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Received Apr 24, 2016; accepted Apr 28, 2016

doi:10.1007/s12350-016-0599-8

Sudden cardiac death (SCD) represents a significant portion of all cardiac deaths. Current
guidelines focus mainly on left ventricular ejection fraction (LVEF) as the main criterion for
SCD risk stratification and management. However, LVEF alone lacks both sensitivity and
specificity in stratifying patients. Recent research has provided interesting data which supports
a greater role for advanced cardiac imaging in risk stratification and patient management. In
this article, we will focus on nuclear cardiac imaging, including left ventricular function
assessment, myocardial perfusion imaging, myocardial blood flow quantification, metabolic
imaging, and neurohormonal imaging. We will discuss how these can be used to better
understand SCD and better stratify patient with both ischemic and non-ischemic cardiomy-
opathy. (J Nucl Cardiol 2016;23:1380–98.)
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Abbreviations

CFR Coronary flow reserve

CS Cardiac sarcoidosis

DCM Dilated cardiomyopathy

HCM Hypertrophic cardiomyopathy

H/M Heart-to-mediastinum ratio

MBF Myocardial blood flow

MPI Myocardial perfusion imaging

SDS Sum difference score

SRS Sum rest score

SSS Sum stress score

INTRODUCTION

Sudden cardiac death (SCD) currently accounts for

up to 60% of all cardiac death in the adult population in

the United States.1,2 Despite recent advances in our

understanding of cardiovascular disease and in cardiac

care, effective primary prevention of SCD in the general

population is still an aspiration.3,4 The final common

pathway in most cases is malignant ventricular arrhyth-

mia.5 Although the fundamental pathophysiology is

complex, an underlying anatomical substrate can be

identified in the majority of patients,6 with the most

frequent being attributed to ischemic heart disease,

idiopathic dilated cardiomyopathy (DCM), and hyper-

trophic cardiomyopathy (HCM).7
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Current guidelines focus on the left ventricular

ejection fraction (LVEF) as the primary measure for

SCD risk stratification and patient management.8,9 One-

third of all SCD occur in patients with moderate to

severe left ventricular (LV) systolic dysfunction

(LVEF B 35%).10 In this group, primary prevention

with an implantable cardioverter defibrillator (ICD)

significantly prolongs survival.11,12 However, numerous

patients with higher LVEF are still at risk of SCD, but

would not qualify for ICD placement according to

current guidelines. Furthermore, only 35% of patients

randomized for ICD placement in the Multicenter

Automatic Defibrillator Implantation Trial II (MADIT

II) received appropriate shock therapy over a 3-year

follow-up.13 Taken together, these facts underscore the

lack of sensitivity and specificity of LVEF alone in

identifying patients who will suffer from SCD and the

need for better markers for SCD.

Emerging data support the potential of cardiac

imaging to understand the mechanisms of SCD beyond

simple LVEF measurement.14 In this review, we will

focus on the possible benefits that nuclear cardiology

imaging (including myocardial perfusion imaging

(MPI), LV function assessment, accurate flow quan-

tification, metabolic imaging and neurohormonal

imaging) offers us to improve risk stratification of

SCD in patients with ischemic and non-ischemic

cardiomyopathy.

MECHANISMS OF SUDDEN CARDIAC DEATH

By definition ‘‘sudden,’’ the acute event is not

often witnessed, and therefore SCD is difficult to study.

In most cases, it is accepted that the final pathway is

malignant ventricular arrhythmia.15,16 The underlying

mechanisms of ventricular arrhythmogenesis are com-

plex but can simply be considered as the interaction

between a structural or anatomic substrate (myocardial

scar from prior myocardial infarction) and a functional

trigger, such as ischemia.5,6 In the adult population,

most SCD occurs in the setting of an abnormal

anatomic substrate from coronary artery disease

(CAD),7,17-19 and reentry is the most frequent mech-

anism of malignant ventricular arrhythmias. Scar and

fibrosis create areas of heterogeneous electrophysio-

logical response and aberrant conduction, particularly

in the border zones of infarct. What’s more, the

presence of ischemia exacerbates regional heterogene-

ity, further predisposing to malignant arrhythmia,20,21

as does the presence of altered sympathetic innerva-

tion.22,23 This implies that these factors (scar,

hibernation, ischemia, and innervation) may represent

potential imaging targets in the evaluation of SCD in

addition to LV function (Table 1).

