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Improved accuracy of myocardial perfusion
SPECT for detection of coronary artery disease
by machine learning in a large population

Reza Arsanjani, MD,a,b Yuan Xu, PhD,a Damini Dey, PhD,a,b Vishal Vahistha,

MD,a Aryeh Shalev, MD,a Rine Nakanishi, MD,a Sean Hayes, MD,a,b

Mathews Fish, MD,c Daniel Berman, MD,a,b Guido Germano, PhD,a,b

and Piotr J. Slomka, PhDa,b

Objective. We aimed to improve the diagnostic accuracy of myocardial perfusion SPECT
(MPS) by integrating clinical data and quantitative image features with machine learning (ML)
algorithms.

Methods. 1,181 rest 201Tl/stress 99mTc-sestamibi dual-isotope MPS studies [713 consecutive
cases with correlating invasive coronary angiography (ICA) and suspected coronary artery
disease (CAD) and 468 with low likelihood (LLk) of CAD <5%] were considered. Cases with
stenosis <70% by ICA and LLk of CAD were considered normal. Total stress perfusion deficit
(TPD) for supine/prone data, stress/rest perfusion change, and transient ischemic dilatation
were derived by automated perfusion quantification software and were combined with age, sex,
and post-electrocardiogram CAD probability by a boosted ensemble ML algorithm (Logit-
Boost). The diagnostic accuracy of the model for prediction of obstructive CAD ‡70% was
compared to standard prone/supine quantification and to visual analysis by two experienced
readers utilizing all imaging, quantitative, and clinical data. Tenfold stratified cross-validation
was performed.

Results. The diagnostic accuracy of ML (87.3% ± 2.1%) was similar to Expert 1
(86.0% ± 2.1%), but superior to combined supine/prone TPD (82.8% ± 2.2%) and Expert 2
(82.1% ± 2.2%) (P < .01). The receiver operator characteristic areas under curve for ML
algorithm (0.94 ± 0.01) were higher than those for TPD and both visual readers (P < .001). The
sensitivity of ML algorithm (78.9% ± 4.2%) was similar to TPD (75.6% ± 4.4%) and Expert 1
(76.3% ± 4.3%), but higher than that of Expert 2 (71.1% ± 4.6%), (P < .01). The specificity of
ML algorithm (92.1% ± 2.2%) was similar to Expert 1 (91.4% ± 2.2%) and Expert 2
(88.3% ± 2.5%), but higher than TPD (86.8% ± 2.6%), (P < .01).

Conclusion. ML significantly improves diagnostic performance of MPS by computational
integration of quantitative perfusion and clinical data to the level rivaling expert analysis. (J
Nucl Cardiol 2013;20:553–62.)

Key Words: Myocardial perfusion imaging: SPECT Æ automated quantification Æ coronary
artery disease Æ total perfusion deficit Æ machine learning

INTRODUCTION

Myocardial perfusion SPECT (MPS) is the most

commonly used noninvasive stress imaging modality for

diagnosis of coronary artery disease (CAD).1 Prior studies

have evaluated multiple MPS features, including semi-

quantitative and quantitative perfusion and functional

variables, for diagnosis of obstructive CAD.2-6 The Amer-

ican Society of Nuclear Cardiology (ASNC) recommends

that the clinician should approach MPS interpretation in a

systematic fashion, which should include review of raw and

perfusion images, incorporation of quantitative and

From the Departments of Imaging and Medicine, and Cedars-Sinai

Heart Institute,a Cedars-Sinai Medical Center, Los Angeles, CA;

David Geffen School of Medicine,b University of California Los

Angeles, Los Angeles, CA; Oregon Heart and Vascular Institute,c

Sacred Heart Medical Center, Springfield, OR.

Received for publication Dec 14, 2012; final revision accepted Mar 13,

2013.

Reprint requests: Piotr J. Slomka, PhD, Departments of Imaging and

Medicine, and Cedars-Sinai Heart Institute, Cedars-Sinai Medical

Center, 8700 Beverly Blvd, Taper A238, Los Angeles, CA 90048;

slomkap@cshs.org, piotr.slomka@cshs.org.

