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Abstract

In this paper, we study the number of limit cycles H (n) bifurcating from the piecewise
smooth system formed by the quadratic reversible system (122) for y > 0 and the cubic
system X = y(l +x% 4+ yz), y= —X(l + x4 y2) for y < 0 under the perturbations
of polynomials with degree n, where x = x — 1. By using the first-order Melnikov
function, it is proved that 2n +3 < H(n) < 2n+ 7 for n > 3 and the results are sharp
forn =0,1,2.

Keywords Piecewise smooth system - Quadratic reversible system - Melnikov
function - Limit cycle

1 Introduction and the Main Results

It is well known that the determination of the number and location of limit cycles for
the planar polynomial systems

X=Xy, y=Yxy (1.1)

is a significant problem in the qualitative theory of planar differential systems, where
(x,y) € R%, X(x,y) and Y (x, y) are polynomials of x, y of degree n with real
coefficients. An isolated closed orbit of (1.1) is called a limit cycle.

We can study limit cycles by perturbing a period annulus. Consider the system

F=p G, Hy ()t f( ), y=—p o, ) He(x, y) e gla,y),  (1.2)
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where ¢ (0 < |e] < 1) is a real parameter, w N x, ) He(x, y), p~ 1 (x, VHy(x,y),
f(x,y), and g(x, y) are all polynomials of x and y. We suppose that the system
(1.2)¢—0 has at least one center. The function H(x, y) is a first integral, and w(x, y)
is an integrating factor. Hence, we can define a continuous family of periodic orbits
I C {(x,y) € R2| H(x,y) = h,h € (hy, h»)}, which is called a period annulus.
For 0 < |¢] < 1 and h € (hy, hy), one can define the Poincaré map of the system
(1.2) and the bifurcation function F(&, &) = ¢ M(h) + o(¢). The isolated zeroes of
F(h, €) correspond to the limit cycles of (1.2)¢>0. The study of bifurcation of limit
cycles from the period annulus Uy, 1,)'1 is called the Poincaré bifurcation, and
the number of limit cycles bifurcating from the period annulus {I'y, | h € (hy, hp)} is
called the Poincaré cyclicity. This is the weak Hilbert’s 16th problem proposed by V.
I. Arnold [1]. There are many works on the study of the weak Hilbert’s 16th problem.
One can see [14, 16, 18] and search many papers by internet.

In the last a few of years, stimulated by non-smooth phenomena in the real world
such as control systems, impact and friction mechanics, and non-linear oscillations, the
theory of limit cycles for piecewise smooth differential systems has been developed.
In [13], the piecewise smooth planar systems are given by

(fTe . gt y), (xy) ext,

(4.3) = (F Gy, g (). @y ez,

(1.3)

where f¥(x,y) and g (x, y) are C* functions, and the discontinuity boundary %
separating the two regions »% is defined as ¥ := {(x, y) € R2| S(x,y) = 0} with
S(x, y) being a smooth function with non-vanishing gradient V.S(x, y) on X, and

2T i={(x.y) e R} S(x,y) > 0}, T :={(x,y) € R?| S(x,y) <O0}.
The crossing set is defined as
Te = {(x,y) € T (VS, (PT, Q7)) -(VS,(P7,07)) >0},

where (-, -) denotes the standard scalar product. By definition, at any point p € X,
the orbit ¢ (¢, p) of the system (1.3) crosses X.
Many scholars are interested in the study of the crossing limit cycles of the system:

( Hy*(x,y)/;ﬁ(x,y)+8f+(x,y)> y>0
<x>_ —HY(x,y)/nre ) +egt,y ) T T (14
y ( H;(x,w/u—(x,y)+ef—<x,y)) -0 '
—H(x, y)/pn(x,y) +eg (x,y) )’ ’

where 0 < |e| K 1, Hi(x, y), Hvi(x, y), Hf(x, y), and ui(x, y) are C* functions

with (0, 0) # 0, and f*(x, y) and g*(x, y) are polynomials with degree n.
There are two main tools to solve the bifurcation of limit cycles for the system

(1.4), one is the Melnikov function method developed in [10, 11, 17, 20], and the other
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is the averaging method established in [21]. We will introduce the Melnikov function
method in the following.
The system (1.4), has two sub-systems:

= HfG,y)/ute,y) +efTxy),
y=—H (x,y)/u"(x,y) +eg"(x,y),
and
v = H_ b N k N 9 b
)f y_(x V/m _(x y) +8f_(x y) b <0, 16)
y=—H (x,y)/n (x,y) +eg (x,y),

We make the following assumptions as in [20].
(A1). For the system (1.4).—, there exists a nonempty open interval (1, hy) such
that for each i € (hq, h»), there are two points A and B on the curve y = 0 with

A:=A(h) = (a(h),0), B := B(h) = (b(h),0), a(h) < b(h) 1.7
satisfying
HY(A(h)) = HT(B(h)) =h, H™(A(h)) = H™ (B(h)).

(A). Forevery h € (h1, h»), the subsystem (1.5),—¢ has an orbital arc L,‘f starting
from A(h) and ending at B(h) defined by H™ (x, y) = h (y > 0), and the subsystem
(1.6)¢=0 has an orbital arc L, starting from B(h) and ending at A(h) defined by
H™(x,y)=h (=H (A()) (y <0).

