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Objectives. To describe and validate an artificial intelligence (AI)-driven structured
reporting system by direct comparison of automatically generated reports to results from
actual clinical reports generated by nuclear cardiology experts.

Background. Quantitative parameters extracted from myocardial perfusion imaging (MPI)
studies are used by our AI reporting system to generate automatically a guideline-compliant
structured report (sR).

Method. A new nonparametric approach generates distribution functions of rest and stress,
perfusion, and thickening, for each of 17 left ventricle segments that are then transformed to
certainty factors (CFs) that a segment is hypoperfused, ischemic. These CFs are then input to
our set of heuristic rules used to reach diagnostic findings and impressions propagated into a sR
referred as an AI-driven structured report (AIsR).

The diagnostic accuracy of the AIsR for detecting coronary artery disease (CAD) and
ischemia was tested in 1,000 patients who had undergone rest/stress SPECT MPI.

Results. At the high-specificity (SP) level, in a subset of 100 patients, there were no sta-
tistical differences in the agreements between the AIsr, and nine experts’ impressions of CAD
(P 5 .33) or ischemia (P 5 .37). This high-SP level also yielded the highest accuracy across
global and regional results in the 1,000 patients. These accuracies were statistically significantly
better than the other two levels [sensitivity (SN)/SP tradeoff, high SN] across all comparisons.

Conclusions. This AI reporting system automatically generates a structured natural lan-
guage report with a diagnostic performance comparable to those of experts. (J Nucl Cardiol
2020;27:1652–64.)
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Abbreviations
AI Artificial intelligence

AIsR AI-driven structured report

CAD Coronary artery disease

CF Certainty factor

CI Confidence interval

ECTb Emory Cardiac Toolbox

LAD Left anterior descending coronary

artery

LCX Left circumflex coronary artery

LLK Low likelihood

LV Left ventricle

MPI Myocardial perfusion imaging

NC Nuclear cardiology

RCA Right coronary artery

TID Trans-ischemic dilatation

SN Sensitivity

SP Specificity

sRs Structured report

SSS Sum stress score

INTRODUCTION

Artificial intelligence (AI) methods to aid diagnos-

ticians in making clinical image interpretation of SPECT

myocardial perfusion studies have been reported. Exam-

ples include neural networks,1–4 case-based reasoning,5

support vector machines,6 machine-learning,7 and

knowledge-based expert systems.8,9 In expert systems,

a knowledge base of heuristic rules is obtained from

human experts capturing how they make their interpre-

tations. Yet, to date, no one has developed automatically

generated and/or validated natural language structured

reports (sRs) that follow society guidelines. The con-

vergence of the high prevalence of heart disease,

increased complexity of cardiac imaging techniques,

the increasing amount of patient-specific clinical infor-

mation, and the reduced time the diagnostician has to

dedicate to each patient inevitably lead to misdiagnosis

and potential patient mismanagement. Hence, AI tools

could assist physicians in interpreting and reporting

studies at a faster rate and at the highest level of up-to-

date expertise.

Here we report on the development and validation

of an expert system in 1,000 patients, which applies its

knowledge to extracted patients’ left ventricle (LV)

perfusion and function information from myocardial

perfusion imaging (MPI) imagery to propagate this AI-

driven structured9 report (AIsR) following society

guidelines.10 Although physicians can easily modify

any aspect of the AIsR, here we only evaluate the

automatically generated results.

METHODS

Study Design

This is a single-center retrospective study designed to

compare the diagnostic agreement between an automatically

generated AIsR and the clinical rest/stress MPI report dictated

by human experts. One of the nine nuclear cardiology (NC)

experts dictated these clinical reports. The primary hypothesis

was to demonstrate that the per-patient and per-vessel diag-

nostic performance of the AIsR in reporting hypoperfusion

[coronary artery disease (CAD)] and reversibility (ischemia) is

comparable (i.e., not inferior) to that of human experts’ clinical

reports. Agreement between the AIsR and the clinical report

was compared in a 100-patient cohort to the agreement

between the same MPI studies interpreted and reported a

second time by another independent—10th human expert

(VM) who started at Emory after the last MPI study in the trial

was acquired (2010) and thus was never privy to their clinical

reports. The second goal was to apply the same methodology

to the entire 1,000 study group to determine agreement rates

between AIsR and experts.