LEFT VENTRICULAR FUNCTION

LVEF is currently the most studied and most

commonly used cardiac imaging marker to assess risk

for SCD and is used to guide appropriate therapy in both

ischemic and non-ischemic cardiomyopathies. Many

studies, dating back to the 1980s, quickly established

that LVEF is a strong predictor for overall cardiac

mortality.24-26 Not surprisingly, this led to the use of

LVEF as a criterion of enrollment in the large clinical

trials for the evaluation of ICDs in primary prevention of

SCD in the 1990s and 2000s. In the Multicenter

Unsustained Tachycardia Trial (MUSTT), Buxton et al

demonstrated that in a group of 704 patients with CAD

and LVEF B 40%, the risk of sudden cardiac arrest or

fatal arrhythmia was significantly reduced in the group

treated with ICD when compared with the group without

(relative risk 0.24; 95% CI 0.13-0.45; P\ .001).27 The

Multicenter Automatic Defibrillator Implantation Trial

II (MADIT II), another large randomized trial compar-

ing ICD to medical therapy in 1232 patients with

LVEF B 30%, had similar results. Over 20 months, the

mortality rates were 19.8% in the medical group vs

14.2% in the ICD group, a 31% relative reduction in the

risk of death.11 Similar results were again observed in

the Sudden Cardiac Death in Heart Failure Trial (SCD-

HeFT). 2521 patients with NYHA class II or III heart

failure (HF) and LVEF B 35% were randomized to

receive either an ICD, amiodarone or a placebo. Median

follow-up was 45.4 months. Amiodarone had no effect

on survival while ICD therapy decreased risk of death by

23% (0.77; 95% CI 0.62-0.96; P = .007).12 It is thus

well established that ICD use in patients with reduced

LVEF leads to a decreased risk of death and explains

why LVEF plays such an important role in current

guidelines regarding the use of ICDs8,9,28-31 (Table 2).

Nuclear cardiac imaging offers many ways to

evaluate LV function and LVEF. This includes ECG-

gated images as part of MPI using either single-photon

emission computer tomography (SPECT) or positron

emission tomography (PET) imaging, and also radionu-

clide angiography (RNA), also called multigated

acquisition (MUGA) scan. The use of these modalities

to assess LV function and predict cardiac death have all

been validated in large studies. Hachamovitch et al, in a

study with 5366 patients, demonstrated that LVEF

measured with ECG-gated images as part of SPECT

MPI was a strong predictor of cardiac death.32 In this

study, which aimed at determining the utility of com-

bining perfusion and functional assessment in predicting
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patient survival with revascularization or medical ther-

apy, LVEF remained the strongest predictor for cardiac

death, while ischemia was a better predictor for revas-

cularization benefit (Figure 1). Lertsburapa et al, in a

study with 1441 patients undergoing PET MPI with

Rubidium-82 chloride, demonstrated that LVEF mea-

sured on the ECG-gated images was an independent and

incremental prognostic marker. Annualized mortality

rates in the group with LVEF above 50%, between 40%

and 49%, and below 40% were, respectively, 2.4%,

6.2%, and 9.2% (P\ .001).33 Curtis et al, in a study

with 7788 patients with known HF, demonstrated similar

results using RNA. In their study, over a mean follow-up

of 37 months, they demonstrated that mortality

increased in a near linear fashion with decreasing LVEF

below 45%, while mortality rates were not related to

LVEF above 45%.26

RNA is a particularly useful and powerful tool for

the evaluation of LVEF and is an integral part of current

imaging guidelines and appropriate use criteria docu-

ments34,35 (Table 3). Along with cardiac magnetic

resonance (CMR), it is currently one of the most

accurate and reliable modalities for LVEF measurement

and has excellent inter- and intraobserver reproducibil-

ity.36-39 Its advantages and disadvantages are

summarized in Table 4. Even though LVEF measure-

ment is not enough by itself to accurately predict SCD,10

it remains a strong and important key parameter in

current practice and guidelines. Nuclear cardiology

offers varied and accurate means to evaluate it.

Figure 1. Survival free of cardiac death in patients without ischemia (A) and patients with a
minimum of 25% ischemic myocardium (B) undergoing either revascularization or optimal medical
therapy, stratified by LVEF. Reproduced with permission from J Nucl Cardiol�32.

Table 2. Role of LVEF in current guidelines for ICD implantation in primary prevention9,29-31

Indication

LVEF
cut-off
(%)

Class of
recommendation

Patients with symptomatic HF (NYHA class II or III), ischemic cause, more than

40-day post-MI, on adequate medical therapy

B35 I

Patient with symptomatic HF (NYHA class II or III), non-ischemic cause, on

adequate medical therapy

B35 I

Patient with LV dysfunction secondary to MI, asymptomatic (NYHA class I)

more than 40-day post-MI, on adequate medical therapy

B30 I

Patient with non-sustained VT due to prior MI with inducible VF or sustained VT

at electrophysiology study

B40 I

Patient with asymptomatic (NYHA class I) non-ischemic cardiomyopathy B35 IIb

LVEF, Left ventricular ejection fraction; ICD, implantable cardioverter defibrillator; HF, heart failure; MI, myocardial infarction; LV,
left ventricle; VT, ventricular tachycardia; VF, ventricular fibrillation.
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ISCHEMIA