1071-3581/$34.00

Copyright � 2013 American Society of Nuclear Cardiology.

doi:10.1007/s12350-013-9706-2

553



functional data, as well as consideration of clinical factors.7

However, manual combination of these data may lead to a

significant inter-observer variability due to different levels

of experience.8 Prior studies have demonstrated that

quantitative analysis can be a useful supplement to the

visual analysis;9 however, automated algorithms for com-

bining and integrating perfusion, functional, and clinical

variables have not been well developed.

Recent advances in machine learning (ML) research

have resulted in algorithms that allow efficient combi-

nation of multiple input features in order to achieve

optimal classification. In this study, we aimed to

improve the diagnostic accuracy of MPS analysis by

fully automated integration of several quantitative per-

fusion and clinical variables with an ensemble ML

algorithm (LogitBoost). We demonstrate the improved

diagnostic accuracy of this method over standard quan-

titative analysis, rivaling the accuracy of expert readers.

MATERIALS AND METHODS

Patient Population

The subjects who were referred to the Nuclear Medicine

Department of Cedars-Sinai Medical Center, Los Angeles,

California, from November 1, 2001, to June 30, 2005, for rest

and stress electrocardiography (ECG) gating, for whom both

supine and prone imaging 10 as well as informed consent were

available, were consecutively selected. All patients with prior

history of CAD or significant valve disease were excluded.

Based on these selection criteria, 1,181 sequential studies were

identified to form the study group. This population consisted of

two subgroups of patients: 713 patients with correlative

angiography and 468 patients with a low likelihood (LLk) of

CAD. In the angiography group, MPS and coronary angiog-

raphy had to be performed within 60 days without a significant

intervening event. The majority of the patients in the angiog-

raphy group underwent MPS prior to cardiac catheterization

(96%). The LLk group consisted of patients who did not have

correlating coronary angiography available, but had a low

pretest likelihood of CAD (\5% for exercise MPS and \10%

for adenosine stress MPS) by CADENZA (Advanced Heuris-

tics, Inc, Bainbridge Island, Wash) analysis.11 The LLk

patients were classified as normal for the purposes of this

analysis. The clinical characteristics of the two groups are

listed in Table 1. The data analyzed in this study were selected

retrospectively from the existing database at Cedars-Sinai

Medical Center. The retrospective use of clinical data in this

study was approved by the Institutional Review Board and all

patients provided written informed consent for the use of their

clinical and imaging data for research purposes.

Rest MPS protocol. For rest imaging, weight-

adjusted Tl-201(3.0-4.5 mCi) was injected intravenously and

acquisition was performed 10 minutes after injection.

Exercise MPS protocol. Patients performed a

symptom-limited exercise treadmill test with the standard

Bruce protocol. At near-maximum exercise, 99mTc-sestamibi

(25-40 mCi based on patient weight) was injected intrave-

nously. Treadmill exercise was continued at maximum

workload for 1 minute and at 1 stage lower for two additional

minutes, when possible. 99mTc-sestamibi MPS acquisition was

started 15-30 minutes after the radiopharmaceutical injection.

Adenosine MPS protocol. Adenosine MPS was

performed as previously described.12 Adenosine was infused at

140 lg kg-1 minute-1 for 5 minutes. At the end of the second

minute, 99mTc-sestamibi (25-40 mCi) was injected, and MPS

acquisition was started approximately 60 minutes later. When-

ever possible, during adenosine infusion, patients performed

a low-level treadmill exercise, walking at 0% grade at

1-1.7 mph.13 With the latter protocol, imaging began

15-60 minutes after adenosine stress.