Under the assumptions (A1) — (A3), the system (1.4)|.—o has a family of closed
orbits L, = LZ‘ UL, (h € (hy, hy)). For definiteness, we assume that the orbits Lj
for h € (hy, hy) orientate clockwise. For 0 < |¢| < 1, the authors of [20] defined its
bifurcation function F(h, €) = ¢ M (h) + o(e). The authors of [10, 11, 17] obtained
the following results.

Lemma 1.1 Under the assumptions (A1) and (A2), we have

(1) [10] If M(h) has j zeros for h € ¥ with each having an odd multiplicity, then

(1.4)¢ has at least j limit cycles bifurcating from the period annulus for € small;

@ii) [11]If M (h) has at most j zeros for h € X, taking into account the multiplicity,

then there exist at most j limit cycles of (1.4), bifurcating from the period annulus;

(iii) [17] The first-order Melnikov function M (h) of the system (1.4), has the following
form

M (h)

phregtdx — M*f*derff

h

CHP(A) [H;(B)

=—= nog dx—pu” fdy |,
Hy (A) | Hf(B) Jot }

where A and B are defined by (1.7).
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There are a lot of works on the study the limit cycle bifurcation of the system (1.4).
For

1
HE(x,y) =x73 (—y2 —2x2+x>, nE e, y) = x4, (1.8)

2

the author of [23] studied the upper bound of the number of limit cycles for n € N,
and the authors of [26] obtained the exact number of limit cycles bifurcating from the
center (1,0) forn = 2,3, 4. For

9

9
—X +—512>, u(x,y) =x"", (1.9)

2

1
HE(y) = x4 (22 —
(x,y)=x ( y 756

the authors of [25] obtained the number of limit cycles bifurcating from the centers
(£1, 0). For

H*(x,y)zé((y—l)z—xz), H_(x,y)=—% (x2+y2), e, y) =1,

the authors of [2, 19] investigated the exact number of limit cycles. For
H*(e,y) =% + 3%, wh @, ) = (1 +ax)", 1™ (x,y) = (1 +b0)",

the authors of (8] investigated the number of limit cycles when a®> + b> # 0 and
m € N by the averaging method.

Motivated by [3, 8, 12, 23, 24], in this paper, we will consider the bifurcation of
limit cycles for the system (1.4) with

1 1 1 1 1
HY(x,y) = Eyz +=x?— —x, H (x,y) = Eyz + 5322, (1.10)

25 2h

and
-1
Wy =37l ey = [1+E 407

where x = x — 1. More specifically, we shall study the system

+
< xy +ef (x,y)>7y20’

—3rx% + dox +egt(x, y)

X
<5’)_ y(1+3?2+y2)+8f_(x,y) -0
—F(1+ P24y +eg @y )T T

(1.11)

The system (1.11)|.—o has a family of periodic orbits L = LZ‘ UL, where

1
L;:{(X,Y)€R2|H+(xs)’)=hs he(_ﬁs())? yZO}’
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- 2 - o1 5
Ly ={.y) eR*| H (x,y) =&, h=§(1~|—2h), y<0}.

Forh € (— 2%, O), the system (1.11)g—q has a period annulus around the center (1, 0).

Let H (n) denote the maximum number of limit cycles bifurcating from h € (— 2%, O).
The main results are the following.

Theorem 1.2 For the system (1.11), we have the following results by using the first-
order Melnikov function:

1) 2n+3 < H(n) <2n+7forn>3;
(i) Hn)=2n+3forn=0,1,2.

Remark 1.3 (i) In [7], the authors classified the quadratic reversible systems

X Xy _ - _ =
)= arb+2 2 a+b—2 2 h-1 a—3b+2 |, a,beR, a#b,
<y> <2(a—15)y 8@—b)3 " + 2abp" + 8(a—b)3 )

(1.12)

with elliptic integral curves into 18 types (denoted by (r1)—(r18)), and they also
identified the 4 types with conic integral curves (denoted by (r19)—(r22)). The
system (1.12) can also be found in [12]. The system (r5) is obtained by a = % + %
and b # —1in (1.12). Setting b = 1 in (r5), we can obtain H* (x, y) and u* (x, y)
given in (1.9).

(i) The authors of [12] studied the Poincaré bifurcation of the system (122), which
is defined by setting @ = —2 and b = 0 in (1.12).

(iii) It is known that the first-order Melnikov function M (h) of the system (1.2)
is analytic for /i € [h1, ha) if w™" (e, y) Hx (x, ), 0™ O, Y Hy(x, ), f(x, ),
and g(x, y) are all polynomials of x and y, where we assume H(x,y) = hj
corresponds to the elementary center. However, the first-order Melnikov function
M (h) of the system (1.4) may not be analytic at h = h;, where we suppose
h = h corresponds to the center of the system (1.4), even if Hxi (x, y)/uE(x, y),
HF(x, y)/w*(x, y), f*(x,y), and g*(x, y) are all polynomials of x and y.

For the system (1.11), which has the same first integral and integrating factor with
the system (122) for y > 0, the first-order Melnikov function M (h) is not analytic
atthe pointh = — zis (see the expressions of 11 o(h) and Iy o(h) in Lemma 3.1). To
obtain the lower bound of limit cycles bifurcating from the period annulus, we will
extend Iy o(h) and Iy o(h) analytically to the complex domain and then prove that
the generators of M (h) are linearly independent such that we can use Lemma 2.3
and obtain Lemma 3.7.

This paper is organized as follows. In Sect. 2, we will give some helpful results on
determining the number of isolated zeros of a function. In Sect. 3, we will obtain
the expression of the first-order Melnikov function of the system (1.11), and then
prove Theorem 1.2.
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2 Preliminaries

In this section, we shall introduce some results on the estimation of the number of
isolated zeros of the Melnikov functions.