Study Population

One thousand consecutive MPI conventional studies used

for this evaluation were obtained from our cardiac database of

patients (589 men) referred to Emory University Hospital for

clinically indicated attenuation-corrected (AC) rest/stress

myocardial perfusion SPECT imaging between May 2008

and March 2010. Note that none of these 1,000 patients was

used for the development of the method. Patients imaged with

a CZT SPECT camera and/or lower doses during this period

were excluded due to differences in technology and changing

protocols. Emory’s Institutional Review Board approved this

research.

Clinical Data

Age, gender, body mass index, and risk factors data were

extracted from the patients’ medical records in Emory’s data

warehouse (Table 1). Risk factors mined were hypertension,

hyperlipidemia, diabetes mellitus, smoking history, prior

myocardial infarction, and prior revascularization. Represen-

tative quantitative MPI parameters were also extracted

(Table 1) to characterize the population.

Standard Dual-Detector SPECT

All patients underwent eight-frame ECG-gated 1-day AC

low-dose rest, high-dose stress Tc-99m tetrofosmin myocardial

perfusion dual-detector SPECT according to the ASNC guide-

lines.11 Rest-stress doses were determined based on patient’s
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body weight starting at \ 200 lbs [370 MBq rest (10 mCi),

1,110 MBq stress (30 mCi)]. Acquisition times were 14 min-

utes for rest imaging and 12 minutes for stress imaging.

Conventional SPECT projections were obtained utilizing the

simultaneous emission/transmission acquisition method that

uses a scanning gadolinium-153 line source as the transmission

source. The emission transaxial images were reconstructed

with an OSEM algorithm with 4 subsets and 10 iterations and a

uniform initial estimate. The scatter distribution obtained from

the scatter window was used to correct both the scatter from

the patient onto the photopeak window and the scatter from the

patient onto the transmission energy window. Attenuation

maps were reconstructed by means of a Bayesian algorithm

with Butterworth filter preprocessing at 0.43 critical frequency

and an order of 5.0. The attenuation map reconstruction used

30 iterations with a uniform initial estimate.

MPI Reporting as Reference Standard

In each patient, the detection of hypoperfusion at stress

and the presence of reversibility at rest for each major vascular

territory reported by AIsR were compared to those from

clinical reports generated by one of nine possible NC experts,

each with at least 5 years of experience. The clinical interpre-

tations reported were used as the reference standard. The

image interpretations for the clinical reports were performed in

the routine conventional way. The diagnosticians had full use

of Emory Cardiac Toolbox (ECTb) V3.0 images and quanti-

tative results12 as well as all the usual clinical information

requested by the interpreter. Neither the nine interpreters had

access to the AIsR results from ECTb V4 developed after

2010, nor did any of these nine participate in developing any of

the heuristic rules in the program’s knowledge base.

Thus, because of the differences in the approaches, the

sum stress score (SSS), and the SDS global and regional values

between V3 and V4 could be quite different. Disease was

assigned to one or more vascular territory combinations: left

anterior descending artery (LAD), left circumflex artery

(LCX), and the right coronary artery (RCA).

Interobserver Variability Subgroup

A subgroup of the last 100 consecutive patients was

extracted from the 1,000-patients to determine the interob-

server variability between experts. A tenth NC expert (VM)

recruited to our institution, after the last patient in the study

was acquired, performed as an independent reader to determine

how the diagnostic variability between human experts reports

compared to the variability between experts and the AIsR.

Image Analysis and AIsR Interpretation
and Reporting

All MPI studies were reconstructed and reoriented into

oblique-axis tomograms using conventional techniques accord-

ing to ASNC guidelines.11 The studies were then submitted by

a technologist to a well-established automatic method of

extracting 3D rest, stress distributions of myocardial perfusion,

and function.12 The technologist reviewed the processing and

manually modified the automatically determined parameters if

deemed incorrect, which was done less than 10% of the times

and usually at the LV base.

These 3D distributions were then submitted to our

iterative method of database quantification implemented in

ECTb V4.0. This iterative approach determines the 0 to 4 score

for each of the conventional 17 segments using three iterations

through the rest and stress AC, and non-AC perfusion, and

non-AC function distributions. The iterative steps were as

follows: (1) determining the certainty that a segment is

abnormal, (2) assigning the score to each of the 17 segments,

and (3) using our expert system to modify the score consistent

with all the information available for that segment which we

call a smart score.