Image Acquisition and Reconstruction
Protocols

The details of image acquisition and tomographic recon-

struction have been previously described.14 All patients

underwent separate acquisition rest 201Tl/stress 99mTc-sestam-

ibi dual-isotope MPS as previously described.15 Stress scans

were acquired with 64 projections at 25 seconds per projection

for supine 99mTc acquisition, followed immediately by 15 sec-

onds per projection for prone 99mTc acquisition. The rest 201Tl

acquisition was performed with 64 projections (32 per each

head) and 35 seconds per projection. Images were acquired on

a dual-detector camera [Forte or Vertex (Philips Medical

Systems, Andover, Massachusetts) or e.cam (Siemens Medical

Systems, Malvern, Pennsylvania)]. High-resolution collimators

were used. No attenuation or scatter correction was applied.

Studies were reconstructed on the respective vendor platforms

[Pegasys (Philips Medical Systems) or e.soft 2000 (Siemens

Medical Systems)] by the commercial implementations of the

iterative reconstruction. The reconstruction parameters were

12 iterations with Butterworth pre-filtering [cutoff, 0.66 cycles

per pixel (pixel size = 6.9 mm) for supine 99mTc and 0.55

cycles per pixel for prone 99mTc; order, 5]. These parameters

were optimized previously to provide optimal image quality

for clinical scan reading.16

Short-axis images were automatically generated.17 In

cases when the software failed to detect left ventricular

contours as indicated by the quality control flag,18 manual

contour correction was performed by an experienced technol-

ogist. In addition, if patient motion was noted during review of

raw projections, motion correction (MoCo) software was

applied.19 After reconstruction, the images were transferred for

automated processing and quantification using Cedars-Sinai

quantitative perfusion SPECT (QPS) software.20 No studies

were removed from the consecutive series due to image quality

issues.

Clinical Analysis

Pre-test probability of obstructive CAD was estimated

using Diamond-Forrester criteria using age, sex, and symp-

toms.21 We also calculated the probability of obstructive CAD
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using ECG Diamond-Forrester criteria based on the degree of

ST-depression on stress ECG.21 The post-ECG parameter as

well as gender and age formed clinical input to the ML system.

Automated Analysis

Several quantitative parameters were obtained in a fully

automated mode as described below. These parameters were

used as an input into the ML algorithm.

Total perfusion deficit (TPD). Supine and prone

images were quantified separately using their respective supine

and prone normal limits and a previously developed simplified

approach.22 Briefly, an ellipsoidal model and contours derived

by the quantitative gated SPECT (QGS) algorithm20 were used

to extract polar map samples. An optimal normalization factor

between the database cases and a test case was established by an

iterative search and an abnormality threshold of 3.0 average

(mean absolute) deviations was applied (approximately equiv-

alent to 2.5 SD) to estimate the extent of hypoperfusion.22 This

value is similar to the threshold used in other MPS quantification

methods. The TPD measure was computed as the integral of

polar map severities below the abnormality threshold, reflecting

both extent and severity of the defect.

In addition to deriving separate TPD measures for supine

and prone MPS, we computed the combined supine/prone TPD

parameter, based on the findings of abnormality on both supine

and prone images as previously described.14 Briefly, combined

supine/prone TPD is calculated by limiting the TPD compu-

tation from the supine polar map to pixels, which have been

quantified as abnormal on prone images. The same average

deviation threshold (3.0) is used for supine and prone images

(as in the analysis of separate images).14 Additionally, two

exceptions for concomitant defect locations (anterior/apical

supine defects and for inferior wall prone defects) have been

built into the quantification process for males as previously

established.14 The combined supine/prone parameter was

expressed in the same units (percentage of the myocardium)

as in the separate supine and prone TPD measures.