Definition 2.1 [9] Let fy(x), f1(x), ..., fu—1(x) be analytic functions on an open
interval U C R. The ordered set F := [fo(x), fi(x), ..., fn_l(x)] is said to be
an extended complete Chebyshev system (for short, an ECT-system) on U if, for all
k=1,2,...,n, any nontrivial linear combination

cofo(x) +c1f1(x) + -+ + k-1 fk—1(x)
has at most k — 1 isolated zeros on U counted with multiplicities.

Lemma 2.2 (i) [9] The ordered set F = [fo(x), fi(x),..., fu—1(x)] is an ECT-
system on U if and only if, for eachk = 1,2, ..., n,

W [ fo, fiseoos fiot] (®) #£0, forallx e U,

where W [ fos f1, .-+, fk_l] (x) is the Wronskian of the functions
Jo(x), f1(x), oy fe—1(x).

(i1) [22] The ordered set F := [fo(x), fl(x),...,fn_l(x)] is an ECT-system
with accuracy 1 on U if all the Wronskians are non-vanishing except
w [fo, fis.n, fnfl] (x), which has exactly one zero on U and this zero is simple.
Then, any nontrivial linear combination

cofo(x) +crfix)+ -+ cpo1 fua1(x)

has at most n isolated zeros on U. Moreover, for any configuration of m < n zeros
n—1
there exists n constants ¢, i = 0,1,...,n — 1, such that f(x) = Y_ ¢; fi(x)

i=0
realizing it.

Lemma 2.3 [5] Consider p + 1 linearly independent analytical functions f; : U —
R,i = 0,1,..., p, where U C R is an open interval. Suppose that there exists
J €1{0,1,..., p}suchthat f;ly has a constant sign. Then there exist p + 1 constants

)4
Ci,i=0,1,...,p, such that f(x) := Y C; fi(x) has at least p simple zeros in U.
i=0

From the Lemma 4.5 in [8], we have the following equivalent conclusion in
Lemma 2.4.

Lemma 2.4 [8] Denote by Fy.(v) a polynomial of degree k and g(k)(v) the kth-order
derivative of a function g(v). We have the following conclusions.
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n .
(i) Suppose Hj(v) := >_ B;v'In }fzg withv=u®,neNandB;,i =0,1,...,n
i=0

are constants. Then,}ork >2n+1,

VUFiz2 ()
—zk, k is even,
d* H() (1 —b2v)
—_ V) =
duk ! Fie1 (v)
z—k’ k is odd.
(1—b%v)
n .
(il) Suppose Hy(v) := Y Aiv’% withv =u?% 2 <m e Nt n e Nand A;,
) (171721))”1_7
i =0,1,...,n are constants. Then, for all k € NT,
Fux(v) ki
———— , kiseven,
dk (1-— bzv)k+m7§
a2V = VOFp (v)
—nl, k is odd,
(1 _ bzv)k"""_f
where
1+ k 1<n< k + 1
. m 5| m <n< 5 m ,
n* =
+ k 0<n< 2 > k +
n =, <n<m-2o0rn>|- m.
2 2
For a real sequence {cq, c1,..., ¢} we denote by

N{co, c1,..., cn} 2.1
the number of changes in sign in this sequence (skip zero(s), if it appears in this
sequence). To find the number of real roots of a polynomial f(x) for x € (a, b), the

following two criteria are well known.

Lemma 2.5 [15] Suppose that f(x) is a polynomial of degree n with real coefficients,
a < b are two real numbers, f(a) # 0, f(b) # 0, and the derivatives of f(x) are

F@), £ @, £ @, fP0).

(i) Fourier-Budan Theorem. If

vr@. f@ S @ @) =0,
N{fb), fb), £ ®B),.... fPB)=q,
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(ii)

then p > q, and the number of real roots (counting the multiplicity) of f(x) for
x € (a, b) is equal to either p — q or p — q — r, where r is a positive even integer.
In particular, if p = q (resp. p = q + 1), then f(x) has no (resp. has a unique)
real root in (a, b).

Sturm Theorem. Assume that f(x) has no multiple root in (a, b), and we con-
struct the sequence {fo(x), fi(x), fa(x),..., fs(x)} as follows: fo(x) =
fx), iitx) = f/ (x). Divide fy(x) by f1(x), and take the remainder with negative
sign as fa(x), then divide f1(x) by fr(x), and take the remainder with negative
sign as f3(x), ..., the last remainder with negative sign (a non-zero number) is

fs&x). If

N{fo(@), fi(@), fala),..., fs(@)}=p,
N{fo®), f1(b), f2(b),..., fs(D)} =q,

then p > g and the number of real roots of f(x) for x € (a, b) is equal to p — q.

