic MBF.6 In this direction, the

calculation of the MFR, which reflects the ratio of

hyperemic MBF to MBF at rest, affords a potential

advantage of less variability than that for the hyperemic

MBFs measured.15 If a percentage methodological error

is made (e.g., positioning of the region of interest for the

arterial input function) during hyperemic flows and a

similar error is made during rest MBF quantitation, then

the errors will cancel out. Thus, when calculating the

MFR, any methodological differences among software

packages may widely cancel out given the same per-

centage error is made both during hyperemic vasodilator

stress and at rest. For example, in a multicenter trial with

a head-to-head comparison of MBF quantitation

between gadolinium CMR and 13N-ammonia PET

imaging, the MFR between the two modalities corre-

lated well (r = 0.75) but not so for hyperemic and rest

MBFs (r = 0.37 and r = 0.32, respectively).16 The

results of the current12 and other studies13,17,18 empha-

size the relative but significant differences in values of

hyperemic MBFs and MFR related to methodological

differences of software packages in the quantitation of

MBFs and also to a certain observer dependency (e.g.,

semi-manual segmentation of the left ventricle and

positioning of the ROI for the arterial input function).

The variability of quantified hyperemic flows can also

be appreciated by the range in the standard deviation

(SD) of the mean values. This has important clinical

implications as the optimal threshold for hyperemic

MBFs and MFR to define between normal and abnormal

flows may be derived from mean flows values and its SD

in healthy volunteers. Abnormal hyperemic MBF and

MFR may be present when these flow parameters

are ± 2 standard deviations (SDs) below the limits of

normal values on the basis of hyperemic MBFs in a

healthy study population without cardiovascular risk

factors.1 For example, stress-rest 13N-ammonia PET/CT

study in healthy volunteers resulted in a mean hyper-

emic MBF of 2.37 ± 0.49 mL�min�g and MFR of

3.38 ± 0.67. Consequently, the thresholds to signify

reduced hyperemic flow increases (2 SD below the

mean) would be 1.39 mL�g�min for hyperemic MBF and

2.04 for the MFR, respectively.19

Taken together, Monroy-Gonzalez et al.12 have to

be complemented as their results outline an important

issue of a relative but likely clinically important dis-

agreement among software packages in flow

quantitations. The observed range of relative discor-

dance12,13,17 may affect the diagnostic accuracies of

hyperemic MBFs and MFR in the identification and

characterization of hemodynamic significant down-

stream effects of epicardial lesions.20 For this reason,

each PET facility should strive for consistency not only

in the choice of positron-emitting radiotracer and

remaining manual steps in the processing of the MBF

quantitation but also in their software package for

optimal patient care.
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