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Abstract
In this paper, we study the number of limit cycles H(n) bifurcating from the piecewise
smooth system formed by the quadratic reversible system (r22) for y ≥ 0 and the cubic
system ẋ = y

(
1+ x̄2 + y2

)
, ẏ = −x̄

(
1+ x̄2 + y2

)
for y < 0 under the perturbations

of polynomials with degree n, where x̄ = x − 1. By using the first-order Melnikov
function, it is proved that 2n+3 ≤ H(n) ≤ 2n+7 for n ≥ 3 and the results are sharp
for n = 0, 1, 2.

Keywords Piecewise smooth system · Quadratic reversible system · Melnikov
function · Limit cycle

1 Introduction and theMain Results

It is well known that the determination of the number and location of limit cycles for
the planar polynomial systems

ẋ = X(x, y), ẏ = Y (x, y) (1.1)

is a significant problem in the qualitative theory of planar differential systems, where
(x, y) ∈ R

2, X(x, y) and Y (x, y) are polynomials of x, y of degree n with real
coefficients. An isolated closed orbit of (1.1) is called a limit cycle.

We can study limit cycles by perturbing a period annulus. Consider the system

ẋ=μ−1(x, y)Hy(x, y)+ε f (x, y), ẏ=−μ−1(x, y)Hx (x, y)+ε g(x, y), (1.2)
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where ε (0 < |ε| � 1) is a real parameter, μ−1(x, y)Hx (x, y), μ−1(x, y)Hy(x, y),
f (x, y), and g(x, y) are all polynomials of x and y. We suppose that the system
(1.2)ε=0 has at least one center. The function H(x, y) is a first integral, and μ(x, y)
is an integrating factor. Hence, we can define a continuous family of periodic orbits
�h ⊂ {(x, y) ∈ R

2 | H(x, y) = h, h ∈ (h1, h2)}, which is called a period annulus.
For 0 < |ε| � 1 and h ∈ (h1, h2), one can define the Poincaré map of the system
(1.2) and the bifurcation function F(h, ε) = εM(h) + o(ε). The isolated zeroes of
F(h, ε) correspond to the limit cycles of (1.2)|ε|>0. The study of bifurcation of limit
cycles from the period annulus ∪h∈(h1,h2)�h is called the Poincaré bifurcation, and
the number of limit cycles bifurcating from the period annulus {�h | h ∈ (h1, h2)} is
called the Poincaré cyclicity. This is the weak Hilbert’s 16th problem proposed by V.
I. Arnold [1]. There are many works on the study of the weak Hilbert’s 16th problem.
One can see [14, 16, 18] and search many papers by internet.

In the last a few of years, stimulated by non-smooth phenomena in the real world
such as control systems, impact and frictionmechanics, and non-linear oscillations, the
theory of limit cycles for piecewise smooth differential systems has been developed.
In [13], the piecewise smooth planar systems are given by

(
ẋ, ẏ

) =
{ (

f +(x, y), g+(x, y)
)
, (x, y) ∈ �+,

(
f −(x, y), g−(x, y)

)
, (x, y) ∈ �−,

(1.3)

where f ±(x, y) and g±(x, y) are C∞ functions, and the discontinuity boundary �

separating the two regions �± is defined as � := {(x, y) ∈ R
2| S(x, y) = 0} with

S(x, y) being a smooth function with non-vanishing gradient ∇S(x, y) on �, and

�+ := {(x, y) ∈ R
2| S(x, y) > 0}, �− := {(x, y) ∈ R

2| S(x, y) < 0}.

The crossing set is defined as

�c := {(x, y) ∈ � | 〈∇S, (P+, Q+)〉 · 〈∇S, (P−, Q−)〉 > 0},

where 〈·, ·〉 denotes the standard scalar product. By definition, at any point p ∈ �c,
the orbit ϕ(t, p) of the system (1.3) crosses �.

Many scholars are interested in the study of the crossing limit cycles of the system:

(
ẋ
ẏ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
H+
y (x, y)/μ+(x, y) + ε f +(x, y)

−H+
x (x, y)/μ+(x, y) + ε g+(x, y)

)
, y ≥ 0,

(
H−
y (x, y)/μ−(x, y) + ε f −(x, y)

−H−
x (x, y)/μ−(x, y) + ε g−(x, y)

)
, y < 0,

(1.4)

where 0 < |ε| � 1, H±(x, y), H±
y (x, y), H±

x (x, y), and μ±(x, y) are C∞ functions
with μ±(0, 0) �= 0, and f ±(x, y) and g±(x, y) are polynomials with degree n.

There are two main tools to solve the bifurcation of limit cycles for the system
(1.4), one is theMelnikov function method developed in [10, 11, 17, 20], and the other
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is the averaging method established in [21]. We will introduce the Melnikov function
method in the following.

The system (1.4)ε has two sub-systems:

{
ẋ = H+

y (x, y)/μ+(x, y) + ε f +(x, y),

ẏ = −H+
x (x, y)/μ+(x, y) + ε g+(x, y),

y ≥ 0, (1.5)

and

{
ẋ = H−

y (x, y)/μ−(x, y) + ε f −(x, y),

ẏ = −H−
x (x, y)/μ−(x, y) + ε g−(x, y),

y < 0. (1.6)

We make the following assumptions as in [20].
(A1). For the system (1.4)ε=0, there exists a nonempty open interval (h1, h2) such

that for each h ∈ (h1, h2), there are two points A and B on the curve y = 0 with

A := A(h) = (a(h), 0), B := B(h) = (b(h), 0), a(h) < b(h) (1.7)

satisfying

H+(A(h)) = H+(B(h)) = h, H−(A(h)) = H−(B(h)).

(A2). For every h ∈ (h1, h2), the subsystem (1.5)ε=0 has an orbital arc L
+
h starting

from A(h) and ending at B(h) defined by H+(x, y) = h (y ≥ 0), and the subsystem
(1.6)ε=0 has an orbital arc L−

h starting from B(h) and ending at A(h) defined by
H−(x, y) = h̃ (:= H−(A(h))) (y < 0).

Under the assumptions (A1) − (A2), the system (1.4)|ε=0 has a family of closed
orbits Lh = L+

h ∪ L−
h (h ∈ (h1, h2)). For definiteness, we assume that the orbits Lh

for h ∈ (h1, h2) orientate clockwise. For 0 < |ε| � 1, the authors of [20] defined its
bifurcation function F(h, ε) = ε M(h) + o(ε). The authors of [10, 11, 17] obtained
the following results.