Ischemia is a well-recognized trigger for ventricular

arrhythmias.40,41 Current ICD therapy guidelines rec-

ommend optimal revascularization before ICD

therapy.31 Moreover, coronary revascularization has

been proven to reduce SCD risk.42-44 Hachamovitch

et al, in a large study with 5183 patients who underwent

rest/stress dual-isotope (Thallium-201 and Technetium-

99m Sestamibi) SPECT MPI, demonstrated that the

presence of ischemia yields incremental prognostic data

for predicting cardiac death and adverse cardiac

events.45 Annual rates of cardiac death increased with

increasingly abnormal MPI going from 0.5% in patients

with normal scans to 4.2% in patients with severely

abnormal MPI (defined as a sum stress score (SSS) of

more than 13).45 More recently, Piccini et al, in a study

of 6383 patients with angiographically documented

CAD, investigated if ischemia on SPECT MPI was a

predictor for cardiac death and more specifically for

SCD.46 In their final multivariable analysis, the SSS was

a significant predictor for SCD, with a hazard ratio of

1.16 per 3-U increase (95% CI 1.08-1.25). The ability of

the SSS to predict SCD was comparable to that of

LVEF. Interestingly, in the same multivariable analysis,

neither the sum rest score (SRS, which reflects scar), nor

the sum difference score (SDS, which reflects ischemia),

were statistically significant predictors for SCD. Taken

together, this implies that it is the combination of scar

and ischemia that has the strongest predictive value for

SCD, which matches well with our current understand-

ing of SCD mechanisms. Another interesting fact from

this study is that the median LVEF of patients who

experienced SCD was 47%, again underscoring the lack

of sensitivity of simple LVEF measurement in predict-

ing SCD. Furthering this point, in a follow-up study

Piccini et al demonstrated that their previous finding

held true in a group of 4865 patients, all of whom had

LVEF[ 35% (median LVEF 56%)47 (Figure 2). In

another study, Paganelli et al studied the effect of

residual ischemia in patients with prior myocardial

infarction. Using programmed ventricular stimulation,

they demonstrated that residual ischemia on SPECT

MPI carried a 1.6-fold increase in the risk of inducible

ventricular arrhythmias.48

Although there is less data regarding PET MPI as a

predictor for SCD, recent meta-analyses have shown

that PET MPI is superior to SPECT MPI in the detection

of CAD.49,50 Its prognostic value is well established.51

Data from a recently completed multicenter registry

show an increasing risk of cardiac events and cardiac

death in patient with increasingly abnormal stress PET

MPI,52 although the authors did not look specifically at

SCD. It would appear to be a safe assumption that

ischemia as evidenced by PET MPI can play a role

similar to SPECT MPI in the prediction and manage-

ment of SCD, although this will need to be studied

further to determine if there is an advantage over SPECT

MPI.

In addition, PET MPI permits accurate and repro-

ducible measurement of myocardial blood flow (MBF)

at both rest and stress.53 In a recently published paper,

Rijnierse et al demonstrated that in patients with

ischemic cardiomyopathy, impaired hyperemic MBF

and impaired coronary flow reserve (CFR, stress MBF/

Table 3. Class I indications for RNA

LV function evaluation—risk, prognosis, and therapy

assessment

STEMI

Unstable angina

NSTEMI

Assessment of LV/RV function

Heart failure

CAD

Valvular heart disease

Congenital heart disease

Assessment of ventricular performance following

cardiac transplantation

Initial and serial assessment of LV function in patient

receiving cardiotoxic drugs

RNA, Radionuclide angiography; STEMI, ST segment eleva-
tion myocardial infarction; NSTEMI, non-ST segment
elevation myocardial infarction; LV, left ventricle; RV, right
ventricle; CAD, coronary artery disease.

Table 4. RNA advantages and disadvantages
compared to CMR

Advantages

Excellent temporal resolution

No geometric assumptions

Less affected by body habitus

No device contra-indication

Not time consuming (imaging requires less than

30 minutes)

Disadvantages

Poor spatial resolution

Limited anatomic assessment of cardiac chambers

Ionizing radiation

Limited assessment of smaller area of regional wall

motion abnormalities

RNA, Radionuclide angiography; CMR, cardiac magnetic
resonance.
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rest MBF), whether in scar area or remote area, were

associated with increased ventricular arrhythmia

inducibility during electrophysiological evaluation.54

These results suggest a link between impaired stress

MBF and electrical instability, and a potential benefit of

PET MPI to help accurately stratify patients at risk for

SCD.

MYOCARDIAL SCAR AND HIBERNATING
MYOCARDIUM

Myocardial scar is a complex and powerful sub-

strate for arrhythmogenesis. Changes in tissue

composition following an infarct create a heterogeneous

zone that leads to depolarization abnormalities, auto-

nomic dysfunction, and repolarization disruption; the

presence of viable myocardium adjacent to scar tissue

often forms the anatomic substrate for reentrant ven-

tricular tachycardia (VT).55,56 Studies have shown that

the extent of scar on SPECT MPI is related to the risk of

cardiac death. Machecourt et al studied 1926 patients

using SPECT MPI and demonstrated that persistent rest

and stress imaging defects (scar) were associated with

increased cardiovascular death, and that the greater the

number of abnormal segments, the worse the progno-

sis.57 Van der Burg et al studied SCD survivors using

SPECT MPI and demonstrated that the presence of more

extensive scar was associated with greater risk for

recurrent ventricular arrhythmias and cardiac death in

both the univariate and multivariate analysis.44 In

another study with 106 patients with LVEF B 30%,

Morishima et al showed that defect size on rest SPECT

MPI (representing scar) was a predictor for lethal

arrhythmic events and SCD.58 Using a threshold value

of 47.5 mL for defect volume (determined using ROC

curve analysis), the risk ratio was 6.34 (95% CI 1.76-

22.8, P = .005). This illustrates how, in clinical prac-

tice, assessing the extent of scar might help better and

more accurately assess SCD risk.

Furthermore, the assessment of hibernating myo-

cardium in current clinical practice is well established.