Stress/rest perfusion change. Stress-rest

change was evaluated by the direct quantification of ischemia.3

The stress-rest count difference was assessed considering the

voxels contained within only the stress contour volume since

the rest scans were spatially aligned to stress scans. Following

the spatial alignment and stress-rest image count normaliza-

tion, we calculated stress/rest perfusion change based on the

normal limits of changes as recently described.23

Transient ischemic dilation (TID). Standard

MPS processing was performed by the QPS/QGS soft-

ware.20,24 The TID ratio was derived from stress/rest supine

MPS as previously defined.25

Visual Analysis

Visual interpretation of MPS images was based on short-axis,

horizontal, and vertical long-axis tomograms divided into 17

segments using QPS interactive 17-segment graph.20,26 MPS

images were scored independently by two expert readers (Expert 1

with 30 years and Expert 2 with more than 10 years of clinical

experience in nuclear cardiology as attending physicians) using a

five-point scoring system (0, normal; 1, mildly decreased; 2,

moderately decreased; 3, severely decreased; and 4, absence of

segmental uptake). Visual reading was performed in two

Table 1. Baseline characteristics of the patients

Angiography group LLk group P value

Number 713 468 N/A

Age (years) 64 ± 12 48 ± 11 \.01

Male % 64 41 \.01

Female % 36 59 \.01

Diabetes mellitus % 22 10 \.01

Hypertension % 61 36 \.01

Hyperlipidemia % 52 38 \.01

Smoking % 6 5 .46

Exercise SPECT (%) 33 56 \.01

Adenosine SPECT (%) 67 44 \.01

Ejection fraction (%) 61.7 ± 13.2 65.7 ± 11.3 .16

Cath: 0-vessel disease 291 (41%) N/A N/A

Cath: 1-vessel disease 204 (29%) N/A N/A

Cath: 2-vessel disease 149 (21%) N/A N/A

Cath: 3-vessel disease 63 (9%) N/A N/A

Pre-test likelihood CAD (%)

Low 11 100 \.01

Intermediate 80 0 \.01

High 9 0 \.01
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consecutive steps with the following information revealed to the

expert readers at each step: Step 1: supine plus prone data, including

stress and rest perfusion data, raw projection data, and gated

functional data including gated images and stress plus rest ejection

fraction (EF); and Step 2: all information provided in Step 1 as well

as quantitative computer results and all clinical information

including age, cardiac risk factors, type of stress, and clinical and

ECG responses to stress. During the second step, readers could

modify the stress and rest scores using the additional information

that had been revealed to them. Subsequently, summed stress

scores (SSS) and summed rest scores were calculated by summing

the 17-segment stress and rest scores, respectively.

ML Algorithm

We have employed an ensemble-boosting ML algorithm,

which is a meta-algorithm technique. A high performance of

classification is obtained by the combination of weak learners

(simple classification schemes), which produce a strong

ensemble classification scheme by iteratively adjusting appro-

priate weights for each of the base-level classifiers. For the

current analysis, we utilized a LogitBoost procedure27 with

decision stumps as the base classifiers utilizing Waikato

Environment for Knowledge Analysis (WEKA).28 This

method has been shown to be superior to the originally

proposed AdaBoost method29 and has been successfully

applied to tumor classification with gene expression data.30

We utilized the following quantitative parameters—TID,

combined supine/prone TPD, supine TPD, and optimized

stress/rest change analysis as described previously.23 We also

provided patient age, gender, and post-ECG probability of

CAD computed as described in the previous section (seven

features in total). Standard ten-fold stratified cross-validation

was applied, and therefore no training data were used during

testing of the model, but 10 different models were used to

derive the final test results.31 No automated feature selection

was performed and the same 7 features were used in the

training and testing phase. Both LLk and angiography groups

were included in the model to provide a balanced dataset for

the ML with similar representation of normal and abnormal

cases. The output in the form of continuous probability

estimates was used to construct the receiver operator charac-

teristic (ROC) curves. To assess the incremental diagnostic

benefit of combining the clinical information and the quanti-

tative features, the ML algorithm performance was compared

to expert visual readings and to the combined supine/prone

quantitative analysis. Furthermore, ML was used to combine

only the 4 quantitative data features (without clinical features),

which were compared to ML probability estimates combining

all seven features to assess how clinical information influenced

ML. In addition, we also combined quantitative perfusion with

quantitative functional data including EF and segmental

motion and thickening scores, as well as clinical data.

Conventional Coronary Angiography

Conventional invasive coronary angiography (ICA) was

performed according to standard clinical protocols, within

60 days of the myocardial perfusion examination. All coronary

angiograms were analyzed using quantitative coronary arteri-

ography (QCA) by an experienced cardiologist. A stenosis of

50% or greater narrowing of luminal diameter of the left main

or 70% or greater narrowing of the other coronary arteries by

ICA was considered significant and was used as the gold

standard for the detection of obstructive CAD.