Lemma 1.1 Under the assumptions (A1) and (A2), we have

(i) [10] If M(h) has j zeros for h ∈ � with each having an odd multiplicity, then
(1.4)ε has at least j limit cycles bifurcating from the period annulus for ε small;

(ii) [11] If M(h) has at most j zeros for h ∈ �, taking into account the multiplicity,
then there exist atmost j limit cycles of (1.4)ε bifurcating from the periodannulus;

(iii) [17]The first-orderMelnikov function M(h) of the system (1.4)ε has the following
form

M(h)= H+
x (A)

H−
x (A)

[
H−
x (B)

H+
x (B)

∫

L+
h

μ+g+dx − μ+ f +dy+
∫

L−
h

μ−g−dx−μ− f −dy
]

,

where A and B are defined by (1.7).
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There are a lot of works on the study the limit cycle bifurcation of the system (1.4).
For

H±(x, y) = x−3
(
1

2
y2 − 2x2 + x

)
, μ±(x, y) = x−4, (1.8)

the author of [23] studied the upper bound of the number of limit cycles for n ∈ N,
and the authors of [26] obtained the exact number of limit cycles bifurcating from the
center (1, 0) for n = 2, 3, 4. For

H±(x, y) = x−4
(
1

2
y2 − 9

256
x2 + 9

512

)
, μ±(x, y) = x−5, (1.9)

the authors of [25] obtained the number of limit cycles bifurcating from the centers
(±1, 0). For

H+(x, y) = 1

2

(
(y − 1)2 − x2

)
, H−(x, y) = −1

2

(
x2 + y2

)
, μ±(x, y) = 1,

the authors of [2, 19] investigated the exact number of limit cycles. For

H±(x, y) = x2 + y2, μ+(x, y) = (1 + ax)m, μ−(x, y) = (1 + bx)m,

the authors of [8] investigated the number of limit cycles when a2 + b2 �= 0 and
m ∈ N+ by the averaging method.

Motivated by [3, 8, 12, 23, 24], in this paper, we will consider the bifurcation of
limit cycles for the system (1.4) with

H+(x, y) = 1

2
y2 + 1

25
x2 − 1

24
x, H−(x, y) = 1

2
y2 + 1

2
x̄2, (1.10)

and

μ+(x, y) = x−1, μ−(x, y) =
[
1 + x̄2 + y2

]−1
,

where x̄ = x − 1. More specifically, we shall study the system

(
ẋ
ẏ

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
xy + ε f +(x, y)

− 1
24
x2 + 1

24
x + εg+(x, y)

)
, y ≥ 0,

(
y
(
1 + x̄2 + y2

)+ ε f −(x, y)
−x̄
(
1 + x̄2 + y2

)+ εg−(x, y)

)
, y < 0.

(1.11)

The system (1.11)|ε=0 has a family of periodic orbits Lh = L+
h

⋃
L−
h , where

L+
h =

{
(x, y) ∈ R

2 | H+(x, y) = h, h ∈
(

− 1

25
, 0

)
, y ≥ 0

}
,
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L−
h =

{
(x, y) ∈ R

2 | H−(x, y) = h̃, h̃ = 1

2

(
1 + 25h

)
, y < 0

}
.

For h ∈
(
− 1

25
, 0
)
, the system (1.11)ε=0 has a period annulus around the center (1, 0).

Let H(n) denote the maximum number of limit cycles bifurcating from h ∈
(
− 1

25
, 0
)
.

The main results are the following.

Theorem 1.2 For the system (1.11), we have the following results by using the first-
order Melnikov function:

(i) 2n + 3 ≤ H(n) ≤ 2n + 7 for n ≥ 3;
(ii) H(n) = 2n + 3 for n = 0, 1, 2.

Remark 1.3 (i) In [7], the authors classified the quadratic reversible systems

(
ẋ
ẏ

)
=
(

xy
ā+b̄+2
2(ā−b̄)

y2 − ā+b̄−2
8(ā−b̄)3

x2 + b̄−1
2(ā−b̄)3

x + ā−3b̄+2
8(ā−b̄)3

)

, ā, b̄ ∈ R, ā �= b̄,

(1.12)

with elliptic integral curves into 18 types (denoted by (r1)–(r18)), and they also
identified the 4 types with conic integral curves (denoted by (r19)–(r22)). The
system (1.12) can also be found in [12]. The system (r5) is obtained by ā = 5b̄

3 + 2
3

and b̄ �= −1 in (1.12). Setting b̄ = 1 in (r5), we can obtain H±(x, y) andμ±(x, y)
given in (1.9).

(ii) The authors of [12] studied the Poincaré bifurcation of the system (r22), which
is defined by setting ā = −2 and b̄ = 0 in (1.12).

(iii) It is known that the first-order Melnikov function M(h) of the system (1.2)
is analytic for h ∈ [h1, h2) if μ−1(x, y)Hx (x, y), μ−1(x, y)Hy(x, y), f (x, y),
and g(x, y) are all polynomials of x and y, where we assume H(x, y) = h1
corresponds to the elementary center. However, the first-order Melnikov function
M(h) of the system (1.4) may not be analytic at h = h1, where we suppose
h = h1 corresponds to the center of the system (1.4), even if H±

x (x, y)/μ±(x, y),
H±
y (x, y)/μ±(x, y), f ±(x, y), and g±(x, y) are all polynomials of x and y.

For the system (1.11), which has the same first integral and integrating factor with
the system (r22) for y ≥ 0, the first-order Melnikov function M(h) is not analytic
at the point h = − 1

25
(see the expressions of I1,0(h) and I0,0(h) in Lemma 3.1). To

obtain the lower bound of limit cycles bifurcating from the period annulus, we will
extend I1,0(h) and I0,0(h) analytically to the complex domain and then prove that
the generators of M(h) are linearly independent such that we can use Lemma 2.3
and obtain Lemma 3.7.
This paper is organized as follows. In Sect. 2, we will give some helpful results on
determining the number of isolated zeros of a function. In Sect. 3, we will obtain
the expression of the first-order Melnikov function of the system (1.11), and then
prove Theorem 1.2.
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2 Preliminaries

In this section, we shall introduce some results on the estimation of the number of
isolated zeros of the Melnikov functions.

Definition 2.1 [9] Let f0(x), f1(x), . . . , fn−1(x) be analytic functions on an open
interval U ⊂ R. The ordered set F := [

f0(x), f1(x), . . . , fn−1(x)
]
is said to be

an extended complete Chebyshev system (for short, an ECT-system) on U if, for all
k = 1, 2, . . . , n, any nontrivial linear combination

c0 f0(x) + c1 f1(x) + · · · + ck−1 fk−1(x)

has at most k − 1 isolated zeros on U counted with multiplicities.

Lemma 2.2 (i) [9] The ordered set F := [ f0(x), f1(x), . . . , fn−1(x)] is an ECT-
system on U if and only if, for each k = 1, 2, . . . , n,

W
[
f0, f1, . . . , fk−1

]
(x) �= 0, f or all x ∈ U ,

where W
[
f0, f1, . . . , fk−1

]
(x) is the Wronskian of the functions

f0(x), f1(x), . . . , fk−1(x).
(ii) [22] The ordered set F := [

f0(x), f1(x), . . . , fn−1(x)
]
is an ECT-system

with accuracy 1 on U if all the Wronskians are non-vanishing except
W
[
f0, f1, . . . , fn−1

]
(x), which has exactly one zero onU and this zero is simple.