Step 1: determining certainty of segment
abnormality. A certainty factor (CF) is determined rang-

ing from - 1 to ? 1 for each of the 17 LV segments (-

1 = definitely no count reduction (normal), ? 1 = definitely

count reduction, and the range from - 0.2 to ? 0.2 means the

presence of any finding that is equivocal or indeterminate).

This CF determination of segment abnormality first calculates

the % abnormal probability (Ps) for each segment13 whether a

patient’s normalized perfusion distribution (relative blood

flow) is lower than that of the normal distribution redeveloped

from a previously reported group of normal low likelihood

(LLK) patients.14,15 Since the relative blood flow is extracted

in terms of number of counts and these counts vary depending

on the injected dose, patient size, LV size, and instrument

sensitivity (SN), these count distributions for each voxel

segment cvs have to be normalized both by the maximal voxel

count uptake (Cmax) over the entire LV, and by the total

Table 1. Characteristics of the study population.

Sample size 1000

Age (years) 61 ± 13

Male gender 59% (586)

Body mass index (kg�m2) 29.2 ± 6.0

Hypertension 74% (741)

Hyperlipidemia 87% (867)

Diabetes mellitus 42% (415)

Smoking history 8.7% (87)

Prior myocardial infarction 11% (105)

Prior revascularization 30% (304)

Prevalence of CAD* 34.7%

Prevalence of ischemia* 12.0%

SSS^ 2.24 ± 4.57

SDS^ 1.11 ± 2.64

TID^ 1.01 ± .13

Stress LVEF^ 64 ± 13%

Rest LVEF^ 63 ± 13%

*From clinical MPI reports
^From ECTb4

1654 Garcia et al Journal of Nuclear Cardiology�
Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system September/October 2020



number of LV voxels in each segment (Vs). The normalized

count density (n) for each voxel in segment s is given by

nvs ¼ 100cvs½ �= VsCmax½ �:

The value of a cumulative distribution function over all

voxels in segment s is given by Cpt
ns as the sum of all

normalized count densities for patient pt:

Cpt
ns ¼

X

v

nvs : Cpt
ns ¼ 0 for all nvs [ nvs ðCpt

ns ¼ 100Þ:

Thus, for example, the value of Cpt
ns at 50% in segment 2

in Figure 1 is found by finding the 50 in the x-axis to reach the

patients red distribution, the value that you read 55% from the

y-axis is Cpt
ns—this represents percentage of the total number of

voxels in segment 2 which are B an nvs of 50%. In Figure 1,

the red distributions are the normalized cumulative count value

stress distributions for each of the 17 segments of the patient

shown in the polar map. Note that the patient’s distribution

(red) is set to zero after it reaches 100%. This was done to

increase the [½Cpt
ns � Cnl

ns� difference and thus the discriminatory

power of Ps.

The white distributions Cnl
ns are the cumulative distribution

functions from all normal patients used to create this specific

nonparametric normal database. The probability Ps, is then

determined for each of the 17 LV segments whether a patient’s

tracer distribution is lower than that of the normal distribution as

Ps ¼ 100
X

n

Cpt
ns � Cnl

ns

� �
=Cpt

ns:

Note that Ps is a function of nvs. Also, note that to

determine the probability Ps, we are summing over all

available n’s (i.e., all available samples of normalized count

values) that is equivalent to summing all n’s from 0% to 100%.

These Ps are converted to CFs by a transformation from [0,

100] ? [- 1, 1] using Shannon’s information theory.16 In this

information approach, CF is obtained by using a transforma-

tion function between percent (Ps) of a segment being

abnormal and uncertainty U = (1 - CF) as

U ¼ �
X

i

Psi log2 Psi;

where i is the potential number of states: in this case 2, normal

and abnormal. For example, in Figure 1, for segment 6,

P6 = .89 (or 89%), hence U = - (.89 log2 .89 ? .11 log2
.11) = .50, and therefore CF is abnormal as 1 - .5 = .5,

consistent with this hypoperfused (abnormal) segment. For

segment 8, on the other hand, the patient’s distribution (red) is

inside the normal distribution (white), and thus, the CF

obtained is negative, which indicates that the segment is nor-

mally perfused. This allows CFs to range from - 1 to ? 1.