Statistical Analysis

Continuous variables were expressed as the mean ± stan-

dard deviation, and categorical variables were expressed as

percentages (%). The inter-observer agreement between visual

and automated reads was assessed by kappa-test. Z-test for

comparison of proportions was performed to compare the

sensitivity, specificity, and accuracy. The normalcy was

calculated based on the LLk population, and the normalcy

rates were also compared using z-test. For all analyses, P

values \ .05 were considered statistically significant. ROC

curves were analyzed to evaluate the ability of ML software vs

visual scoring for forecasting obstructive CAD by QCA. The

differences between the ROC areas under the curves (AUC)

were compared using the Delong method.32

RESULTS

Contours were manually adjusted in 12% of the

supine cases and 14% of the prone cases, with majority

of these adjustments (9% for supine and 11% for prone)

involving alteration of the mitral valve plane only.

Agreement Between Automated and Visual
Analysis

Figure 1 demonstrates the number of times the

diagnosis was changed between the visual analysis without

clinical and quantitative data (Step 1) and with all the data

34

40

10

80

11

26

Total Changed to Positive Total Changed to Negative

Auto Expert 1 Expert 2

Figure 1. Comparison of the number of patients in whom the
diagnosis was changed when all information including clinical
variables was provided.
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(Step 2) as well as between quantitative analysis and ML

results. A supine/prone TPD value of C3%14 and SSS

score of C4 were considered abnormal16,33 for the quan-

titative TPD and visual analysis. TPD threshold was not

used by the ML method. The ML method combining

quantitative and clinical data changed diagnosis in *10%

of cases as compared to combined supine/prone TPD

parameter alone, while Expert 1 and Expert 2 changed the

diagnosis in 4% and 3% of the cases between Step 1 and 2,

respectively. The inter-observer agreement between the

two expert readers, combined supine/prone, and ML is

shown in Table 2. The overall inter-observer agreement

between the two expert readers, quantitative, and ML was

good (0.72-0.81).

ML vs Quantitative Perfusion Analysis

Figure 2 compares the sensitivity, specificity, and

accuracy of the combined supine/prone TPD vs ML for

the entire population cohort including angiography and

LLK cases (N = 1,181). The specificity (92.1%) and

accuracy (87.3%) of ML combining quantitative and

clinical data was significantly higher than combined

supine/prone TPD quantification (specificity: 86.8%,

accuracy: 82.8%) (P \ .01). The sensitivities of the two

methods were similar. The ROC curves for TPD

analysis (combined supine/prone), ML with quantitative

features only, and ML combining quantitative and

clinical data are shown in Figure 3A. The AUC for

ML combining quantitative and clinical measurements

(0.94 ± 0.01) was significantly better (P \ .0001) than

TPD (0.88 ± 0.01) and ML using quantitative data alone

(0.90 ± 0.01). The ML using quantitative data alone was

also significantly better than combined supine/prone

TPD (P \ .001). Furthermore, the AUC for ML com-

bining quantitative perfusion and functional image

features plus clinical information was 0.94 ± 0.01,

which is similar to the result obtained without functional

Table 2. Agreements between the two expert
readers, combined supine/prone TPD, and ML
algorithm utilizing Kappa-test

Kappa-
statistics

Total %
agreement

Expert 1 vs Expert 2 0.78 90

Expert 1 vs TPD 0.80 91

Expert 2 vs TPD 0.81 91

Expert 1 vs ML 0.80 91

Expert 2 vs ML 0.72 87

Sup/Prone+
Quant+ Clin.

Sup/Prone+
Quant+ Clin.