Then, any nontrivial linear combination

c0 f0(x) + c1 f1(x) + · · · + cn−1 fn−1(x)

has at most n isolated zeros on U. Moreover, for any configuration of m ≤ n zeros

there exists n constants ci , i = 0, 1, . . . , n − 1, such that f (x) =
n−1∑

i=0
ci fi (x)

realizing it.

Lemma 2.3 [5] Consider p + 1 linearly independent analytical functions fi : U →
R, i = 0, 1, . . . , p, where U ⊂ R is an open interval. Suppose that there exists
j ∈ {0, 1, . . . , p} such that f j |U has a constant sign. Then there exist p+1 constants

Ci , i = 0, 1, . . . , p, such that f (x) :=
p∑

i=0
Ci fi (x) has at least p simple zeros in U.

From the Lemma 4.5 in [8], we have the following equivalent conclusion in
Lemma 2.4.

Lemma 2.4 [8] Denote by Fk(v) a polynomial of degree k and g(k)(v) the kth-order
derivative of a function g(v). We have the following conclusions.
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(i) Suppose H1(v) :=
n∑

i=0
Bivi ln

1+b
√

v

1−b
√

v
with v = u2, n ∈ N and Bi , i = 0, 1, . . . , n

are constants. Then, for k ≥ 2n + 1,

dk

duk
H1(v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
vFk−2

2
(v)

(
1 − b2v

)k , k is even,

Fk−1
2

(v)

(
1 − b2v

)k , k is odd.

(ii) Suppose H2(v) :=
n∑

i=0
Aiv

i 1

(1−b2v)
m− 1

2
with v = u2, 2 ≤ m ∈ N

+, n ∈ N and Ai ,

i = 0, 1, . . . , n are constants. Then, for all k ∈ N
+,

dk

duk
H2(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fn∗(v)

(1 − b2v)k+m− 1
2

, k is even,

√
vFn∗(v)

(1 − b2v)k+m− 1
2

, k is odd,

where

n∗ =

⎧
⎪⎪⎨

⎪⎪⎩

m − 1 +
[
k

2

]
, m − 1 ≤ n ≤

[
k

2

]
+ m − 1,

n +
[
k

2

]
, 0 ≤ n ≤ m − 2 or n ≥

[
k

2

]
+ m.

For a real sequence {c0, c1, . . . , cn} we denote by

N {c0, c1, . . . , cn} (2.1)

the number of changes in sign in this sequence (skip zero(s), if it appears in this
sequence). To find the number of real roots of a polynomial f (x) for x ∈ (a, b), the
following two criteria are well known.

Lemma 2.5 [15] Suppose that f (x) is a polynomial of degree n with real coefficients,
a < b are two real numbers, f (a) �= 0, f (b) �= 0, and the derivatives of f (x) are

f (x), f
′
(x), f

′′
(x), . . . , f (n)(x).

(i) Fourier-Budan Theorem. If

N
{
f (a), f

′
(a), f

′′
(a), . . . , f (n)(a)

}
= p,

N { f (b), f
′
(b), f

′′
(b), . . . , f (n)(b)} = q,
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then p ≥ q, and the number of real roots (counting the multiplicity) of f (x) for
x ∈ (a, b) is equal to either p− q or p− q − r , where r is a positive even integer.
In particular, if p = q (resp. p = q + 1), then f (x) has no (resp. has a unique)
real root in (a, b).

(ii) Sturm Theorem. Assume that f (x) has no multiple root in (a, b), and we con-
struct the sequence { f0(x), f1(x), f2(x), . . . , fs(x)} as follows: f0(x) =
f (x), f1(x) = f

′
(x). Divide f0(x) by f1(x), and take the remainderwith negative

sign as f2(x), then divide f1(x) by f2(x), and take the remainder with negative
sign as f3(x), …, the last remainder with negative sign (a non-zero number) is
fs(x). If

N { f0(a), f1(a), f2(a), . . . , fs(a)} = p,

N { f0(b), f1(b), f2(b), . . . , fs(b)} = q,

then p ≥ q and the number of real roots of f (x) for x ∈ (a, b) is equal to p − q.

3 Proof of Theorem 1.2

We shall first obtain the algebraic structure of M(h) of the system (1.11). Without loss
of generality, we can assume that

f +(x, y) =
n∑

i+ j=0

a+
i, j x

i y j , f −(x, y) =
n∑

i+ j=0

a−
i, j (x − 1)i y j ,

g+(x, y) =
n∑

i+ j=0

b+
i, j x

i y j , g−(x, y) =
n∑

i+ j=0

b−
i, j (x − 1)i y j .

(3.1)

The point (1, 0) is an elementary center of focus-focus type (see [4] for the definition)

corresponding to h = − 1
25
. For h ∈

(
− 1

25
, 0
)
, denote

u(h) :=
√
1 + 25h, Ii, j (h) :=

∫

L+
h

xi−1y j dx . (3.2)

It is easily seen that the semi orbit L+
h intersects the x-axis at points A(a(h), 0) and

B(b(h), 0)), where

a(h) = 1 − u(h), b(h) = 1 + u(h). (3.3)
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Lemma 3.1 For h ∈
(
− 1

25
, 0
)
, we have

I1,1(h) = π

8

(
1 + 25h

)
, I0,1(h) = π

4

(
1 − 4

√−2h
)

,

I1,0(h) = 2
√
1 + 25h, I0,0(h) = ln

1 + √
1 + 25h

1 − √
1 + 25h

.

Proof For j ≥ 1, by direct calculation, we have Ii, j
(
− 1

25

)
= 0 and

I
′
i, j (h) =

∫ b(h)

a(h)

j xi−1y j−1 ∂ y

∂h
dx + bi−1(h)y j (b(h), h)

d(b(h))

dh

− ai−1(h)y j (a(h), h)
d(a(h))

dh
.

From (3.3), we have

d(b(h))

dh
= −d(a(h))

dh
= 24√

1 + 25h
�= ∞, h ∈

(
− 1

25
, 0

)
.

Hence, by y(b(h), h) = y(a(h), h) = 0, we have

I
′
i, j (h) =

∫ b(h)

a(h)

j xi−1y j−1 ∂ y

∂h
dx .

By H+(x, y(x, h)) = h in (1.10),we have ∂ y
∂h = 1

y , which yields I
′
i, j (h) = j Ii, j−2(h).

Therefore,

hI
′
i, j (h) = j

∫ b(h)

a(h)

(
1

2
y2 + 1

25
x2 − 1

24
x

)
xi−1y j−2dx

= j

2
Ii, j (h) + j

25
Ii+2, j−2(h) − j

24
Ii+1, j−2(h).

(3.4)

Also, we have

I1,−1(h) = 4
∫ b(h)

a(h)

dx√
(b(h) − x)(x − a(h))

= 4
∫ 1

−1

ds√
1 − s2

= 4π,

I2,−1(h) = 4u(h)

∫ 1

−1

sds√
1 − s2

+ 4
∫ 1

−1

ds√
1 − s2

= 4π,

I3,−1(h) = 4
∫ 1

−1

(u(h)s + 1)2ds√
1 − s2

= 4π

(
16h + 3

2

)
.