CFs are calculated for each segment and for each quantitative

parameter used as input to the AIsR. This is a nonparametric

approach as no assumptions are made as to the properties of

the normalized count distribution (usually incorrectly approx-

imated as Gaussian).

Step 2: assigning a score to each
of the segments. This step converts the CF value for

each segment into a score (0 to 4, Figure 2). All segments with

a normal CF (\- .2) are given a score of 0. The score for

each abnormal (CF[ .2) or equivocal (- .2\CF\ .2) seg-

ment depends on two parameters: (1) the type of distribution

(stress, rest perfusion; perfusion reversibility; AC vs non-AC,

supine vs prone, stress, rest thickening, thickening reversibil-

ity) and (2) the magnitude of the parameter (% uptake for

perfusion, % thickening for thickening). These CF settings

were done at three different levels (modes) of SN/specificity

(SP) settings: (1) high SP, where an equivocal CF in the AIsR

was set to normal; (2) high SN, where an equivocal CF in the

AIsR was set to abnormal; and (3) tradeoff SN/SP, where the

lower half of the equivocal CF range (- .2 to 0) was set to

normal and the upper half (0 to .2) to abnormal.

A set of scores is determined for each segment in each

distribution and then are merged into one set of results for

stress perfusion, rest perfusion, reversibility perfusion, stress

thickening, and rest thickening. The merger takes place such

that the most normal score for each segment in each distri-

bution is retained. For example, if the scores for segment 16 in

the stress perfusion distribution is a 2 for non-AC, -and a 0 for

AC (or prone) the combined score retained is a 0.

Step 3: determining smart-scores and AIsR
generation. Here all sets of scores from step 2 are used as

input to our expert system. This is a Bayesian inference engine

forward chaining our MPI knowledge base of interpretation

and reporting heuristic rules, similar to our previous reports8,9

following the well-established expert system methods.17 This

expert system uses these input scores to determine the certainty

of the location, size, shape, and reversibility of both the

perfusion defects and thickening abnormalities to infer the

certainty of the presence and vascular location of CAD. This

information is then transmitted to the AIsR in natural language

text. One main difference between our current expert system

and our previous one9 is that now all information for each

segment is weighted to modify each segmental score during

this iteration and the AIsR follows ASNC guidelines for

reporting.18 Thus, for example, a segment that exhibits a fixed

perfusion defect in the non-AC distributions is more certain to

be fixed if it is also fixed in the AC distributions and even more

certain if the segment is thickening abnormally. Once all

perfusion and function smart-scores (Figure 2A inset) and

pertinent prespecified data elements [example LVEF, trans-

ischemic dilatation (TID), etc.] along with their CF values are

determined, they are exported as a highly structured object

which is then imported by the AIsR. These exported data

elements are mapped onto the existing data entry fields within

the AIsR. When the user begins generating the report, all of the

mapped input entry fields are automatically prepopulated

including the smart-scores data generated by our expert

system.

All the natural language text is conditionally generated by

the reporting module of the system. In brief, take, for example,

the results in Figure 3 and the AIsR report in Figure 4A.

Specifically consider the conclusion in both figures ‘‘the apical

lateral segment is completely reversible.’’ Before reaching the

report, the nonparametric statistics combined with the expert

system portion of the AIsR has determined CFs for each

possible state (categories). In this case of apical lateral
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segmental reversibility, it has determined a CF that the

segment is completely reversible, another CF that it is partially

reversible, another CF that it is minimally reversible, and

another CF that it is fixed. The natural language generator

reads these states and chooses the one with the highest CF as

the condition to report, in this case completely reversible.

Statistical Analysis

All studies were classified as normal (definitely normal or

probably normal) or abnormal (definitely abnormal or probably

abnormal) based on the report describing the presence of one

or more stress perfusion defects. To test the primary hypothesis

the methodology previously reported by us to test for nonin-

feriority was used.14 The difference between two population

proportions from a single sample19 was used to test if there

were differences in reporting agreements between AIsR-expert

to independent-expert. If AIsR findings are equivalent to

expert findings, the expected difference between the AIsR

findings agreement to independent-expert agreement is zero.