TPD ML

Sensitivity (%) 76.3 + 4.3 71.1 + 4.6* 75.6 + 4.4 78.9 + 4.2

Specificity (%) 91.4 + 2.2 88.3 + 2.5 86.8 + 2.6* 92.1 + 2.2

Accuracy (%) 86.0 + 2.1 82.1 + 2.2* 82.8 + 2.2* 87.3 + 2.1

Expert 1 Expert 2

*Significantly worse when compared to machine learning (p < 0.01)
TPD – Combined Supine/Prone Total Perfusion Deficit
ML – Machine Learning Including Quantitative and Clinical Data

Auto

Entire Population: (N = 1181)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
* *

*
*

Figure 2. Sensitivity, specificity, and accuracy of ML algorithm vs combined supine/prone TPD and visual expert analysis for
detection of obstructive CAD for the entire cohort (N = 1,181).
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information; and also significantly better than TPD or

ML using quantitative perfusion data only.

We also compared the diagnostic performance of

the automated TPD analysis (combined supine/prone) vs

quantitative/clinical ML analysis, separately in the

angiographic population (N = 713) and LLK cases

(N = 468) (Figure 4). The diagnostic accuracy of

quantitative/clinical ML (79.4%) was significantly better

than TPD (75.7%) (P \ .05), while the specificities of

the two methods were similar. The normalcy rate for the

combined quantitative/clinical ML (99.6%) was signif-

icantly higher than combined supine/prone TPD (93.6%)

(P \ .01). In addition, the AUC for the quantitative/

clinical ML (0.85 ± 0.01) was significantly better than

combined supine/prone TPD (0.82 ± 0.01) (P \ .001) in

the separate angiographic population. Sensitivity com-

parisons were the same as in the overall population.

We compared the LogitBoost ML algorithm vs

standard logistic regression using the same input vari-

ables and the same ten-fold stratified cross-validation

process. The diagnostic performance of logistic regres-

sion resulted in sensitivity, specificity, and accuracy of

72.7%, 90.5%, and 84.2%, respectively. The sensitivity

and accuracy of the logistic regression method was

significantly lower than the LogitBoost method com-

bining clinical and quantitative data (P \ .05).

ML vs Visual Analysis

The sensitivity for visual read increased to

76.3% ± 4.5% vs 70.6% ± 4.5% in Step 2 vs Step 1,

while specificity was unchanged (91.4% ± 2.2% vs

92.1% ± 2.2%) for Expert 1. Both sensitivity (71.1% ±

4.6% vs 73.7% ± 4.5%) and specificity (88.3% ± 2.5%

vs 87.6% ± 2.6%) were unchanged for Expert 2 between

Step 1 and Step 2. Figure 2 also compares the sensitiv-

ity, specificity, and accuracy of the quantitative/clinical

ML algorithm vs the second reading step for each

expert (with all clinical and quantitative information

available) for the entire population cohort (N = 1,181).

The diagnostic accuracy and sensitivity were compara-

ble to Expert 1, but superior to Expert 2 (P \ .01).

The specificity of quantitative/clinical ML was similar

in comparison to both experts. The ROC curves for

detection of obstructive disease, comparing quantitative/

clinical ML and visual reads for two experts, are shown

in Figure 3B. The AUCs for ML were significantly

better when compared to the visual analysis for both

expert readers (P \ .0001).

We also compared the diagnostic performance of the

ML vs visual analysis (Step 2) separately in the angio-

graphic population (N = 713) and LLK population for

normalcy rate (Figure 4). The diagnostic accuracy of

quantitative/clinical ML were similar to that of Expert 1

and superior to that of Expert 2 (P \ .05) in the angio-

graphic population. The normalcy rate (computed in the

LLK population) for the ML (99.6%) was significantly

higher than for both expert readers (P \ .01). The AUC

for ML (0.85 ± 0.01) was similar to the AUC for Expert 1

(0.84 ± 0.01) and was superior to the AUC for Expert 2

(0.79 ± 0.01) (P \ .0001). Sensitivity comparisons were

the same as in the overall population.