(3.5)
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According to (3.4) and (3.5), we get

hI
′
0,1(h) = 1

2
I0,1(h) − 1

8
π, I0,1

(
− 1

25

)
= 0. (3.6)

By solving the differential equation (3.6), we can get I0,1(h) = π
4

(
1 − 4

√−2h
)
.

Similarly, we can get the expressions of I1,1(h), I1,0(h) and I0,0(h). This ends the
proof. ��
Lemma 3.2 We have the following results:

(i) We have I−1,1(h) = 1
16h

[ 1
2 I0,1(h) − I1,1(h)

]
.

(ii) For i ≥ 1, we have

Ii,1(h) = α̂i,1(h)I1,1(h), Ii,0(h) = α̂i,0(h)I1,0(h),

where α̂i,1(h), α̂i,0(h) are polynomials of h with degree
[ i−1

2

]
.

(iii) If j ≥ 2, then

I1, j (h) =

⎧
⎪⎨

⎪⎩

δ[ j
2

]
,0

(h)I1,0(h), if j is even,

δ[ j
2

]
,1

(h)I1,1(h), if j is odd,

where δ0,1(h) = 1, and

δk,0(h) = (2k)!!
(2k + 1)!!

(
2h + 1

24

)k

, k ≥ 0,

δk,1(h) = (2k + 1)!!
(2k + 2)!!

(
2h + 1

24

)k

, k ≥ 1.

(3.7)

(iv) If j ≥ 2, then

I0, j (h) =

⎧
⎪⎨

⎪⎩

γ[ j
2 ],0(h)I0,0(h) + γ[ j

2

]
,1

(h)I1,0(h), if j is even,

γ[ j
2 ],0(h)I0,1(h) + γ[ j

2

]
,2

(h)I1,1(h), if j is odd,

where

γk,0(h) = (2h)k,

γk,1(h) = 1

24

[
(2h)k−1 + (2h)k−2δ1,0(h) + · · · + δk−1,0(h)

]
,

γk,2(h) = 1

24

[
(2h)k−1 + (2h)k−2δ1,1(h) + · · · + δk−1,1(h)

]
.

(3.8)
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Proof Let D+
h be the interior of L+

h ∪ −→
BA. Then, by the Green’s formula, we have

∫

L+
h

xi−1y j dy =
(∫

L+
h ∪−→

BA
−
∫

−→
BA

)

xi−1y j dy = −(i − 1)
∫ ∫

D+
h

xi−2y j dxdy

and

∫

L+
h

xi−2y j+1dx =
(∫

L+
h ∪−→

BA
−
∫

−→
BA

)

xi−2y j+1dx = ( j + 1)
∫ ∫

D+
h

xi−2y j dxdy.

Thus, we have

∫

L+
h

xi−1y j dy = − i − 1

j + 1
Ii−1, j+1(h). (3.9)

(1) We first claim that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

I−1,1(h) = 1

24h

[
1

2
I0,1(h) − I1,1(h)

]
,

I2,0(h) = I1,0(h),

I2,1(h) = I1,1(h),

I3,0(h) = 4

3
(8h + 1)I1,0(h).

(3.10)

In fact, from H+(x, y(x, h)) = h in (1.10), we can get

y
∂ y

∂x
+ 1

24
x − 1

24
= 0. (3.11)

Multiplying H+(x, y(x, h)) = h in (1.10) and (3.11) by xi−1y j−2dx and xi−2y j dx ,
respectively, and integrating over L+

h , combined with (3.9), we have

Ii, j (h) = 2hIi, j−2(h) + 1

23
Ii+1, j−2(h) − 1

24
Ii+2, j−2(h), j ≥ 2, (3.12)

Ii, j (h) = Ii−1, j (h) + 24(i − 2)

j + 2
Ii−2, j+2(h). (3.13)

Combining (3.12) and (3.13), we have

Ii, j (h) = j

i + j

[
2hIi, j−2(h) + 1

24
Ii+1, j−2(h)

]
, j ≥ 2, (3.14)

24i Ii, j (h) = j[Ii+2, j−2(h) − Ii+1, j−2(h)], j ≥ 2. (3.15)
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Taking (i, j) = (2, 0), (2, 1), (3, 0) in (3.13), and (i, j) = (−1, 3) in (3.15),
respectively, we have

I2,0(h) = I1,0(h), I2,1(h) = I1,1(h),

I3,0(h) = I2,0(h) + 23 I1,2(h), I−1,3(h) = 3

24
[I0,1(h) − I1,1(h)]. (3.16)

Hence, we obtain the second and third formulas in (3.10). Taking (i, j) = (−1, 3)
and (1, 2) in (3.14), we have

I−1,3(h) = 3hI−1,1(h) + 3

25
I0,1(h),

I1,2(h) = 2

3

[
2hI1,0(h) + 1

24
I2,0(h)

]
.

(3.17)

Combining (3.16) and (3.17), we get the first and fourth formulas in (3.10).
(2) Next, we will prove the results of (ii) by induction. In fact, by (3.10), it is

easy to check that the results hold for i = 1, 2, 3. Suppose that the results hold for
1 ≤ i ≤ k − 1(k ≥ 4). Then for i = k, it follows from (3.13) and (3.14) that

Ii, j (h) = 2i + j − 2

i + j
Ii−1, j (h) + 25(i − 2)

i + j
h Ii−2, j (h), j ≥ 0. (3.18)

For j = 0, 1, by induction assumption, we get

Ii, j (h) =
[
2i + j − 2

i + j
α̂i−1, j (h) + 25(i − 2)

i + j
hα̂i−2, j (h)

]

I1, j (h)

:= α̂i, j (h)I1, j (h),

where

deg α̂i, j (h) =max

{[
i − 2

2

]
,

[
i − 3

2

]
+ 1

}
=
[
i − 1

2

]
.

(3) Finally, we will give the proofs of (iii) and (iv). Let i = 2 in (3.13) and i = 1
in (3.14), then

I1, j (h) = j

1 + j

(
2h + 1

24

)
I1, j−2(h), j ≥ 2, (3.19)

which implies the results of (iii). Taking i = 0 in (3.14), we have

I0, j (h) = 2hI0, j−2(h) + 1

24
I1, j−2(h), j ≥ 2. (3.20)
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Suppose j = 2k, it is easily obtained that

I0,2k(h) = (2h)k I0,0(h) + 1

24

k−1∑

i=0

(2h)k−1−i I1,2i (h). (3.21)

Substituting the first formula of (iii) into (3.21), we can obtain the first formula of (iv).
By similar arguments, we can get the second formula of (iv). This ends the proof. ♦

By Lemma 1.1, (3.1) and (3.9), we have M(h) = M+(h) + M−(h), where

M+(h) =
n∑

i+ j=0

∫

L+
h

(
b+
i, j x

i−1y j + i − 1

j + 1
a+
i, j x

i−2y j+1
)
dx =

n∑

i+ j=0,i≥−1

ρi, j Ii, j (h),

M−(h) = H+
x (A)

H−
x (A)

n∑

i+ j=0

∫

L−
h

b−
i, j (x − 1)i y j dx − a−

i, j (x − 1)i y j dy

1 + (x − 1)2 + y2
=

n+1∑

k=1

τk−1uk(h)

1 + u2(h)
,

(3.22)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρi,0 = b+
i,0, i ≥ 0, ρ−1, j+1 = −1

j + 1
a+
0, j , j ≥ 0,

ρi, j = b+
i, j + i

j
a+
i+1, j−1, i ≥ 0, j ≥ 1.