Hibernating myocardium is identified using a combina-

tion of metabolic imaging (Fluorine-18

fluorodeoxyglucose (18F-FDG)) and myocardial perfu-

sion (generally Rubidium-82 chloride (82Rb) or

Nitrogen-13 ammonia (13NH3)) and will present with a

perfusion defect with maintained or even enhanced

glucose metabolism (Figure 3). While PET is preferable,

in centers which do not have access to PET, it is possible

to evaluate hibernating myocardium using SPECT

(either with Thallium-201 or Technetium-99m Ses-

tamibi). Viable myocardium is known to represent an

unstable electrical region, and it is associated with an

increased risk for SCD.59 A study by Di Carli et al

looked at 93 patients undergoing PET MPI with 13NH3

and viability assessment with 18F-FDG.60 They showed

that an increased perfusion-metabolism mismatch

(hibernating myocardium) was associated with an

increased cardiac death risk. Patients with at least 5%

hibernating myocardium had much lowered annual

survival probability than those without (50% vs 92%,

P = .007) and were also shown to benefit from

Figure 2. Cumulative incidence of sudden cardiac death in patients with summed stress score B8
vs[8. Reproduced with permission from JACC47.
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revascularization rather than medical therapy.60 Similar

results were obtained by Desideri et al, who observed

that in 167 patients being treated medically, the extent of

hibernating myocardium was strongly related to cardiac

mortality (P = .001).61 An 8% increase in mismatch

was associated with a 36% increase in cardiac mortality

(HR 1.36, 95% CI 1.13 to 1.64). More recently, the PET

and Recovery Following Revascularization (PARR-2)

trial, a large randomized trial, investigated whether

viability imaging with 18F-FDG PET could be used to

effectively assist decision making in patients with severe

LV dysfunction to reduce cardiac events and cardiac

death.62 While the primary study did not demonstrate a

clear benefit, a post hoc analysis demonstrated that when

PET recommendations were adhered to, a benefit was

observed in patients with significant hibernating myo-

cardium, with a hazard ratio of 0.62 for cardiac events

(95% CI 0.42-0.93, P = .019).62 Ling et al and Uebleis

et al, in separate studies, obtained similar results in

patients with ischemic cardiomyopathy and LV dys-

function.63,64 Not all studies have demonstrated similar

results. In a substudy of the Surgical Treatment for

Ischemic Heart Failure (STICH) trial,65 the presence of

viable myocardium was not significantly associated with

an improved outcome in the final adjusted analysis.

However, it should be noted that in this substudy,

viability was assessed using either SPECT or dobu-

tamine echography instead of PET, and that the criteria

for classifying myocardium as viable or non-viable did

not include wall motion information (in contrast to

earlier studies in which viability was assessed only in

dysfunctional regions). As well, it is interesting to note

the patients were selected from a group already well

suited to revascularization and that their population

suffered from less comorbidity then what is reported in

other studies.66

In practice, defining the extent of ischemia, hiber-

nation, and scar is an important step in the work up of

patients with SCD and/or ventricular arrhythmia. In light

of the possible reversibility of ischemia and hibernating

myocardium-induced arrhythmias, accurate evaluation

of these conditions appears necessary, a goal which can

be achieved using SPECT and PET imaging. Even in

cases where revascularization is not possible, the extent

Figure 3. Viability study demonstrating a large area of hibernating myocardium in the LAD
territory. Rest PET perfusion imaging using 13N-NH3 (upper row) shows a moderate reduction in
perfusion in the distal anterior, antero-septal, and septal walls as well as the apex. 18F-FDG PET
(bottom row) shows a corresponding area of increased glucose metabolism in the same territory.
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of ischemia and hibernation as well as the extent of scar

should be taken into account when considering primary

prevention for SCD.

SYMPATHETIC INNERVATION IMAGING

Cardiac sympathetic innervation is another novel

imaging target in the search for better prediction and

prevention of SCD. It plays an important role in cardiac

function and may play an important role in future

stratification strategies.

The most widely available and studied non-invasive

method to assess cardiac sympathetic innervation is

currently Iodine-123-metaiodobenzylguanidine (MIBG).

MIBG is a guanethidine analog initially developed in the

1980s to study adrenal medulla tumors and other

neuroendocrine tumors.67 It mimics norepinephrine

(NE), the main neurotransmitter involved in the sympa-

thetic innervation of the heart. It localizes mainly in

presynaptic nerve endings, which it enters by an active

energy-dependent transport (uptake 1) before being

stored in neurosecretory granules. However, unlike

NE, it is not metabolized by monoamine oxidase, which

allows it to accumulate in sufficient concentration to

permit imaging.68 Cardiac imaging with MIBG is done

using a standard gamma camera, with images acquired

both in planar views and SPECT 15 minutes after tracer

injection, and again 3-5 hours after tracer injection.69

Planar images are then used to calculate the heart-to-

mediastinum ratio (H/M ratio) and the cardiac washout

of the tracer between the early (15 minutes) and delayed

images (3-5 hours), while SPECT images are used

mainly to assess for regional uptake and defects.