The primary analysis tested the null hypothesis of equivalence

of AIsR-expert agreement to independent-expert agreement

(no agreement rate reduction) vs inferiority (a reduction of

[ 0%). A 95% confidence interval (CI) for the difference

between AIsR-expert agreement rates to independent-expert

agreement rate was calculated and the null hypothesis rejected

if the upper limit was below 0% with a corresponding one-tail

P value less than .05. Interobserver agreement between AIsR

findings and expert findings for all 1,000 MPI studies was

measured using percent agreement (accuracy) and Cohen’s j
value. McNemar’s test was used to test the statistical differ-

ences in accuracy in the 1,000 MPI studies between each of the

three SN/SP modes. To test whether there were differences

between the MPI studies from the 1,000 patients and the 100-

patient cohort as to the prevalence of CAD, ischemia, and

AIsR agreement rate, the Medcalc v2 comparison of proportion

Figure 1. 17-segment results from a patient with LCX vessel disease. Color polar map inset (A)
shows the myocardial perfusion distribution for a female patient with LCX vessel disease with the
17-segment model with scores superimposed. The 17 plots correspond to the 17-segment model (B)
with the LAD segments on the top, LCX in the middle, and RCA in the bottom rows. The x-axes are
the normalized count values, and the y-axes are the normalized voxel frequencies with those count
values. The white distributions are the averaged normalized cumulative distributions from 20
female patients with low likelihood of CAD. The red distributions are the normalized cumulative
count value distributions for the patient shown in the polar map. Note that red distributions to the
left of the white normal ones represent increasing certainty of abnormality. Also note how well
behaved is the shape of each of the patient’s segmental distributions even though it represents a
small portion of the LV from just one patient.
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was used. A P\ .05 was considered significant for all

comparisons.

RESULTS

Interobserver Analysis

The human experts’ reporting of the 100-patient

subgroup resulted in 17 patients with CAD and 83

without. Of the 17 patients diagnosed with CAD 9 were

reported to be ischemic. The breakdown of stress

hypoperfusion by vascular territory in the 17 CAD

patients were as follows: 8 LAD, 10 LCX, and 5 RCA.

The breakdown of reversible ischemia by vascular

territory in the 9 ischemic patients were: 6 LAD, 5

LCX, and 1 RCA. The overall agreement rates, P values,

agreement differences, and 95% CI for each of the

validated reported categories are shown in Table 2. At

the high SP level, there were no statistical differences in

the agreements between the AIsR findings/impressions

compared to the experts’ findings/impressions when

compared vs the independent (10th) reader findings/

impressions vs the experts in reporting the same studies.

The finding of no statistical difference was true for the

reporting of CAD (P = .33) or ischemia (P = .37).

There were statistical differences for the tradeoff SN/SP

level (CAD P = .01, ischemia P = .03) and even more

differences for the high SN level (CAD P =\ .001,

ischemia P =\ .001). At the high-SP level the 95% CI

is above 0% for all categories (i.e., the AIsR findings are

not inferior to the human expert reports) whereas they

are below zero at four of eight categories at the tradeoff

level and all eight categories for the high-SN levels.

AIsR Agreement with Experts

The nine human experts reporting of the 1,000-

patient population resulted in 247 patients with CAD

and 753 without. Of the 247 patients diagnosed with

CAD, 120 were deemed ischemic. The breakdown of

stress hypoperfusion by vascular territory in the 247

CAD patients revealed 135 LAD, 103 LCX, and 85

Figure 2. Combined slices/polar map displaying the patient with reversible lateral wall perfusion
defect from Figure 1. Stress (top)/rest (bottom) SPECT attenuation-corrected slices, rotating
projections, transmission slices, and 17-segment smart-scores. Note three contiguous segments in
the lateral wall of the stress polar maps each with a score of 2 (SSS = 6) corresponding to 9% of
the LV hypoperfused. Also note that circles around the stress perfusion scores (inset A) signify that
the original scores in Figure 1A were modified by the expert system.
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RCA. These included 194 patients with single-vessel

disease, 169 with double-vessel disease, and 117 with

triple-vessel disease. The breakdown of reversible

ischemia by vascular territory in the 120 ischemic

patients revealed 61 LAD, 63 LCX, and 28 RCA. There

were no significant differences between the 100-patient

cohort used to test the noninferiority of AIsR vs expert

and the 1,000-patient study group used to determine

agreement rates between AIsR and experts. The cate-

gories tested were prevalence of CAD (347/1,000 vs 27/

100; P = .11), prevalence of ischemia (120/1,000 vs 9/

100; P = .37), agreement rate for CAD (820/1,000 vs

85/100; P = .45), and agreement rate for ischemia (880/

1,000 vs 89/100; P = .77). All statistical comparisons

were done using AIsR’s high-SP mode.