τk = 1

16

∑

i+ j=k

(−1) j+1
(
b−
i, jκ1,i, j − a−

i, jκ2,i, j

)
, 0 ≤ k ≤ n,

κ1,i, j =
∫ π

0
cosi θ sin j+1 θ dθ,

κ2,i, j =
∫ π

0
cosi+1 θ sin j θ dθ.

(3.23)

Let

a j :=
⎧
⎨

⎩
ρ0, j + j + 2

24
ρ−1, j+2, 0 ≤ j ≤ n − 1,

ρ0,n, j = n,

(3.24)

b j :=

⎧
⎪⎨

⎪⎩

ρ1,0 − 2−3ρ−1,2, j = 0,

ρ1,1 − 3 · 2−4ρ−1,3, j = 1,

− 2−4( j + 2)ρ−1, j+2, 2 ≤ j ≤ n − 1,

(3.25)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c j := ρ j,0 +
n∑

i+k=3,i≥1,k≥2

ci,k, j ρi,k, 2 ≤ j ≤ n,

d j := ρ j,1 +
n∑

i+k=3,i≥1,k≥2

di,k, j ρi,k, 2 ≤ j ≤ n − 1;
(3.26)
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where ci,k, j and di,k, j are constants, and

α1(h) :=
[ n
2

]
∑

k=0

a2kγk,0(h), β1(h) :=

[
n−1
2

]

∑

k=0

a2k+1γk,0(h),

α2(h) :=
[ n
2

]
∑

k=1

a2kγk,1(h) +

[
n−1
2

]

∑

k=0

b2kδk,0(h) +
n∑

i=2

ci α̂i,0(h),

β2(h) :=

[
n−1
2

]

∑

k=1

a2k+1γk,2(h) +

[
n−2
2

]

∑

k=0

b2k+1δk,1(h) +
n−1∑

i=2

di α̂i,1(h).

(3.27)

According to Lemma 3.2 (ii)–(iv), we can easily obtain that α1(h), α2(h), β1(h) and
β2(h) are polynomials of h with degα1(h) ≤ [ n2

]
, degα2(h), degβ1(h) ≤ [ n−1

2

]
and

degβ2(h) ≤ [ n−2
2

]
for n ≥ 3. ��

Lemma 3.3 For h ∈
(
− 1

25
, 0
)
, and n ≥ 3, we have

(i) The first-order Melnikov function of the system (1.11) can be expressed as

M(h) = α1(h)I0,0(h) + α2(h)I1,0(h) + β1(h)I0,1(h)

+ β2(h)I1,1(h) + ρ−1,1

16h

[
1

2
I0,1(h) − I1,1(h)

]
+

n+1∑

k=1

τk−1uk(h)

1 + u2(h)
.

(ii) There exist the parameters a+
i, j and b+

i, j such that

α1(h) =
[ n
2

]
∑

k=0

Akh
k, α2(h) =

[
n−1
2

]

∑

k=0

Ckh
k,

β1(h) =

[
n−1
2

]

∑

k=0

Bkh
k, β2(h) =

[
n−2
2

]

∑

k=0

Dkh
k,

where the coefficients Ak, Bk, Ck and Dk are the linear functions of a
+
i, j and b+

i, j
given by (3.1) and they are independent.

Proof (1) Let L( fi (x), 0 ≤ i ≤ n) be a linear combination of the functions
f0(x), f1(x), . . ., fn(x). For i ≥ 1, k ≥ 1, j ≥ 2, we have

Ii,2k(h) = L(Ii+2k−k1,0(h), 0 ≤ k1 ≤ k),

Ii,2k+1(h) = L(Ii+2k−k1,1(h), 0 ≤ k1 ≤ k),

I−1, j (h) = − 2−4 j
[
I1, j−2(h) − I0, j−2(h)

]
.

(3.28)
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We will prove the results in (3.28) by induction. In fact, by (3.15), we have

Ii, j (h) = j

24i

[
Ii+2, j−2(h) − Ii+1, j−2(h)

]
, (3.29)

which yields the first formula in (3.28) holds for i ≥ 1 and k = 1. Suppose that the
first formula in (3.28) holds for i ≥ 1, k = 1, 2, . . . ,m. Then for i ≥ 1, k = m + 1,
by (3.29), we have

Ii,2m+2(h) = 2m + 2

24i

[
Ii+2,2m(h) − Ii+1,2m(h)

]
,

= L
(
Ii+2m+2−k1,0(h), 0 ≤ k1 ≤ m

)

+ L
(
Ii+2m+1−k1,0(h), 0 ≤ k1 ≤ m

)

= L
(
Ii+2m+2−k1,0(h), 0 ≤ k1 ≤ m + 1

)
.

(3.30)

By the same method, we obtain the second formula in (3.28), and the third formula
follows from (3.15) with i = −1 and j ≥ 2. For n ≥ 3, according to (3.22) and (3.28),
we have

M+(h) =
n∑

j=0

ρ0, j I0, j (h) +
n∑

i=1

ρi,0 Ii,0(h) +
n−1∑

i=1

ρi,1 Ii,1(h)

+
n+1∑

j=2

ρ−1, j I−1, j (h) +
n−1∑

j=2

n− j∑

i=1

ρi, j Ii, j (h) + ρ−1,1 I−1,1(h)

=
n∑

j=0

a j I0, j (h) +
n−1∑

j=0

b j I1, j (h)

+
n∑

i=2

ci Ii,0(h) +
n−1∑

i=2

di Ii,1(h) + ρ−1,1 I−1,1(h).

(3.31)

By using Lemma 3.2, after a simple simplification, we can obtain the expression of
M+(h) for n ≥ 3. According to (3.22), we obtain the expression of M(h).

(2) Next, we will prove the result of (ii). According to (3.27), we only need to
prove that there exist the coefficients ai , bi , ci , and di defined in (3.24–3.26) such that
Ai , Bi ,Ci , and Di are independent. Suppose ci = 0 (i = 2, 3, . . . , n) and di = 0
(i = 2, 3, . . . , n − 1). Denote

Ak, j := (2k)!!
(2k + 1)!!

(
k
j

)
25 j−4k, Bk,i, j := 2 j−4Ak−1− j,i ,

Ak, j := (2k + 1)!!
(2k + 2)!!