Both animal and human models have shown that

sympathetic innervation anomalies are associated with

ventricular arrhythmias.23,70,71 These anomalies also

play an important role in HF and can be associated with

worsening LV function and symptoms, as well as an

increase in SCD.72 Bax et al demonstrated an associa-

tion between MIBG defect severity and inducibility of

VT in electrophysiology studies.73 The AdreView

Myocardial Imaging for Risk Evaluation in Heart

Failure (ADMIRE-HF) trial, a prospective study with

961 patients with NYHA class II or III HF and

LVEF B 35%, is one of the largest studies that have

looked at cardiac MIBG imaging and its prognostic

value.74,75 For H/M\ 1.60, cardiac death at 2 years was

11.2% vs 1.8% for the group with H/M C 1.6074

(Figure 4). When treated as a continuous variable, over

a median follow-up of 17 months, there was a progres-

sive decline in cardiac death from 20% for H/M\ 1.10

to 0% for H/M[ 1.8074 (Figure 5). Lastly, the risk of

arrhythmic event was significantly higher in patient with

H/M\ 1.60 vs patients with H/M C 1.60 (10.4% vs

3.5%, P\ .001).74 These results were further supported

by a follow-up analysis in the ADMIRE-HF extension

study (ADMIRE-HFX) whose results were recently

published.76 In another interesting study, Boogers et al

investigated the ability of cardiac MIBG imaging to

predict ventricular arrhythmias in patients with ICD.

They prospectively recruited 116 HF patient referred for

ICD therapy, who all underwent cardiac MIBG SPECT

before ICD implantation. Over a follow-up of approx-

imately 2 years, they showed that large defects on late

MIBG SPECT imaging were strongly associated with

ventricular arrhythmias and appropriate ICD therapy

when compared with patients with no or small defects

(52% vs 5%, P\ .01).77 A similar study by Kawai et al

investigated the ability of MIBG to identify patients

with HF and reduced LVEF but at low risk for SCD.78

They recruited 81 patients with stable HF and

LVEF B 35%, who were then followed-up for a min-

imum of 5 years. At recruitment, every patient

underwent cardiac MIBG and the authors combined

Figure 4. Cumulative event curves for arrhythmic events (A) and cardiac death (B) in patients
with MIBG heart-to-mediastinum ratio\1.60 vs patient with ratio C1.60. Adapted with permission
from JACC74.
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the H/M ratio and washout rate to calculate a MIBG

score ranging from 1 (normal) to 10 (highly abnormal).

The patients were thus stratified into low (1-4), inter-

mediate (5-7), and high (8-10) MIBG scores. This score

proved to be a strong predictor for SCD (low = 0%,

intermediate = 19%, and high = 36%, P = .001). The

positive predictive value of a low MIBG score to

identify patients at low risk for SCD was thus 100%. As

the authors pointed out, an interesting aspect of their

study is that they combined both the H/M ratio and

washout rate in one score. We know that these param-

eters, although they overlap, do not represent the exact

same phenomenon, and the authors postulated that

combining them might further enhance the predictive

value of MIBG.78

While many studies investigating the role of cardiac

MIBG imaging looked at patient with severely reduced

LVEF, other studies have also validated its prognostic

value in patients with normal or near-normal LVEF.79,80

A high MIBG washout rate is also associated with

increased risk for SCD.81 Other authors have also looked

at the link between hibernating myocardium and sym-

pathetic innervation. We know that the nerve endings

are more sensitive to ischemia than the myocardial cells,

and it is thus not surprising that studies in animal models

and human subjects have shown that area of mismatched

innervation/perfusion (abnormal innervation but pre-

served perfusion) are arrythmogenic.82-84

PET technology has many intrinsic advantages over

SPECT and has become more readily available over the

last 10 years, which has led to an increase in research

regarding PET imaging of cardiac innervation and the

autonomic nervous system using PET norepinephrine

analogs including 11C-HED (Carbon-11-meta-hydrox-

yephedrine), Carbon-11-epinephrine, and beta receptor

ligands such as C-11-CGP-12177. These tracers have

been used to understand the role of the sympathetic

nervous system in cardiomyopathy pathogenesis and the

effects of therapy.85 The most investigated of these PET

tracers is 11C-HED. Its uptake and storage is similar to

that of MIBG, but it has a higher uptake 1 selectivity.86

With the background of (i) persistent innervation dam-

age in patients with previous myocardial infarction and

hibernating myocardium,87-90 (ii) the association

between MIBG uptake and SCD as per Boogers

et al,77 (iii) prior studies suggesting low11 C-HED

retention predicts adverse outcomes91 and (iv) that as

strong a predictor as LVEF is, we remain unable to

better stratify patients for consideration of ICD ther-

apy,13 Fallavollita et al designed the Prediction of

ARrythmic Events With Positron Emission Tomography

(PAREPET) trial. In a prospective study, they recruited

204 patients with LVEF B 35%, eligible for primary

prevention ICD therapy. Their aim was to demonstrate

an association between the amount of myocardial

sympathetic innervation anomalies and the risk of

SCD. All patients had 18F-FDG PET for viability

assessment and 11C-HED PET for myocardial innerva-

tion assessment and quantification.92 The volume of

denervated myocardium as a continuous value was a

strong independent predictor of SCD and had the

strongest correlation with SCD, with a HR of 1.069

per 1% of LV (95% CI 1.023-1.117, P = .003). The

volume of viable, denervated myocardium was also a

strong predictor for SCD as a continuous value, with a

HR of 1.067 per 1% of LV (95% CI 1.008-1.130,

P = .025). When divided by tertiles of sympathetic

denervation, the patients in the highest tertile had the

highest rate of SCD, while the patients in the lowest

tertile had the lowest rate (6.7, 2.2 and 1.2%�year-1,

respectively), with a statistically significant difference

between all tertiles (Figure 6).