3 Proof of Theorem 1.2

We

shall first obtain the algebraic structure of M (k) of the system (1.11). Without loss

of generality, we can assume that

ffan= ) a' 'y, frfan= ) a =1y,

i+j=0 i+j=0 a1

n n
g,y = Y bty gy = ) b e =Dy
i+j=0 i+j=0

The point (1, 0) is an elementary center of focus-focus type (see [4] for the definition)

corresponding to & = —2%. For h € (

1

—55 O) , denote

u(h) :=~v'1+2%h, I ;) = /+xi_1yjdx. (3.2)
L

h

It is easily seen that the semi orbit L;lIr intersects the x-axis at points A(a(h), 0) and
B(b(h),0)), where

ahy =1 —u(h), bh) =1+ uh). (3.3)
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Lemma3.1 Forh € ( 3 0), we have

I 1(h) = (1 + 25h) Io.i(h) = % (1 — 4«/—_2h) :

1++142%
Loth) =2v1+ 25h, Ipoh) =In —————.
1—+1+25

Proof For j > 1, by direct calculation, we have I;, j (—%) = 0and

/ b d(b(h
1,»,;<h>=/ e b oy o, 1y O
a(h)

d(a(h))

a' Yy’ (a(h), ) ——— n
From (3.3), we have

dbh)  dah) 24 N 1 0
dh - dh iR e( 2 )

Hence, by y(b(h), h) = y(a(h), h) = 0, we have

by
’ . i—1.j—19Y
Il,j(h) :/ ]x’ ly] la—hdx.
a(h)

By H*(x, y(x, h)) = hin(1.10), Wehave—z =- Wh1chyleldsl i) = jli j—2(h).
Therefore,

b = /””“ <1yz R Tt
: . 2 2 2

® . (3.4)
20 () + 35l j2(h) = Sl j-2(h).
Also, we have

b dx

11 —1(h) =4/
aty N (b(h) —x)(x —a(h))
1

d
=4/ —sz = 4r,

141l —s (3.5)

1
s ds
+4/ =4r,
—14/1—s2 —14/1—52

1 2
(u(h)s + )“ds ( 3)
L_1(h) =4 — = A4x |(16h+ = ).
! —1 V1 —52 2

1
b1 (h) =4u(h) /
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According to (3.4) and (3.5), we get
/ 1 1 1
hIO,l(h) = 5[(),1(h) — g]‘[, 1.1 (——) =0. 3.6)

By solving the differential equation (3.6), we can get Ioj(h) = Z (1 —4y/=2h).
Similarly, we can get the expressions of Iy 1(h), I1,0(h) and Iy o(h). This ends the
proof. O

Lemma 3.2 We have the following results:
(i) We have I_1,1(h) = g [31o.1(h) — I1,1(W)].
(i) Fori > 1, we have

Lii(h) = aii(W (), Lio(h) = &io()1i0(h),

where &; 1(h), &;.o(h) are polynomials of h with degree [%]
(iii) If j > 2, then

5[%}’0(}1)11,0(}1), if j is even,

(h) =
fit 3412 0N, 17 is odd.

NI~

where 8y 1(h) = 1, and

26! 1\*
Sk,0(h) = _@ot <2h + —) , k>0,

- T 4
IS
Sk,l(h):m<2h+2—4> s kZl

(iv) If j = 2, then

YiiyomW ool + )/[ -]1](h)11,o(h), if J is even,

I~

Io,j(h) =

I~

J/[%],O(h)lo,l(h) + )/[ -}2(h)11,1 (h), ifjisodd,

where

Yeo(h) = 2,

1
P =33 @+ @ ooty + -+ 8o | 38

1
V2t =57 [ @0} + @R 2010+ + 8.
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Proof Let DZ‘ be the interior of L,j' U B_;l Then, by the Green’s formula, we have

/ xhyldy = / | xi_lyjdy=—(i—1)// X'yl dxdy
Lf LfuBA JBA Djf

and

/ X2y gy = / R —/_) X2yt = (j+1)/f x 72yl dxdy.
Lf LfuBA JBA D;f

Thus, we have

/ X lyidy = — 21._1 1 (h). (3.9
Ly j+r '

(1) We first claim that

1 1
I_11(h) = e [510,10!) - 11,1(h):| ,

Lo(h) =11,0(h),

(3.10)
ha(h) =111(h),
4
I30(h) = §(8h + DIy 0(h).
In fact, from H*(x, y(x, h)) = h in (1.10), we can get
oy Lo 1y (3.11)

Yoxr T T 3

Multiplying H+ (x, y(x, h)) = hin (1.10) and (3.11) by x'~!y/~2dx and x'~2y/ dx,
respectively, and integrating over L;", combined with (3.9), we have

1 1
I; j(h) = 2hl; j 2 (h) + §1i+l,j—2(h) - 2—41i+2,j—2(h), j>=2, (312

24 —2)

Ii j(h) =T j(h) + 12 li—2 j42(h).  (3.13)

Combining (3.12) and (3.13), we have

J 1 .
I; j(h) = T |:2hli,j2(h) + ?Ii+l,j2(h):| . J =2, (3.14)
240 j(h) = jlLit2,j—2(h) — Lig1,j—2(M)], j = 2. (3.15)
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Taking (i, j) = (2,0),(2,1),(3,0) in (3.13), and (i, j) = (—1,3) in (3.15),
respectively, we have

ho(h) =11,0(h), I 1(h) = I1,1(h),

X 3 (3.16)
Loth)y =hoth) +2°112(h), 1_13(h) = ?[10,101) — I (h].

Hence, we obtain the second and third formulas in (3.10). Taking (i, j) = (—1, 3)
and (1, 2) in (3.14), we have

3
I_13(h) =3h1_11(h) + =1o,1(h),
2 1 (3.17)
Lia(h) = [2h11 o(h) + —12 o(h)}

Combining (3.16) and (3.17), we get the first and fourth formulas in (3.10).