In order to verify the validity of the visual scoring

threshold, we also assessed the diagnostic performance

of ML vs visual analysis when SSS C3 was considered

abnormal in the overall population.33 The sensitivity,

specificity, and accuracy of the Step 2 score for the two

experts were 79.4%, 89.1%, 85.6% and 76.5%, 85.9%,

82.6%, respectively. Analogous to the results obtained

for the SSS C4 threshold, the sensitivity and accuracy of

ML were superior when compared to Expert 2

(P \ .01), but similar to Expert 1.
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Figure 3. The ROC curves comparing the ML algorithm vs
combined supine/prone TPD (A) and expert visual analysis (B)
for the detection of obstructive coronary artery disease.
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DISCUSSION

We were able to show significant improvements in

the diagnostic accuracy for the detection of obstructive

CAD utilizing ML algorithm, which combined multiple

quantitative perfusion and clinical variables. The

improvement of the overall diagnostic accuracy of

MPS has a significant impact because it may allow

better selection of interventions for the individuals who

are at increased risk of events as well as avoiding

unnecessary procedures.34 To our knowledge, this is the

first large study to combine multiple clinical and

quantitative features using ML algorithms. We were

able to demonstrate that the diagnostic performance of

ML algorithms combining clinical and perfusion data is

significantly better than quantitative perfusion analysis

alone. Furthermore, we compared the diagnostic accu-

racy of ML algorithm vs two experienced visual readers

from high volume centers. In our study, the ML

algorithms were at least as accurate or superior to the

visual analysis (as compared to one expert). It has been

demonstrated that the degree of variability in MPS

interpretation is dependent on the reader’s experi-

ence.35,36 Therefore, it is feasible that these algorithms

will also be superior when compared to less experienced

readers. These algorithms can be easily incorporated

with currently available standard nuclear cardiology

software. In the future, this method could provide

fundamental assistance in evaluation of MPS studies.

We note that the overall best visual accuracy

obtained in this study was slightly lower (86%) than in

the similar visual expert analysis recently reported by

our group for the attenuation-corrected data (89%);37

however, in the current study, none of the data were

removed due to poor image quality or motion artifacts.

These studies were also performed in different popula-

tions, possibly reflecting differences in the referral

patterns and different prevalence of the disease; there-

fore, further comparison of the supine-prone technique

to attenuation-correction techniques is warranted.

Previous studies had examined the use of neural

networks and rule-based analysis, older ML tools

compared to the one used in this study, in the assessment

of MPS.38-40 One study evaluated 135 patients who had

undergone both 99mTc-sestamibi MPS and cardiac cath-

eterization38 and showed an improvement in diagnostic

performance by expert physicians when utilizing neural

networks (decision support) in a small population. In

another study, the diagnostic performance of a com-

puter-assisted interpretation of MPS39 was compared to

visual analysis in 655 patients undergoing MPS and

Supine/Prone+ 
Quant + Clinical

Supine/Prone+ 
Quant + Clinical

TPD ML

Sensitivity (%) 76.3 + 4.4 71.1 + 4.6* 75.6 + 4.4 78.9 + 4.2

Specificity (%) 81.8 + 4.9 77.0 + 5.3 75.9 + 5.3 80.1 + 5.1

Accuracy (%) 78.5 + 3.0 73.5 + 3.2* 75.7 + 3.2* 79.4 + 3.0

Normalcy (%) 97.4 + 1.5* 95.3 + 2.0* 93.6 + 2.4* 99.6 + 1.0

Expert 1 Expert 2 Auto

Angiographic (N = 713) and LLk cases (N = 468) separated

*Significantly worse when compared to machine learning (p < 0.05)
TPD – Combined Supine/Prone Total Perfusion Deficit 
ML – Machine Learning Including Quantitative and Clinical Data
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Figure 4. Sensitivity, specificity, accuracy, and normalcy (based on LLk groups) of ML algorithms vs combined supine/prone TPD
and visual analysis for obstructive CAD separately in the angiographic group (N = 713).
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coronary angiography where polar map characteristics

were analyzed by a rule-based system. The diagnostic

specificity of the automated system was noted to be

higher than visual analysis (although only *40%);