Figure 2 depicts images and smart-scores in a

female patient with reversible defects in the LCX

coronary territories with the corresponding smart-reports

shown in Figures 3 and 4A. Figure 4B shows the

findings and impressions of the actual clinical report.

Figure 5 shows agreement results of AIsR-experts

for the entire 1,000 patient group using the reported

expert clinical read as the reference and compared for

the three levels of SN/SP. These agreements are shown

with regard to detection of stress-induced hypoperfusion

and stress-induced ischemia. Note that for both the CAD

and ischemia category, the high SP level yielded the

highest accuracy and SP across global and regional

results. These accuracies were determined to be statis-

tically significant across all comparisons for global and

regional hypoperfusion and reversibility. Table 3 shows

percent agreement, j agreement values between the

AIsR and the experts’ impressions of CAD and ischemia

in the 1,000 MPI studies. These j values ranged from

32.3 to 51.9 corresponding to a range from fair to

moderate agreement as might be expected in the

variation of clinical reports amongst nine different

experts.

DISCUSSION

We developed and validated the diagnostic perfor-

mance of an MPI natural language reporting system that

utilizes nonparametric relative perfusion and function

quantification as input to our expert system to interpret

the study and generate the report. This is the first study

Figure 3. Automatically generated AIsR perfusion subreport of patient from Figure 2. Note
concordance with the oblique slices and smart-scores. All drop-down arrows indicate a parameter
that can be modified by the nuclear cardiology expert before it reaches the final report (not used for
this validation).
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that compares automatically generated MPI natural

language reports to actual clinical reports.

Our results show that the reporting of CAD (hy-

poperfusion at stress) and ischemia (reversibility at rest)

from our automatically generated AIsR is not statisti-

cally inferior from that of experts when a high-SP mode

is used (i.e., equivocal = normal) and the reporting of

other experts is used as the reference standard. Impor-

tantly this high-SP mode yielded the highest accuracy in

our extensive population. It should not be surprising that

AIsR best agreed with the experts in the high-SP mode

since this indicates the human image interpretation trend

being adjusted to the drop in the prevalence of abnormal

studies to 25% at our institution (also in this population)

similar to trends reported by others20 and reported as

low as 9% at other major institutions.21 These findings

are also consistent with those reported from a meta-

analysis of 49,000 patients demonstrating diagnostic

performance for referral bias corrected MPI (similar to

echocardiography) of 99% SP and 38% SN (from 69%,

85% uncorrected, respectively).22

Strength of the Approach

This is the first report showing full integration

between an image analysis system and structured

reporting: to serve a critical need in modern imaging

practice. Although the best agreement existed when the

A Automatically generated findings and impressions excerpted from the AIsR 
report.

B Patient's actual clinical findings and impressions excerpted from the clinical 
report. 

Figure 4. Findings and impressions extracted from AI-structured report (A) and actual excerpts of
the clinical report (B) for the MPI study shown in Figures 1 to 3. Note concordance in the presence
and the location of hypoperfusion associated with ischemia.
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high-SP mode was selected, this choice is easily

modified to a high-SN level (or tradeoff level) when

the AIsR is used to report on patients from a high-risk

population such as diabetes. Newly reported here is the

determination and use of our 17-segment smart-scores.

This novel scoring uses a nonparametric normalized

Table 2. Agreement between automated smart-report results and human experts at three different
sensitivity/specificity modes (n = 100).