(2) Next, we will prove the results of (ii) by induction. In fact, by (3.10), it is
easy to check that the results hold for i = 1, 2, 3. Suppose that the results hold for
1 <i<k—1(k > 4). Then for i = k, it follows from (3.13) and (3.14) that

2i+j— 2 25(i —2)
11 () = =l )+ = =i (), 2 0. (3.18)

For j = 0, 1, by induction assumption, we get

S _
oy = {M 2% -2)

Qj— lj(h)+TJh0ll 2j(h):| Il](h)

=q; (W1 ;(h),

deg&i,j(h)zmax{[%] |:i;3]+1} = |:i;1i|.

(3) Finally, we will give the proofs of (iii) and (iv). Leti = 2 in (3.13) and i =1
in (3.14), then

where

j 1
I, j(h) = + <2h + > I j—o(h), j=2, (3.19)
which implies the results of (iii). Taking i = 0 in (3.14), we have

1
lo,j(h) = 2hly j_2(h) + 11 ), j=2. (3.20)
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Suppose j = 2k, it is easily obtained that

k—1

lo.pk(h) = @) Io.o(h) + 75 j{j<2h>k i (). (3:21)
=0

Substituting the first formula of (iii) into (3.21), we can obtain the first formula of (iv).
By similar arguments, we can get the second formula of (iv). This ends the proof. <

By Lemma 1.1, (3.1) and (3.9), we have M (h) = M (h) + M~ (h), where

n

1
M+(l’l) Z / ( l 1 j+ +1al+jxt -2 /-H)dx_ Z Pi,jli.j(h)s

i+j=0 i+j=0,i>—1

H (A) Z / bifj(x— )i yidx —a;j(x — Diyidy B ntl1 T 1uk ()

" Hi (A) 5 1+ —D2+y2 = 1+ul(h)’
(3.22)
and
_1 :
pio=b'g, 120,  p_ijt1 j+1a0~f’ ji=0
=b}; + 1 alHj L P20, j>1
N 3
Tk = E Z (_1)J+ (bi,jlq’i’j — ai’sz,i’]) , 0<k<n, (3.23)
i+j=k
T . .
K1,i,j =/ cos’ 0 sin’*1 6 do,
0
i . .
K2,ij = / cos' 1 9 sin’ 6 d6.
0
Let
J+2 .
i+ —=—p-1,j+2, 0<j<n-—1,
a; = po,j + 2 O—1,j+2 <j<n (3.24)
IOO,I’H ]: n,
prLo—2"p 12, j=0,
bj:=1p1—3 213, j=1 (3.25)
27 +Dprjya, 25 j<n—1,
n
cj=pjo+ Z Cik,j Piks 2= j=<mn,
j+h=3,i>1,k>2
s (3.26)

n
dj :=pj 1+ Z dikjpik, 2<j<n-—1,
i+k=3,i>1,k>2
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where ¢; ¢, j and d; i ; are constants, and

3] 2]
ar(h) =Y anyot),  Pi(h):= Y antivro(h),

k=0 k=0
[4] 5] }

ar(h) =Y axv i)+ Y budeoth) + Y cidio(h), (3.27)
k=1 k=0 i=2

2] 2] -

Ba(h) =Y ampivea(t) + Y bupidia(h) + Y didi 1 (h).

k=1 k=0 =2

According to Lemma 3.2 (ii)—(iv), we can easily obtain that oy (1), oz (h), B1(h) and
B2 (h) are polynomials of h with deg oy (h) < [%], degaa(h), deg B (h) < [%51] and
deg Ba(h) < [%52] forn > 3. o

Lemma3.3 Forh € (—2%, 0), and n > 3, we have

(1) The first-order Melnikov function of the system (1.11) can be expressed as

M(h) = ai(h)lo,o(h) + az2(h)11,0(h) + B1(h)lo,1(h)

pori [ 1 O aiuk ()
+ Ba(h) 11 1(h) + 6k I:EIO,](h) - Il,l(h)] + k; Tz(h)

(ii) There exist the parameters ai+ j and bl.+ i such that

&
> Gk,
2] 2]

2 2
Bith)y = Y Bih*, Ba(h) = ) Dih*,
k=0

k=0

(4]
ar(h) =) Adh*, ar(h) =
k=0

where the coefficients Ay, By, Ci and Dy are the linear functions of a;r ; and b;r ;
given by (3.1) and they are independent.

Proof (1) Let L(f;(x), 0 < i < n) be a linecar combination of the functions
fox), fix), ..., fu(x).Fori > 1,k > 1, j > 2, we have

Li ok (h) = L(di4 26—y ,0(h), 0 < k1 < k),
li o1 (h) = L(Iiv2k—ky,1(h), 0 < ki < k), (3.28)
Iy j(h)y = =27 [I,j—2(h) — I, j—2(W)].
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We will prove the results in (3.28) by induction. In fact, by (3.15), we have

5y = 55 [s22(0) = T 2] (3.29)

which yields the first formula in (3.28) holds for i > 1 and k = 1. Suppose that the
first formula in (3.28) holds fori > 1,k =1,2,...,m. Thenfori > 1,k = m + 1,
by (3.29), we have

2m +2
li om12(h) = —a [fit2.2m(h) = liz12m(W)],

:L(Ii+2m+2—k1,0(h)s 0<k < m) (3.30)
+ L(Litoms1-k.0(h), 0 < ki < m)
=L(livom42—k,0(h), 0 <k; <m+1).