When comparing MIBG and 11C-HED in animals

and humans, some studies have reported good correla-

tion between the two,93 while others reported significant

differences, with 11C-HED defect being larger than

MIBG defects.94 Some data also support the theory that
11C-HED provides a better signal-to-noise ratio,90,95

likely explained by the better imaging characteristics of

PET, its higher sensitivity, and the higher specificity of
11C-HED for NE uptake 1. However, the short half-life

(20 minutes) of 11C-HED has limited its availability to

centers with onsite cyclotron.

In clinical practice, the presence and extent of either

global or regional cardiac sympathetic denervation or

anomalies should be taken into account when consider-

ing ICD therapy if it is available. The current data

support a more aggressive approach toward ICD therapy

in patient with more extensive or severe sympathetic

innervation anomalies, even in patients with normal or

Figure 5. Cumulative two-year cardiac death rate vs MIBG
heart-to-mediastinum ratio. Reproduced with permission from
JACC74.
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near-normal LVEF values, although this has not yet

been adopted into practice guidelines.

SPECIFIC CARDIOMYOPATHY CONDITIONS

Idiopathic Dilated Cardiomyopathy (DCM)

According to some studies, SCD accounts for up to

30% of overall death in patients with DCM,96 which

accounts for a significant fraction of overall SCD.6

Current guidelines recommend ICD therapy in patients

with non-ischemic cardiomyopathy with LVEF B 35%

and NYHA class II-III HF,29 while it may be considered

in patients with NYHA class I. Evaluation of LV

function is thus indicated in these patients. Additionally,

studies have shown that sympathetic innervation abnor-

malities are present in DCM. Kasama et al, in a study

involving 56 patient with DCM, showed that patients

with reduced H/M ratio and increased washout rate on

MIBG imaging had significantly more late ventricular

potentials on signal averaged ECG and were thus at

higher risk for SCD.97 Over the average follow-up time

of 4.5 years, both the H/M ratio and washout rate were

significant predictors for SCD (P = .004 and P = .002

respectively). Other studies have shown similar results,

supporting the prognostic role of cardiac sympathetic

innervation in DCM.98 Recent studies have also looked

at the presence of significant microvascular dysfunction

in patients with DCM.99,100 In a study with 510 patients,

Majmudar et al investigated the relationship between

CFR and major adverse cardiac events (MACE, includ-

ing cardiac death, SCD, and aborted SCD) in patients

with ischemic and non-ischemic cardiomyopathy and

LVEF B 45%.100 Reduced CFR was common in both

ischemic and non-ischemic cardiomyopathy and was a

significant predictor for MACE, with a 32.6%/year rate

in the group with CFR B 1.65 and a 15.5%�year-1 rate

in the group with CFR[ 1.65 (P = .004).100 Although

the exact mechanism underlying the reduced CFR in

patients with non-ischemic cardiomyopathy is still

Figure 6. Kaplan-Meier curves showing the relationship between the extent of four different PET-
defined myocardial substrates (as continuous variable) and sudden cardiac death: 1 denervated
(reduced Carbon-11-meta-hydroxyephedrine (HED) uptake), 2 hibernating (reduced perfu-
sion/maintained Fluorine-18 fluorodeoxyglucose (FDG) mismatch), 3 viable denervated (reduced
HED/maintained FDG mismatch), and 4 infarcted (reduced perfusion/FDG match). The total
volume of denervated and viable denervated myocardium are both significant predictors for sudden
cardiac death. Reproduced with permission from JACC92.
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unclear, another recent study by Rijnierse et al showed

that there was a significant association between hyper-

emic MBF and sympathetic innervation.101 In 70

patients with ischemic cardiomyopathy or DCM, they

showed that 11C-HED retention was correlated with

resting MBF (r = 0.041, P\ .001) and hyperemic MBF

(r = 0.055, P\ .001) as assessed by Oxygen-15-water

PET in non-infarcted myocardium. Whether this is

causative or not remains to be determined.

Hypertrophic Cardiomyopathy (HCM)

HCM is a heterogeneous disease with varying

presentation and expression, which represents the most

common cause of SCD in adults younger than

40 years.29 ICD therapy has been shown to be appro-

priate in patients with HCM and risk factors for SCD

and is part of current guidelines.102,103 Nuclear cardiol-

ogy can play a role in these patients by evaluating

myocardial ischemia, which is known to be an important

determinant of the clinical course of HCM.104 In a study

of 158 patients with HCM, more than half had abnormal

SPECT MPI, and the SSS was significantly associated

with cardiovascular death. Patients with a low, interme-

diate, and high SSS had a 5-year survival of 97%, 94%,

and 79%, respectively, (P = .04), and the presence of

ischemia was a predictor of cardiovascular death (HR

1.77, 95% CI 1.04-3.02, P = .04) in the final multivari-

ate analysis.104 Microvascular dysfunction is also known

to be a feature of HCM.105 Cecchi et al showed using
13NH3 PET that patients with HCM had a severely

diminished vasodilator response to dipyridamole when

compared with a control group (hyperemic MBF

1.50 ± 0.69 vs 2.71 ± 0.94 mL�g-1�minute-1, P\
.001), while resting flow was similar in both groups.105

In addition, in the HCM group, a lower hyperemic

MBF was associated with an increased risk of cardiac

death.