High-specificity CAD LAD LCX RCA

%Agree: AlsR:expert 85 95 92 93

%Agree: Ind:expert 83 90 94 89

P value .33 .07 .24 .14

D Agreement .052 .05 - .02 .04

95% CI - .07 to .11 - .01 to .11 - .08 to .04 - .03 to .11

High-specificity Ischemia LAD LCX RCA

%Agree: AlsR:expert 89 95 96 98

%Agree: lnd:expert 90 94 94 99

P value .37 .33 .21 .28

D Agreement - .01 .01 .02 - .01

95% CI - .07 to .05 - .03 to .05 - .03 to .07 - .04 to .02

Tradeoff SN/SP CAD LAD LCX RCA

%Agree: AlsR:expert 74 82 77 89

%Agree: Ind:expert 83 90 94 89

P value .01 .02 \ .01 .5

D Agreement - .09 - .08 - .17 .00

95% CI - .17 to - .01 - .16 to - .003 - .25 to - .09 - .07 to .07

Tradeoff SN/SP Ischemia LAD LCX RCA

%Agree: AlsR:expert 83 91 89 97

%Agree: lnd:expert 90 94 94 99

P value .03 .12 .06 .08

D Agreement - .07 - .03 - .05 - .02

95% CI - .14 to - .0007 - .08 to .02 - .11 to .01 - .05 to .007

High-sensitivity CAD LAD LCX RCA

%Agree: AIsR:expert 61 65 63 73

%Agree: Ind:expert 83 90 94 89

P value \ .001 .03 \ .001 .001

D Agreement - .22 - .25 - .31 - .16

95% CI - .31 to - .13 - .35 to - .15 - .41 to - .21 - .26 to - .06

High-sensitivity Ischemia LAD LCX RCA

%Agree: AIsR:expert 64 76 72 88

%Agree: Ind:expert 90 94 94 99

P value \ .001 \ .001 \ .001 \ .001

D Agreement - .26 - .18 - .22 - .11

95% CI - .35 to - .17 - .25 to - .10 - .31 to - .13 - .17 to - .05
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count distribution applied to information theory to

generate a certainty of abnormality. This certainty for

each segment is modified according to all the available

perfusion and function information for that segment

including rest, stress, changes between stress and rest,

AC and non-AC images, and prone images. Although

not validated here, the diagnostician is allowed to

change manually any of the scores that in turn would

Figure 5. Diagnostic performance of the AI-structured report in reporting stress-induced
hypoperfusion as indicative of CAD (top row) and reversibility at rest as indicative of ischemia
(bottom row). Results for the modes: high specificity (green bars); sensitivity (SN)-specificity (SP)
tradeoff, (red bars); and high sensitivity (blue bars) results are shown for agreement (i.e., accuracy:
left column), specificity (middle column), and sensitivity (right column) (*P\ .001). The labels
CAD and ischemia in the abscissa of each graph refers to global findings regardless of vascular
territory.

Table 3. Agreement, j, and 95% CI results for the automated AIsR using high-specificity mode and the
human experts reports as reference standard (n = 1000)

High-specificity CAD LAD LCX RCA

%Agree: AIsR:expert 82 89 89 92

j 48.7 47.7 51.4 40.3

95% CI 42.0 to 55.4 38.7 to 56.7 42.8 to 59.9 27.6 to 53.0

High-specificity Ischemia LAD LCX RCA

%Agree: AIsR:expert 88 93 93 97

j 43.6 32.3 51.9 36.9

95% CI 34.0 to 53.2 16.8 to 47.9 40.7 to 63.1 14.2 to 59.3
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modify the report if needed. Importantly, as previously

reported,23 the expert system tracks all steps in gener-

ating the report as a justification, which may be used by

the diagnosticians to decide whether they agree or not

with the findings or impressions in the report. This is an

important benefit of expert systems over conventional

neural net or machine-learning approaches. Another

benefit of the expert system approach used here is that,

compared to other AI approaches, only the 40 normal

patients used for database generation were needed to

train the system as most of the training comes from the

cumulative experience of the experts.

Comparison of AIsR to PERFEX

As described in the ‘‘Methods’’ section, we had

previously developed and validated a decision support

expert system to assist NC physicians with the image

interpretation process.8,9 There are several differences

between that system (PERFEX) and the one reported

here. PERFEX divided the LV into 32 segments; AIsR

uses the standard 17-segment system. PERFEX depen-

ded on Gaussian distributions and statistics to determine

normality and abnormality criteria; AIsR uses nonpara-

metric statistics. PERFEX did not use the global or

regional functional information to reach its conclusions;

AIsR integrates the functional information into all its

conclusions. PERFEX did not use its conclusions to

modify the ECTb results; AIsR uses its knowledge base

and the available quantitative information to modify the

original segmental scores into smart-scores. If AC was

performed, PERFEX would provide a separate interpre-

tation for the AC study and one for the non-AC study;