By the same method, we obtain the second formula in (3.28), and the third formula
follows from (3.15) withi = —1 and j > 2. Forn > 3, according to (3.22) and (3.28),
we have

n n n—1
M*(h)y =" po.jloj(h)+ Y piolioth) + Y pialii(h)
=0 i=1 i=1
n+1 n—ln—j
+ Zp—l,jl—l,j(h) + Z Zpi,jli,j(h) + po-1,11-1,1(h)
=2 j=2i=1
) . (3.31)
= Zaj[(),j (h) + ijll,j (h)
j=0 j=0
n n—1
+ Y ciliot) + Y dilii(h) + poi.al-11(h).
i=2 i=2

By using Lemma 3.2, after a simple simplification, we can obtain the expression of
M™(h) for n > 3. According to (3.22), we obtain the expression of M (h).

(2) Next, we will prove the result of (ii). According to (3.27), we only need to
prove that there exist the coefficients a;, b;, ¢;, and d; defined in (3.24-3.26) such that
A;, Bi, Ci, and D; are independent. Suppose ¢; = 0 (i = 2,3,...,n) and d; = 0
(i=2,3,...,n—1). Denote

_ @Y (kN osj—a o Hj—4
Ag,j = ke DI\ 2 s Brij =2 A,

T, . CkEDU RN sjae ey
Ak’j —m (J)Z N Bk’[,j = 2 A](_l_j’i.
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Then we have

k k
Soth) =Y Axjhl, Sci(h)y =Y Ax k!, yioh) =2h",
j=0 j=0

k—1k—1—i k—1k—1—i (3.32)
v =Y > Biih™. yaty =) Y Brih't.
i=0 j=0 i=0 j=0
Suppose that 7 is even. Substituting (3.32) into (3.27), we obtain that
2 E -
ar(h) = ) Ak’ aa(h) =) Cuz BTN,
k=0 k1=0
I - (3.33)
2 2 w2
Bi(h) =D Beh*. po(h) =) Duz 'z M,
k=0 k1=0
where Ay = Zkazk, B, = Zka2k+1, and
% ——
Canzik1 = Z az,k,%fkl’ D% =b”,1A%‘ngz,
k=1 —ky
)
d — n—2
D%fkl = Z ﬁz,k,%flq +b”—1—2k1A%7k1,%7k|’ kh=1,2,---, 5
k=2 —ky
J
o2k, j = a2k Z By i j—i + ba—2Ak-1,j,
i=0
j —_— —
Bokj =axus1 Y Brij—i + b1 Ar,j.
i=0
Denote
— —
Sl Z(AO’Alv' 7A%)’ 52 =(B0’B1’ ’B%)’
— —
§3:=(C0.C1.- . Cua ), E4i= (Do D1+ D),
71 :=(a07a27 7arl)v _77)2 = (Cll,a3,"' ’an71)9
T3 :=(bo, b2, -+ by2), Tjai= (b1 b3, by).
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Then we have that

- -
- > > = a<‘§ 1’52) 0
051,82, 83, 854) | 9(1.772) (tbhxn
a(_n)lv_U)Z, _}7)3’ 7])4) 32?3’?4) 8(?3’?4) ’

a7, 772) (3.7 4)

where
Aoo A1 ... Au2g 0 0 ... 0
0 Ajg... Awz, 0 0 ... O
27
N 0 0 ... 0
3(53754) 0 0 A%% 0 0o ... 0
(s e | O 0 0  Aoo Ao Z%o ’
0 0 0 0 0 Aip... Auz,
: 0
0 0 0 0 0 0 A2 na2
22
o(1.72)

and Og;4+1yx, is the (n 4+ 1) x n null matrix. Hence, we have detm =

n n—=2
22 [1,2,2%, and

n

2
=22 l_[ 2% A Ar ik # 0,

which implies that the coefficients A;, B;, C;, and D; are independent. The case that
n is odd can be analyzed similarly. This ends the proof. O

Denote by h(u) := (u2 — 1) /25 the inverse function of u(h), u € (0, 1). To use
Lemmas 2.3 and 2.4, we rewrite the M (h) as in following Remark 3.4.

Remark 3.4 From Lemma 3.3, we have the following results:
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(i) Foru € (0, 1), M(h(u)) = M1(u) + Ma(u) + M3(u), where

1
M) =a (h () In -

- 1
My (u) =£ﬁ1(h(u)) (1 - m) +5 21” <\/1——u2 - 1) ’

T 1uk

My (u) =20 (h(u))u + — ﬁz(h(u))u +Z -

(ii) There exist the parameters a and bjE such that

3] ']
M) =Y A ln + Z Bku2k( -1 —u2)

k=0

P11 1
C -1},
L ).

+

where

4] . '] .
A= 22:(—1)f’<Aj<i>251, By = Z(—l)kaj@)sz,

j=k =k

and the coefficients Ek are the linear functions of C;, D;, and 1; given by
Lemma 3.3(ii) and they are independent.

Lemma 3.5 For the system (1.11), we have H(n) < 2n + 7 forn > 3.

Proof Suppose n > 3. Let v = u?, M(v) = (1 + v)M(h(/v)), then M(v) and

M (h(4/v)) have the same number of zeros on (0, 1). According to (3.27), we know that

degai(h) < [4]. degan(h) < ["5']. deg Bi(h) < ["3'], and deg fo(h) < ["32]-

We use the notations F[ ). F* ](uz) Ffl ](v) Ffz :|(M2) and F7, | () for
2 2

[
arp(h(u)), az(h(u)), B1(h(w)), B2(h(u)), and ﬁ: Tkt respectively. By Lemma 3.3
k=0

and Remark 3.4 (i), we have

M) = M, (v) + Ma(v) + M3 (u),
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where

1+ v
11—
T 1—0?