Some authors have validated the usefulness of

sympathetic innervation imaging in patients with

HCM.106-108 Terai et al studied the link between cardiac

sympathetic innervation and ventricular arrhythmias

using MIBG. Patients who experienced ventricular

tachy-arrhythmias had a significantly higher MIBG

washout rate (26.8 ± 6.4% vs 17.4 ± 5.7%, P\
.001),108 supporting the hypothesis that cardiac inner-

vation imaging can help identify HCM patients at higher

risk for SCD.

Cardiac Amyloidosis

Amyloidosis is a rare disease marked by the

abnormal deposition of amyloid, which is basically

inappropriately folded protein. Depending on the type of

protein involved, there are four main types of amyloid

(AL, AA, ATTR, and AB2M), and the disease can be

systemic or restricted to one organ in some cases.

Cardiac involvement is not uncommon and is one of

the main determinants of prognosis, and can result in

high-degree heart block, severe biventricular dysfunc-

tion, and SCD.109-111 Current guidelines support the use

of ICD in patients with cardiac involvement and

ventricular arrhythmia causing hemodynamic instabil-

ity.9 Studies have shown that cardiac sympathetic

innervation abnormalities are frequently present in

patients with cardiac amyloidosis and are often more

pronounced in patients with associated HF.112 To our

knowledge, no study has specifically investigated the

link between sympathetic innervation abnormalities and

SCD in this population, but since such a link exists in

other populations, we anticipate it translates to this one.

The exact role of nuclear cardiology in this disease

remains to be determined, but small studies and case

reports have shown that both SPECT (using bone agents

such as Technetium-99m-pyrophosphate) and PET (us-

ing amyloid seeking tracers such as Carbon-11

Pittsburgh compound B and Fluorine-18-florbetapir)

can potentially be used to establish the diagnosis of

cardiac involvement in amyloidosis.113,114

Cardiac Sarcoidosis (CS) and Other
Inflammatory Cardiomyopathies

Sarcoidosis is a systemic inflammatory disease

characterized by the formation of noncaseating granu-

lomas. The exact etiology remains unknown, and the

disease can involve nearly any organ, although the lungs

and lymph nodes are by far the most commonly

involved. Cardiac involvement can lead to conduction

disturbances, ventricular arrhythmias, HF, and SCD.

The exact prevalence of myocardial involvement

remains controversial, ranging anywhere from 2% to

40%.115,116 Patients with cardiac involvement are often

asymptomatic and initial presentation can range from

asymptomatic to SCD or ventricular arrhythmia. In a

study by Nery et al, 182 patients presenting with new

onset unexplained monomorphic VT underwent com-

prehensive investigation including 18F-FDG PET. 42%

had findings suggestive of CS, underlining the impor-

tance of screening for CS.117 Similarly, a significant

proportion of patients presenting with unexplained new

onset atrioventricular block turn out to have CS.118,119

SCD secondary to arrhythmias is the cause of death in

up to 50% of all sarcoidosis deaths, with some studies

reporting even higher numbers.120 The diagnosis of

cardiac involvement remains challenging, but cardiac

magnetic resonance and cardiac PET are emerging as

pivotal tools in its assessment.121 Assessment for CS
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using nuclear cardiology requires two different image

acquisitions: one assessing perfusion (which can be done

using either SPECT or PET) and 18F-FDG PET to assess

for active inflammation. Active CS will classically

appear as a focal area of reduced or absent perfusion

with increased 18F-FDG uptake.

In the largest study of its kind to date, Blankstein

et al studied the prognostic value PET in CS.122 They

followed 118 patients with known or suspected CS over

a median of 1.5 years. The patients who had scans

suggestive of CS at presentation (perfusion defect with

associated increased 18F-FDG uptake) were at a signif-

icantly increased risk for death or ventricular

tachycardia in the final multivariate analysis (HR 2.87,

P = .039).

According to the recent HRS consensus statement,

ICD is recommended in patients with cardiac sarcoidosis

and ventricular arrhythmias or high-degree heart

block123—a position supported by the literature124-126

(Figure 7).

Lastly, a recent paper by Tung et al looked at the

incidence of abnormal myocardial 18F-FDG uptake in

patients with otherwise unexplained cardiomyopathy

referred for ventricular arrhythmias. Out of 103 patients

recruited, 50 (49%) were found to have abnormal focal

myocardial 18F-FDG uptake, consistent with an active

myocardial inflammatory process.127 This impacted

therapy in nearly all of these patients, most of which

went on to receive immunosuppressive therapy or

underwent ablation.