(
k
j

)
25 j−4k, Bk,i, j := 2 j−4Ak−1− j,i .
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Then we have

δk,0(h) =
k∑

j=0

Ak, j h
j , δk,1(h) =

k∑

j=0

Ak, j h
j , γk,0(h) = 2khk,

γk,1(h) =
k−1∑

i=0

k−1−i∑

j=0

Bk,i, j h
i+ j , γk,2(h) =

k−1∑

i=0

k−1−i∑

j=0

Bk,i, j h
i+ j .

(3.32)

Suppose that n is even. Substituting (3.32) into (3.27), we obtain that

α1(h) =
n
2∑

k=0

Akh
k, α2(h) =

n−2
2∑

k1=0

C n−2
2 −k1

h
n−2
2 −k1 ,

β1(h) =
n−2
2∑

k=0

Bkh
k, β2(h) =

n−2
2∑

k1=0

Dn−2
2 −k1

h
n−2
2 −k1 ,

(3.33)

where Ak = 2ka2k , Bk = 2ka2k+1, and

C n−2
2 −k1

=
n
2∑

k= n
2−k1

α2,k, n−2
2 −k1

, Dn−2
2

= bn−1A n−2
2 , n−2

2
,

Dn−2
2 −k1

=
n−2
2∑

k= n
2−k1

β2,k, n−2
2 −k1

+ bn−1−2k1 A n−2
2 −k1,

n−2
2 −k1

, k1 = 1, 2, · · · ,
n − 2

2
,

α2,k, j = a2k

j∑

i=0

Bk,i, j−i + b2k−2Ak−1, j ,

β2,k, j = a2k+1

j∑

i=0

Bk,i, j−i + b2k+1Ak, j .

Denote

−→
ξ 1 :=

(
A0, A1, · · · , A n

2

)
,

−→
ξ 2 :=

(
B0, B1, · · · , Bn−2

2

)
,

−→
ξ 3 :=

(
C0,C1, · · · ,C n−2

2

)
,

−→
ξ 4 :=

(
D0, D1, · · · , Dn−2

2

)
,

−→η 1 := (a0, a2, · · · , an) , −→η 2 := (a1, a3, · · · , an−1) ,

−→η 3 := (b0, b2, · · · , bn−2) , −→η 4 := (b1, b3, · · · , bn−1) .
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Then we have that

∂(
−→
ξ 1,

−→
ξ 2,

−→
ξ 3,

−→
ξ 4)

∂(−→η 1,
−→η 2,

−→η 3,
−→η 4)

=

⎛

⎜
⎜
⎝

∂
(−→

ξ 1,
−→
ξ 2

)

∂(−→η 1,
−→η 2)

0(n+1)×n

∂
(−→

ξ 3,
−→
ξ 4

)

∂(−→η 1,
−→η 2)

∂
(−→

ξ 3,
−→
ξ 4

)

∂(−→η 3,
−→η 4)

⎞

⎟
⎟
⎠ ,

where

∂
(−→

ξ 3,
−→
ξ 4

)

∂
(−→η 3,

−→η 4
) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

A0,0 A1,0 . . . A n−2
2 ,0 0 0 . . . 0

0 A1,1 . . . A n−2
2 ,1 0 0 . . . 0

...
...

. . .
... 0 0 . . . 0

0 0 0 A n−2
2 , n−2

2
0 0 . . . 0

0 0 0 0 A0,0 A1,0 . . . A n−2
2 ,0

0 0 0 0 0 A1,1 . . . A n−2
2 ,1

...
...

...
...

...
...

. . . 0
0 0 0 0 0 0 . . . A n−2

2 , n−2
2

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

and 0(n+1)×n is the (n + 1) × n null matrix. Hence, we have det
∂
(−→

ξ 1,
−→
ξ 2

)

∂(−→η 1,
−→η 2)

=
2

n
2
∏ n−2

2
k=0 2

2k , and

det
∂
(−→

ξ 1,
−→
ξ 2,

−→
ξ 3,

−→
ξ 4

)

∂
(−→η 1,

−→η 2,
−→η 3,

−→η 4
) = det

∂
(−→

ξ 1,
−→
ξ 2

)

∂
(−→η 1,

−→η 2
) · det

∂
(−→

ξ 3,
−→
ξ 4

)

∂
(−→η 3,

−→η 4
)

=2
n
2

n−2
2∏

k=0

22k Ak,k Ak,k �= 0,

which implies that the coefficients Ai , Bi ,Ci , and Di are independent. The case that
n is odd can be analyzed similarly. This ends the proof. ��

Denote by h(u) := (
u2 − 1

)
/25 the inverse function of u(h), u ∈ (0, 1). To use

Lemmas 2.3 and 2.4, we rewrite the M(h) as in following Remark 3.4.

Remark 3.4 From Lemma 3.3, we have the following results:
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(i) For u ∈ (0, 1), M(h(u)) = M1(u) + M2(u) + M3(u), where

M1(u) = α1(h(u)) ln
1 + u

1 − u
,

M2(u) = π

4
β1(h(u))

(
1 −

√
1 − u2

)
+ ρ−1,1π

4

(
1√

1 − u2
− 1

)
,

M3(u) = 2α2(h(u))u + π

8
β2(h(u))u2 +

n+1∑

k=1

τk−1uk

1 + u2
.

(ii) There exist the parameters a±
i, j and b±

i, j such that

M(h(u)) =
[ n
2

]
∑

k=0

Ãku
2k ln

1 + u

1 − u
+

[
n−1
2

]

∑

k=0

B̃ku
2k
(
1 −

√
1 − u2

)

+ u

1 + u2

n+1∑

k=0

C̃ku
k + ρ−1,1π

4

(
1√

1 − u2
− 1

)
,

where

Ãk :=
[ n
2

]
∑

j=k

(−1) j−k A j

(
j
k

)
2−5 j , B̃k :=

[
n−1
2

]

∑

j=k

(−1) j−k B j

(
j
k

)
2−5 j ,

and the coefficients C̃k are the linear functions of Ci , Di , and τi given by
Lemma 3.3(ii) and they are independent.

Lemma 3.5 For the system (1.11), we have H(n) ≤ 2n + 7 for n ≥ 3.

Proof Suppose n ≥ 3. Let v = u2, M̃(v) = (1 + v)M(h(
√

v)), then M̃(v) and
M(h(

√
v)) have the same number of zeros on (0, 1). According to (3.27), we know that

degα1(h) ≤ [ n
2

]
, degα2(h) ≤ [ n−1

2

]
, degβ1(h) ≤ [ n−1

2

]
, and degβ2(h) ≤ [ n−2

2

]
.