M) = —(p - FP (v)(l—v))
41— vy 5]

Mi(v) = (1 4 v)Fi () In
4]

it et (1) (51 () #2075 ()
+%an222} () - p—:”’) .

Then, by Lemma 2.4, we have

4nt3 ]V[(U) _ ﬁF% (v) F%-’,—l (v)
dun+3 (1 —v)nt3 = v)n+3+%

1 3

= Fn 3 1 - jF” )
(1 _ v)n+3+% ( %ﬂtH(v) + ﬁ( U) %I(U)
for n odd and

3 i = F%(v) ﬁF%H(v)
dunt3 1 - v)n+3 (1— U)n+3+%

1

= (ViFap ) + (1~ 0 P )

(1 _ U)n+3+%

for n even, where Fy(x) is the polynomial of x with degree k. Let 4 M v) =0,

that is

du n+3

Fus,,(0) = —/o(1 = )3 Fusi (), nis odd,
2 2

\/;F”zﬁﬂ(v) =—(1- v)%F%(v), n is even.

By squaring the above equations, we obtain that < I +3 M (v) has at most n + 5 zeros,
multiplicity taken into account. According to Rolle’s theorem and M (h(0)) =

M (h(u)) has at most 2n + 7 zeros on (0, 1) counted with multiplicities. This ends the
proof. O

For u € (0, 1), denote

1
L) =1-vV1—u2, D)= 1n1+”,
il /1
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then
4
Ii(u) = ;(10,1(h(u))), I (u) = Ipo(h(u)). (3.34)

Consider the complex domain D := C\{fu e R |u < —loru > 1}. Whenu € {u €
R|u < —1oru > 1}, we denote by / li (u) and Izi(u) the analytic continuations
of I1(u) and Iz(u) along an arc such that Im(u) > 0 (Im(u) < 0), respectively.
For example, I (u) are the analytic continuations of /;(u) in the region D ﬂ {u €
C|Im(u) >0 (I m(u) < 0)}, respectively. To determine the arguments of I (1) in
the region {u € R | u < —1 or u > 1}, we need to make an arc starting from the
region {u € R | 0 < u < 1} along the upper (lower) half complex plane to the region
{u e R|u < —1oru > 1}. Then we get the following conclusions of 71 (u), I>(u),
I () and I3 (u).

Lemma 3.6 For I1(u) and I;(u), we have the following results.

(1) The functions I1 (1) and I>(u) can be analytically extended to the complex domain
D=C\lueR|u<—-1loru=>1}.
(ii) The functions I li (u) satisfy

2ivVu? —1, foru e (1,400),
—2ivu? — 1, foru € (—oo, —1).

IFw) —I7 () =

(iii) The functions I2i(u) satisfy 12+(u)—12_(u) =2mi foru € (—oo, —1)U(1, 400).

Proof Note that I (u) are both analytic continuation of /;(#). When u € (1, +00),
(u) are not analytlc at u = 1, then we have

IF@) — I ) = —T+ull —ul?e™ + VTFull —ul?e?

By the same method, when u € (—o0, —1), IljE (u) are not analytic at u = —1, then
we have

@) — 17 @) = —VT—ull +ul2el? + VT ull +ul2e 3
— —2iVu - 1.

When u € (1, +00), we have

L) — I, () =(n(1 +u) —In|l —u| +in)
—(n(14u) —In|l —u| —iw) = 27i.
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When u € (—o0, —1), we have

I2+(u) — Ly (w)=Un|l +u|l+ir —In(1 —u))
—(In|1+u|—imr —In(1 —u)) =2mi.

This ends the proof. O

To get a lower bound for the number of zeros of M (h), we let
M) = Mh@)ew), @) =1—u, Y@ =ul—u?),

then M (h(u)) and M (1) have the same number of zeros for u € (0, 1).

Lemma3.7 For n > 3, the generating functions of M (u) are the following 2n + 4
linearly independent functions for u € (0, 1):

1

L), u* I wew), u*lwew), ..., A ]11 W)p(u),
L), u*Lwew), u* L), ..., WElnwew), (3.35)
<u2 _ Il(u)> (1 +u2), ), wy @), WY@, ..., Wy ).

Moreover, there exists the system (1.11) such that its M (h(u)) has at least 2n + 3
simple zeros for u € (0, 1), namely, H(n) > 2n + 3.

Proof Suppose that G () is a linear combination of the generating functions in (3.35),
and

2] 4]
G =Y A hwew)+ Y B huwew)
k=0 k=0
n+1
+ 3 Gy + o (w2 = 1) (14u?) =0.

k=0

(3.36)

By Lemma 3.6, G(u) can be analytically extended to the complex domain D. When
u > 1, we have

2]
GTw) — G () =2ivu?—1 A o) — po(1 + u?)

k=0
(]

+ 2mi Z Bku%(p(u) =0,
k=0
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which implies o = 0, Ax = 0 (k=0,1,....[%2]) and By = 0
(k =0,1,..., [%]) Hence, G (1) = 0 becomes

n+1

> Gty ) =0,

k=0

which yields C; = 0 (k = 0,1, ...,n + 1). Therefore, the generating functions of
M (u) are linearly independent.

By Lemma 2.3 and Remark 3.4 (ii), there exists the system (1.11) such that its
M (h(u)) has at least 2n + 3 simple zeros for u € (0, 1). The result H(n) > 2n + 3
follows from Lemma 1.1. This ends the proof. O

Lemma3.8 Forn =0,1, 2, we have H(n) = 2n + 3.