however, the sensitivity of the visual analysis was

higher. These methods focused on the interpretation of

polar maps by automated rules or neural networks. In

contrast, our approach was to integrate a small number

of clinical and high-level quantitative parameters (which

could be used for standalone diagnosis). One study40

reported the ability of a computer-based neural network

to enhance the diagnostic accuracy of MPS in a small

group of patients (N = 102) by combining interpretation

of treadmill exercise tests and image analysis. Similar to

our study, incorporation of clinical and exercise data

significantly improved the predictive accuracy of the

network compared to a network based on image data

alone (P \ .05). More recent ML algorithms have

been applied in cardiovascular medicine to predict

increased risk of decompensated heart failure41 and

onset of atrial fibrillation.42 These techniques have also

been used in gene mapping and cellular biology.43,44

However, they are not yet routinely used in cardiovas-

cular imaging.

In our current study, we used boosting ML tech-

niques. Boosting ML techniques combine multiple

models, explicitly seeking models, which complement

one another. Voting weighted by confidence is then used

for classification to combine the output of multiple

models. Boosting finds the models iteratively; it encour-

ages new models to classify correctly the cases handled

incorrectly by earlier models by assigning greater

weights to these instances. In general, any type of ML

could be used with boosting. The LogitBoost learning

technique utilizes logistic regression as a base learner.

Thus, a combination of different competing logistic

regression models is used for the final prediction. We

have demonstrated that such a technique is superior to

the standard logistic regression approach.

We used a stratified ten-fold cross-validation for the

evaluation of the ML algorithm which is a standard

procedure in ML research. Cross-validation is often used

to optimize the fitting process to create a stable model

using a number of unknown parameters.31 In k-fold

cross-validation (in this case ten-fold), the sample is

divided into k-segments and k-1 segments are used as

the training set and the remaining segment is used for

validation.45 This process is repeated until all k-seg-

ments are tested. The average performance for the ten

models is then reported, insuring that for a given model,

no training data are used during the testing phase. The

large amount of cases (1,181) and small amount of

features (in this case 7) insure there is no over-fitting of

the model. The split-sample technique would result in a

smaller training and smaller evaluation set resulting in

lower stability of the model and less certainty in the test

results.46 Although the visual scoring threshold for

disease detection was not trained on the current data, we

have previously used established thresholds for abnor-

mality. We also evaluated the alternative threshold for

abnormality (SSS C 3) for the visual experts, which did

not change the results significantly. Furthermore, we

reported the AUC comparisons, which are not dependent

on the optimal threshold selection.

This study has several limitations. Coronary angi-

ography was used as the gold standard for this study

with its known limitations. In addition, patients with

LLk of CAD were included in our analysis and were

considered to have a normal angiogram. However, we

also report the results for the angiography cases sepa-

rately. Furthermore, we studied a population with

suspected but not known CAD; however, the detection

of CAD is typically useful only in this group. Attenu-

ation correction was not used in this study; however, we

used combined supine/prone analysis to guard against

image artifacts. Additionally, the MPS protocol was

dual-isotope imaging, which is limited by the difficulties

in comparing rest and stress images due to differences in

image resolution. Recently, this protocol has been

employed less frequently due to the high amount

radiation to the patient. Future studies using single-

isotope protocols or low-dose MPS may be required to

analyze the ML algorithms. The ML model was based

on the presence of obstructive disease in any territory

and did not distinguish per-vessel obstruction. In the

future, we plan to apply these findings to individual

coronary territories for assessment of localization of

disease using ML. Furthermore, the clinical information

provided to the physician did not result in as many

changes in diagnosis as ML, possibly related to evalu-

ation in a blinded fashion. Based on current

recommendations and guidelines, the clinician was less

likely to change the diagnosis drastically from definitely

normal to definitely abnormal, while the ML did not

operate with these constraints. Future studies are

required to assess these differences further. Finally,

although we had a large patient population, the results

were obtained in only one center. Further multicenter

evaluations will be required to confirm these results.

CONCLUSION

Computational integration of quantitative image

measures and clinical data by ML improves diagnostic

performance of automatic MPS analysis to the level

rivaling expert analysis.
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