Other Conditions

Arrhythmogenic right ventricular cardiomyopathy

(ARVC) is a genetically inherited cardiomyopathy

which can cause ventricular arrhythmia and SCD. One

group has shown that cardiac sympathetic innervation

abnormalities are frequently present in these patients,

using both MIBG,11C-HED PET, and 11C-CGP-12177

(a marker of post synaptic beta-adrenergic recep-

tors).128,129 They reported the presence of regionally

reduced MIBG uptake in 40/48 patients with ARVC,

and these areas of abnormal sympathetic innervation

were strongly correlated with the site of origin of

ventricular tachycardia in patients with right ventricular

outflow tract tachycardia.128 In a follow-up study with

42 ARVC patients followed for more than 10 years, they

demonstrated that the patients with abnormal MIBG

scans were at a significantly increased risk to develop

life-threatening VT vs those with normal sympathetic

function (88% vs 35% over total follow-up,

P\ .0005).130

Some evidence also supports a role for cardiac

sympathetic innervation imaging in Brugada syndrome,

Figure 7. This otherwise healthy 57-year-old female presented with new onset complete heart
block and no pertinent prior medical history. Echocardiogram was normal, including normal LVEF.
Because there was a suspicion for sarcoidosis, she underwent 18F-FDG PET-CT. Wholebody 18F-
FDG PET (A) images revealed extensive active systemic sarcoid, with active lesions in the lungs,
nodes, spleen, and bones. Cardiac involvement was present. 82Rb MPI PET revealed areas of
decreased perfusion mainly in the septum and inferior walls (B) while dedicated ECG-gated 18F-
FDG myocardial acquisition (C) revealed areas of severely increased uptake in the septal, anterior,
and inferior walls. The decision was taken to go ahead with implantable cardioverter defibrillator
(ICD) implantation. The patient received appropriate, life-saving shock 10 months later for
ventricular fibrillation arrest.
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another cause of SCD. Wichter et al demonstrated that

regionally decreased MIBG was present in nearly 50%

of patients with Brugada syndrome,131 while Kies et al

demonstrated that they have abnormal uptake of
11C-HED on PET.132 This, combined with clinical

evidence of autonomic nervous system dysfunction,133

supports the hypothesis of autonomic dysfunction in

Brugada syndrome’s pathophysiology, but whether or

not it has any prognostic value and can help in clinical

decision-making remains to be determined.

FUTURE OUTLOOK

Although 11C-HED shows great promise, its use and

adoption remain limited because of its short half-life

which requires an onsite cyclotron. LMI1195 is a

Fluorine-18-based PET tracer with a design similar to

MIBG, which could theoretically solve this problem

thanks to its longer half-life which allows delivery from

a regional cyclotron. Preliminary studies are promis-

ing,134,135 and the relationship between myocardial

denervation and SCD, along with the potential for an

effective Fluorine-18-labeled tracer suggest the potential

for LMI1195 to help identify high-risk patients for SCD

and guide ICD therapy.

The ability of PET to detect picomolar levels of

radiotracers could also eventually lead to imaging of

channelopathies, something currently impossible,

although appropriate tracers would first have to be

developed. Potential applications for PET/MRI hybrid

scanners in the field of SCD are numerous. Cardiac

magnetic resonance is currently the clinical gold stan-

dard in evaluating ventricular function and can

accurately assess scar tissue. Combining this data with

the functional and physiological data acquired using

PET could potentially lead to a better understanding of

the underlying mechanism and physiopathology of SCD,

and ultimately better risk stratification.

Lastly, it should be noted that further studies

evaluating the etiology, outcome, and directing therapy

specifically in SCD are required, as some of the data we

currently rely on only uses cardiac death, rather than

SCD, as an endpoint.

CONCLUSION

Correctly identifying patients who are at high risk

for SCD is of paramount importance since appropriate

therapy can be life-saving. While modern medicine has

made significant progress in the diagnosis and manage-

ment of CAD, this is one area where recent progress

remains limited. Our current screening process for SCD

relies heavily on LVEF assessment, which lacks both

sensitivity and specificity. Recent advances in our

understanding of the underlying pathophysiology, com-

bined with advances in cardiac imaging, offers hope for

a new and better predictive model. Imaging of ischemia,

scar tissue, hibernating myocardium, and cardiac inner-

vation all seem to hold the potential to identify

additional high-risk features for SCD in patient with or

without LV dysfunction. Further validation with large

prospective studies will be needed to validate these new

risk predictors before they can be widely adopted in the

clinical setting and integrated in an improved everyday

model of SCD risk prediction that will more accurately

guide clinicians in decision-making. Hopefully, this will

lead to appropriate ICD therapy in patients in whom it

would previously not have been indicated, as well as

reduced ‘‘inappropriate’’ ICD therapy in patients with

low LVEF who never experience ventricular arrhythmia

or SCD.
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129. Wichter T, Schäfers M, Rhodes CG, Borggrefe M, Lerch H,

Lammertsma AA, et al. Abnormalities of cardiac sympathetic

innervation in arrhythmogenic right ventricular cardiomyopathy:

Quantitative assessment of presynaptic norepinephrine reuptake

and postsynaptic beta-adrenergic receptor density with positron

emission tomography. Circulation 2000;101:1552-8.

130. Paul M, Wichter T, Kies P, Gerss J, Wollmann C, Rahbar K,

et al. Cardiac sympathetic dysfunction in genotyped patients with

arrhythmogenic right ventricular cardiomyopathy and risk of

recurrent ventricular tachyarrhythmias. J Nucl Med 2011;52:

1559-65.

131. Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-
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