We use the notations Fα1[ n
2

](v), Fα2[
n−1
2

](u2), Fβ1[
n−1
2

](v), Fβ2[
n−2
2

](u2), and Fτ
n+1(u) for

α1(h(u)), α2(h(u)), β1(h(u)), β2(h(u)), and
n∑

k=0
τkuk+1, respectively. By Lemma 3.3

and Remark 3.4 (i), we have

M̃(v) = M̃1(v) + M̃2(v) + M̃3(u),
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where

M̃1(v) = (1 + v)Fα1[ n
2

](v) ln
1 + √

v

1 − √
v
,

M̃2(v) = π

4

1 − v2

(1 − v)
3
2

(

ρ−1,1 − Fβ1[
n−1
2

](v)(1 − v)

)

,

M̃3(u) = uFτ
n+1(u) +

(
1 + u2

)
(

π

4
Fβ1[

n−1
2

]
(
u2
)

+ 2uFα2[
n−1
2

]
(
u2
)

+π

8
Fβ2[

n−2
2

]
(
u2
)
u2 − ρ−1,1π

4

)

.

Then, by Lemma 2.4, we have

dn+3

dun+3 M̃(v) =
√

vFn+1
2

(v)

(1 − v)n+3 +
Fn+3

2 +1(v)

(1 − v)n+3+ 3
2

= 1

(1 − v)n+3+ 3
2

(
Fn+3

2 +1(v) + √
v(1 − v)

3
2 Fn+1

2
(v)
)

for n odd and

dn+3

dun+3 M̃(v) =
Fn+2

2
(v)

(1 − v)n+3 +
√

vFn+2
2 +1(v)

(1 − v)n+3+ 3
2

= 1

(1 − v)n+3+ 3
2

(√
vFn+2

2 +1(v) + (1 − v)
3
2 Fn+2

2
(v)
)

for n even, where Fk(x) is the polynomial of x with degree k. Let dn+3

dun+3 M̃(v) = 0,
that is

⎧
⎨

⎩

Fn+3
2 +1(v) = −√

v(1 − v)
3
2 Fn+1

2
(v), n is odd,

√
vFn+2

2 +1(v) = −(1 − v)
3
2 Fn+2

2
(v), n is even.

By squaring the above equations, we obtain that dn+3

dun+3 M̃(v) has at most n + 5 zeros,
multiplicity taken into account. According to Rolle’s theorem and M(h(0)) = 0,
M(h(u)) has at most 2n + 7 zeros on (0, 1) counted with multiplicities. This ends the
proof. ��

For u ∈ (0, 1), denote

I1(u) := 1 −
√
1 − u2, I2(u) := ln

1 + u

1 − u
,
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then

I1(u) = 4

π
(I0,1(h(u))), I2(u) = I0,0(h(u)). (3.34)

Consider the complex domain D := C\{u ∈ R | u ≤ −1 or u ≥ 1}. When u ∈ {u ∈
R | u ≤ −1 or u ≥ 1}, we denote by I±

1 (u) and I±
2 (u) the analytic continuations

of I1(u) and I2(u) along an arc such that Im(u) > 0 (Im(u) < 0), respectively.
For example, I±

1 (u) are the analytic continuations of I1(u) in the region D ∩ {u ∈
C | Im(u) > 0 (Im(u) < 0)}, respectively. To determine the arguments of I±

1 (u) in
the region {u ∈ R | u ≤ −1 or u ≥ 1}, we need to make an arc starting from the
region {u ∈ R | 0 < u < 1} along the upper (lower) half complex plane to the region
{u ∈ R | u ≤ −1 or u ≥ 1}. Then we get the following conclusions of I1(u), I2(u),
I±
1 (u) and I±

2 (u).

Lemma 3.6 For I1(u) and I2(u), we have the following results.

(i) The functions I1(u) and I2(u) can be analytically extended to the complex domain
D = C\{u ∈ R | u ≤ −1 or u ≥ 1}.

(ii) The functions I±
1 (u) satisfy

I+
1 (u) − I−

1 (u) =
{

2i
√
u2 − 1, for u ∈ (1,+∞),

−2i
√
u2 − 1, for u ∈ (−∞,−1).

(iii) The functions I±
2 (u) satisfy I+

2 (u)− I−
2 (u) = 2π i for u ∈ (−∞,−1)∪(1,+∞).

Proof Note that I±
1 (u) are both analytic continuation of I1(u). When u ∈ (1,+∞),

I±
1 (u) are not analytic at u = 1, then we have

I+
1 (u) − I−

1 (u) = − √
1 + u|1 − u| 12 e−i π

2 + √
1 + u|1 − u| 12 ei π

2

= 2i
√
u2 − 1.

By the same method, when u ∈ (−∞,−1), I±
1 (u) are not analytic at u = −1, then

we have

I+
1 (u) − I−

1 (u) = − √
1 − u|1 + u| 12 ei π

2 + √
1 − u|1 + u| 12 e−i π

2

= − 2i
√
u2 − 1.

When u ∈ (1,+∞), we have

I+
2 (u) − I−

2 (u) = (ln(1 + u) − ln |1 − u| + iπ)

− (ln(1 + u) − ln |1 − u| − iπ) = 2π i .
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When u ∈ (−∞,−1), we have

I+
2 (u) − I−

2 (u) = (ln |1 + u| + iπ − ln(1 − u))

− (ln |1 + u| − iπ − ln(1 − u)) = 2π i .

This ends the proof. ��
To get a lower bound for the number of zeros of M(h), we let

M(u) := M(h(u))ϕ(u), ϕ(u) := 1 − u4, ψ(u) := u(1 − u2),

then M(h(u)) and M(u) have the same number of zeros for u ∈ (0, 1).

Lemma 3.7 For n ≥ 3, the generating functions of M(u) are the following 2n + 4
linearly independent functions for u ∈ (0, 1):

I1(u)ϕ(u), u2 I1(u)ϕ(u), u4 I1(u)ϕ(u), . . . , u
2
[
n−1
2

]

I1(u)ϕ(u),

I2(u)ϕ(u), u2 I2(u)ϕ(u), u4 I2(u)ϕ(u), . . . , u2
[ n
2

]
I2(u)ϕ(u),

(
u2 − I1(u)

) (
1 + u2

)
, ψ(u), uψ(u), u2ψ(u), . . . , un+1ψ(u).

(3.35)

Moreover, there exists the system (1.11) such that its M(h(u)) has at least 2n + 3
simple zeros for u ∈ (0, 1), namely, H(n) ≥ 2n + 3.

Proof Suppose that G(u) is a linear combination of the generating functions in (3.35),
and

G(u) :=

[
n−1
2

]

∑

k=0

Āku
2k I1(u)ϕ(u) +

[ n
2

]
∑

k=0

B̄ku
2k I2(u)ϕ(u)

+
n+1∑

k=0

C̄ku
kψ(u) + ρ̄0

(
u2 − I1(u)

) (
1 + u2

)
≡ 0.

(3.36)

By Lemma 3.6, G(u) can be analytically extended to the complex domain D. When
u > 1, we have

G+(u) − G−(u) = 2i
√
u2 − 1

⎛

⎜⎜
⎝

[
n−1
2

]

∑

k=0

Āku
2kϕ(u) − ρ̄0(1 + u2)

⎞

⎟⎟
⎠

+ 2π i

[ n
2

]
∑

k=0

B̄ku
2kϕ(u) ≡ 0,
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which implies ρ̄0 = 0, Āk = 0
(
k = 0, 1, . . . ,

[ n−1
2

])
and B̄k = 0(

k = 0, 1, . . . ,
[ n
2

])
. Hence, G(u) ≡ 0 becomes

n+1∑

k=0

C̄ku
kψ(u) ≡ 0,

which yields C̄k = 0 (k = 0, 1, . . . , n + 1). Therefore, the generating functions of
M(u) are linearly independent.