8
Proof By the same method as Lemma 3.3 (i), forn = 2, wehave AM (h) = Y_ a;g; (h),
i=1
where

1
g1 =hu()/ (14 ga() = ugih).  gath) = 3I0.1(h) = L1 (h.

(g3(h),g5(h), g6(h), g7(h), gs(h)) = (k11 1, ko1, ki o, h* 1o 0, h1o ),

and
~ ~ - 3 - Pl 3
ay =t —T, =T, 43=p11~ 7,013 0a4= » as = po,1 + - P-13;
- 00,2 1 1 - - 1 ’
ag = p1,0 + e + 020 — gh-12 + ST @1 = 2p0,2, ag = poo+ gr-12

We have hM (h) € Span(F3_,), n =0, 1, 2, where
Fir=1g1.82, ..., 810, F2=1[g1, 82 84, &5. &6 881(h), F3 = [ga, gs, g11(h).

We shall prove that F; is an ECT-system on (—21—5 O). Letx =+/—h € (0, 2_%) and
With) = Wlg1,82,...,8 1) =1,2,...,8). By calculations, we see that each of
Wi (h) is non-vanishing on (—2%, 0) fori =1,2,3.

Fori =4,...,8, we get W;(h) = & (h)®;(x(h)), where & (h) fori = 4,5,6 s
non-vanishing, and &; (h) = m; (h)®;1(h) with m; (h) non-vanishing fori = 7, 8, and

D4(x) = — 15 — 180v/2x — 1392x% — 1344+/2x> + 4096x*,

s(x) = — 15 — 240+/2x — 3040x? — 10240+/2x> — 68352x*
— 151552+/2x° — 229376x° + 262144+/2x7,

Dg(x) =5 + 80v2x + 864x2 + 1024+/2x> — 11008x* — 12288+/2x°
+ 131072x% + 131072¢/2x7,
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D7, (h) N 1+ u(h) Dg(h) = gy (h) N 1+ u(h)
Op(h) | T—u)y Dgi(h) | T—u(h)

@7, (h) = 61440h3u(h) (21 T 1152k + 197124 + 139264h3) ,

®7(h) =

D7p(h) =35 + 944h + 89088h% + 4096 (143 + 3456«/—7}1) n

+ 65536 (—1603 + 12032J—Th) K,

+ 16777216 (—155 + 872«/—Th) 1S + 67108864 (—255 + 1472«/—Th) K,
®g; (h) = 24576043 (21 13036/ + 168192k + 49182724 + 79200256h* + 530579456h5) ,
Do (h) = u(h) (5 + 1152h + 14950442 + 12288(—817 + 9216J—Th) W+

65536 (—21445 + 152576«/—7/1) h* + 1048576 (—51923 + 343296@) K’

+ 167772160 (—6239 + 40064\/—2h) e

+ 6442450944 (—1265 + 7872\/—2h) h7).

For i = 4,5,6, by calculations, we know the resultant of ®;(x) and @; (x) is
non-vanishing, which implies ®; (x) has no multiple zeros. By analysis the Sturm’s

sequence of ®; (x), we know ®; (x) has no zero on (O, 2_%> by Lemma 2.5. Fori = 7,
since limhﬁiz%Jr ®7(h) = 0 and

5 4
, 301x (~63 — 3600k — 95488h% — 9297921 (x — 27 )
@, (h) =

57 57— Pe(x) <0,
15360(—h)°/2 (1 4 251)”7 (21 + 480h + 4352h?)

we obtain that ®7(h) is strictly decreasing and has no zero for & € (—2%, 0).
Next, we will prove that Wg(h) is non-vanishing on (—2%, 0). With the aid of
Mathematica, we find that ®g; (k) has aunique zero at hgp ~ —0.0159034 < (— 21—5 0) ,

and Wg(ho) = —9.31821 x 10°® < 0. We claim that ®g(h) is non-vanishing on
<—21—5, ho) U (hg, 0). In fact, we have

- (x - 2_%>4$81(h)682(x)

Dy (h) = —
240x8 (1 4+ 251) 2 Bgs(h)

’

where

g1 (h) =63 + 5760k + 269376h% + 6125568h> + 54280192h*,
Dgr(x) =5 + 804 2x + 352x2 — 7168+/2x> — 81664x* + 167936+/2x°> + 2670592x°
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— 5111808v/2x” — 62914560x® + 20971520+/2x° + 536870912 '°
+536870912+/2x 1,
g3 (h) =21 + 2364h + 92544h* + 1956864h° + 165806081*.

By calculation the Sturm’s sequence of g (h) and Dy (x(h)), we know that they have
0,1 zeros on (—2%, O), respectively. With the aid of Mathematica, Dgr(x(h)) has a

unique zero hy, ~ —0.0134724 € (hg, 0), and $g(h) has a negative local maximum
at h = h,, which implies ®g(#) is non-vanishing on (4¢, 0). Since $g(h) is strictly

increasing on (—2%, ho) and lim, Ly dg(h) = 0, Og(h) is also non-vanishing on

25
<—2L5, ho). Thus, we obtain H(2) = 7.
We can similarly prove that the ordered set F; is an ECT-system on (— zis 0>, and

F3 is an ECT-system with accuracy 1 on (—2% 0). This ends the proof. O

Theorem 1.2. follows from Lemmas 3.5, 3.7, and 3.8.
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