AIsR integrates both into one set of scores and one

conclusion. If there was, also a prone study performed,

AIsR would also integrate it. This integration takes place

by trying to mimic in the code how human experts use

the information. Before the integration is done AIsR

determines segmental scores separately for each of the

diagnostic categories considered: stress perfusion, rest

perfusion, reversibility, and thickening. After these

individual scores are determined, AIsR integrates the

information into a meta-analysis module. Therefore, if

an MPI study had AC, non-AC, and prone studies

performed, AIsR would use the most normal score for

that segment. If the same segment exhibited reversibil-

ity, AIsR would then modify the score using Bayesian

statistics and the strength of the information (i.e., how

much reversibility was present). Similarly, if the same

segment exhibited abnormal thickening, then AIsR

would again modify the score using the same approach

as the one with reversibility. Perhaps the most obvious

difference between PERFEX and AIsR is that AIsR

propagates its conclusions into a sR.

Reference Standard

Since AI systems have to be ‘‘trained’’ and vali-

dated with both input images and accepted output

interpretations, the question of what to use as the

reference standard often arises. Use of invasive coronary

angiography or clinical outcome as the gold standard for

training and validating is often mentioned for an MPI AI

system as attractive goal, but it misses the point of these

systems, that is, to interpret studies with the same level

of expertise as experts. Moreover, using invasive

catheterization as a gold standard is biased by the

referral pattern of abnormal MPI studies to catheteriza-

tion as well as by the discrepancies in comparing

physiologic results to anatomic ones. Outcome is cer-

tainly an important measure, but in MPI, coronary

angiography and outcomes as gold standards are con-

founded by the fact that the scan interpretation (e.g.,

ischemia or no ischemia) has a major impact on the

referral to the catheterization lab or the clinical outcome

(intervention vs observation); consequently, these gold

standards are biased. Simply stated, the interpretation of

the study affects the treatment, and the treatment affects

the outcomes thus biasing the outcomes as a reference

standard. Thus, the practice of using interpretation of the

MPI studies by experts is an acceptable approach that

has been used by other researchers and ourselves.9,24

Limitations

First, all the data used for this evaluation were

obtained retrospectively from one center. Second, we

had to extract manually the needed diagnostic informa-

tion from the clinically dictated reports to use as the

reference standard. Third, all the clinical reporting was

performed by Emory experts. Although these experts

were trained at different institutions, it could be argued

that over time, they tended to read similarly and perhaps

different from readers from other institutions. Fourth,

although the AIsR uses standardized reporting guideli-

nes, we did not compare the size and severity of the

hypoperfused or reversible areas between the experts

and the AIsR, but only studied whether these were

present and if so in which vascular territory. This is

because in part when the clinical reports were generated

reporting guidelines were not being strictly applied by

the experts. Fifth, we also chose not to report here the

clinical reporting agreements as to functional variables.

Although these functional parameters were used in the

generation of the smart-scores, these variables are

quantitative and straightforward in how they are usually

reported and therefore not compared for simplification.

Sixth, although we have previously integrated patients’

clinical information with their imaging results in order
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to improve diagnostic accuracy,25 this was not attempted

here, as it would require either manual input and/or

EMR interfaces with hospital systems that now would

limit the applicability of this AIsR. Seventh, the agree-

ment in reporting between the AIsR in the high-SP mode

and our clinicians reflects the current reduced preva-

lence of disease (25%) of our patient referral pattern. In

other scenarios (such as other countries) where the

prevalence of disease is much higher than 25%, different

results could have been obtained. This is the rationale

that motivated us for allowing the AIsR to switch easily

between modes such as high SN and SN/SP tradeoff

mode. Finally, although the use of AC is not a limitation

but an attribute that reduces the complexity of image

interpretation, results of applying our approach to a large

study population without AC (or prone imaging) cannot

be predicted by the present study.

NEW KNOWLEDGE GAINED

Nonparametric statistics can be used to determine

certainty that a regional parameter of LV perfusion and/or

function is abnormal. Due to apparent reduced prevalence

of CAD in populations of patients undergoing MPI,

automated diagnostic systems agreement with experts

improves when set to analyze images at high-SP settings.

CONCLUSIONS

Automatic sRs from computer-assisted interpreta-

tion of rest/stress myocardial perfusion SPECT studies

by an AI expert system when operating at a high-SP

level statistically agree with the interpretations of NC

experts and exhibit diagnostic accuracy consistent with

that of experts when their clinical reports are used as the

reference standard.
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