By Lemma 2.3 and Remark 3.4 (ii), there exists the system (1.11) such that its
M(h(u)) has at least 2n + 3 simple zeros for u ∈ (0, 1). The result H(n) ≥ 2n + 3
follows from Lemma 1.1. This ends the proof. ��
Lemma 3.8 For n = 0, 1, 2, we have H(n) = 2n + 3.

Proof By the samemethod asLemma3.3 (i), for n = 2,we have hM(h) =
8∑

i=1
ãi gi (h),

where

g1(h) = hu(h)/
(
1 + u2(h)

)
, g2(h) = u(h)g1(h), g4(h) = 1

2
I0,1(h) − I1,1(h),

(
g3(h),g5(h), g6(h), g7(h), g8(h)

) = (hI1,1, hI0,1, hI1,0, h2 I0,0, hI0,0
)
,

and

ã1 = τ0 − τ2, ã2 = τ1, ã3 = ρ1,1 − 3

16
ρ−1,3, ã4 = ρ−1,1

16
, ã5 = ρ0,1 + 3

16
ρ−1,3,

ã6 = ρ1,0 + ρ0,2

24
+ ρ2,0 − 1

8
ρ−1,2 + 1

2
τ2, ã7 = 2ρ0,2, ã8 = ρ0,0 + 1

8
ρ−1,2.

(3.37)

We have hM(h) ∈ Span(F3−n), n = 0, 1, 2, where

F1 = [g1, g2, . . . , g8] (h), F2 = [g1, g2, g4, g5, g6, g8](h), F3 = [g4, g8, g1](h).

We shall prove thatF1 is an ECT-system on
(
− 1

25
, 0
)
. Let x = √−h ∈

(
0, 2− 5

2

)
and

Wi (h) = W [g1, g2, . . . , gi ](h)(i = 1, 2, . . . , 8). By calculations, we see that each of

Wi (h) is non-vanishing on
(
− 1

25
, 0
)
for i = 1, 2, 3.

For i = 4, . . . , 8, we get Wi (h) = ξi (h)�i (x(h)), where ξi (h) for i = 4, 5, 6 is
non-vanishing, and ξi (h) = mi (h)�i1(h) with mi (h) non-vanishing for i = 7, 8, and

�4(x) = − 15 − 180
√
2x − 1392x2 − 1344

√
2x3 + 4096x4,

�5(x) = − 15 − 240
√
2x − 3040x2 − 10240

√
2x3 − 68352x4

− 151552
√
2x5 − 229376x6 + 262144

√
2x7,

�6(x) = 5 + 80
√
2x + 864x2 + 1024

√
2x3 − 11008x4 − 12288

√
2x5

+ 131072x6 + 131072
√
2x7,
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�7(h) = �72(h)

�71(h)
+ ln

1 + u(h)

1 − u(h)
, �8(h) = �82(h)

�81(h)
+ ln

1 + u(h)

1 − u(h)
,

�71(h) = 61440h3u(h)
(
21 + 1152h + 19712h2 + 139264h3

)
,

�72(h) = 5 + 944h + 89088h2 + 4096
(
143 + 3456

√−2h
)
h3

+ 65536
(
−1603 + 12032

√−2h
)
h4,

+ 16777216
(
−155 + 872

√−2h
)
h5 + 67108864

(
−255 + 1472

√−2h
)
h6,

�81(h) = 245760h3
(
21 + 3036h + 168192h2 + 4918272h3 + 79200256h4 + 530579456h5

)
,

�82(h) = u(h)
(
5 + 1152h + 149504h2 + 12288(−817 + 9216

√−2h
)
h3+

65536
(
−21445 + 152576

√−2h
)
h4 + 1048576

(
−51923 + 343296

√−2h
)
h5

+ 167772160
(
−6239 + 40064

√−2h
)
h6

+ 6442450944
(
−1265 + 7872

√−2h
)
h7
)

.

For i = 4, 5, 6, by calculations, we know the resultant of �i (x) and �
′
i (x) is

non-vanishing, which implies �i (x) has no multiple zeros. By analysis the Sturm’s

sequence of�i (x), we know�i (x) has no zero on
(
0, 2− 5

2

)
by Lemma 2.5. For i = 7,

since limh→− 1
25

+ �7(h) = 0 and

�
′
7(h) =

301x
(−63 − 3600h − 95488h2 − 929792h3

) (
x − 2− 5

2

)4

15360(−h)9/2
(
1 + 25h

)5/2 (21 + 480h + 4352h2
)2 �6(x) < 0,

we obtain that �7(h) is strictly decreasing and has no zero for h ∈
(
− 1

25
, 0
)
.

Next, we will prove that W8(h) is non-vanishing on
(
− 1

25
, 0
)
. With the aid of

Mathematica, we find that�81(h) has a unique zero at h0 ≈ −0.0159034 ∈
(
− 1

25
, 0
)
,

and W8(h0) = −9.31821 × 1036 < 0. We claim that �8(h) is non-vanishing on(
− 1

25
, h0
)

∪ (h0, 0). In fact, we have

�
′
8(h) =

−
(
x − 2− 5

2

)4
�81(h)�82(x)

240x8
(
1 + 25h

) 3
2 �

2
83(h)

,

where

�81(h) = 63 + 5760h + 269376h2 + 6125568h3 + 54280192h4,

�82(x) = 5 + 80
√
2x + 352x2 − 7168

√
2x3 − 81664x4 + 167936

√
2x5 + 2670592x6
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− 5111808
√
2x7 − 62914560x8 + 20971520

√
2x9 + 536870912x10

+ 536870912
√
2x11,

�83(h) = 21 + 2364h + 92544h2 + 1956864h3 + 16580608h4.

By calculation the Sturm’s sequence of�81(h) and�82(x(h)), we know that they have

0,1 zeros on
(
− 1

25
, 0
)
, respectively. With the aid of Mathematica, �82(x(h)) has a

unique zero h∗ ≈ −0.0134724 ∈ (h0, 0), and �8(h) has a negative local maximum
at h = h∗, which implies �8(h) is non-vanishing on (h0, 0). Since �8(h) is strictly

increasing on
(
− 1

25
, h0
)
and limh→− 1

25
+ �8(h) = 0, �8(h) is also non-vanishing on

(
− 1

25
, h0
)
. Thus, we obtain H(2) = 7.

We can similarly prove that the ordered set F2 is an ECT-system on
(
− 1

25
, 0
)
, and

F3 is an ECT-system with accuracy 1 on
(
− 1

25
, 0
)
. This ends the proof. ��

Theorem 1.2. follows from Lemmas 3.5, 3.7, and 3.8.
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