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Abstract
In this paper, we consider a delayed patch-constructed Nicholson’s blowflies system in
almost periodic environment. By combining the innovative inequality technique with
the basic properties of almost periodic functions and the fluctuation lemma, some
testable criteria are achieved to verify the global exponential stability of the addressed
almost periodic system under more general conditions, which improve and comple-
ment the existing literature. In particular, the assumptions employed in the established
exponential stability criteria are sharp when the addressed system degenerates into the
scalar Nicholson’s blowflies equation. Moreover, a numerical example is presented to
illustrate the effectiveness of the theoretical results.

Keywords Nicholson’s blowflies system · Patch structure · Time-varying delay ·
Almost periodic dynamics

Mathematics Subject Classification 34K13 · 34C25

1 Introduction

The following known delay differential equation consistent with Nicholson’s classic
blowfly data [1] was established by Gurney in 1980 [2].

x ′(t) = −dx(t) + βx(t − τ)e−x(t−τ), d, β, τ ∈ (0, +∞). (1.1)

Here, x(t) labels for the size of the population at time t , d stands for the per capita daily
adult death rate, β denotes the maximum per capita daily egg production and τ repre-
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sents the generation time, which refers to the time taken from birth to maturity. This
model was studied in detail in [3]. Considering that the external conditions surround-
ing the actual biological model tend to undergo periodic or almost periodic changes
in line with seasonal and climatic variations, Eq. (1.1) can be naturally promoted as
the following non-autonomous version:

x ′(t) = −d(t)x(t) + β(t)x(t − τ(t))e−x(t−τ(t)), (1.2)

in which t ≥ t0, d(t) > 0, β(t) > 0 and τ(t) ≥ 0 are almost periodic on R. Recently,
the author of [4] has successively studied the global asymptotic stability issue of
periodic equation (1.2) under the following key conditions:

1 < min
t∈[t0,t0+ω]

β(t)

d(t)
≤ max

t∈[t0,t0+ω]
β(t)

d(t)
≤ max

t∈[t0,t0+ω]
β(t)

d(t) − τ(t)β(t) supt∈R β(t)
≤ e2,

(1.3)

here ω > 0 is the period.
It is widely recognized that populations evolve influenced by external effects which

are roughly in nature, but not exactly periodic, or under environmental forcing which
exhibits different, noncommensurate periods. This sort of time dependence can arise
from the interplay of short-term weather cycles and seasonal climate variations, or
from the superposition of daily and annually periodic phenomena, and so on. Growth
processes, for instance, depend on the length of days and nights which varies during
the year. Models with such time dependence are characterized more appropriately
by quasi-periodic or almost periodic equations or even by certain nonautonomous
equations rather than by periodic ones [5]. Due to this fact, the biological parameters
in model (1.2) may all not be periodic, but fall into the class of almost periodic
functions. For example, Li et al. in [6] has systematically demonstrated the existence
and global exponential attractivity of a unique positive almost periodic solution for
equation (1.2) based on the subsequent pivotal assumption:

1 < inf
t∈R

β(t)

d(t)
≤ supt∈R

β(t)

d(t) − τ(t)β(t) supt∈R β(t)
< e2, (1.4)

which is a sharp condition ensuring the stability of scalar delayedNicholson’s blowflies
equation with almost periodic biological or environmental parameters.

As pointed out in [7], patch dynamicsmodels in biological systems are typically uti-
lized to describe the spatial distribution of populations as influenced by many factors,
such as habitats with different food-rich patches, ecological systems with protected
and non-protected areas, single species structured into several stages according to age
or size, and many other situations of heterogeneous environments. Given the preva-
lence of patch environments, mathematicians and biologists are increasingly focused
on understanding the dynamic evolution of populations at regional or local scales. Con-
sequently, with the recognition that the habitats of many species are fragmented and
spatial domains exhibit discrete physical regionalization (often referred to as patches),
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the following time-varying delayed Nicholson’s blowflies system incorporated with
patch structure has been proposed and analyzed [8–16].

u′
p(t) = −dp(t)u p(t) +

n∑

q=1,q �=p
apq(t)uq(t)

+
m∑

q=1
βpq(t)u p(t − τpq(t))e−cpq (t)u p(t−τpq (t)), t ≥ t0,

(1.5)

where u p(t) stands for the number of the denseness of the pth-species at time t ,
apq(t)(p �= q) represents the percentage of the species moving from patch q to patch
p at time t , dp(t) is the coefficient of instantaneous loss for patch p at time t (which
integrates both death rate and migration rate of the species in patch p moving to other
patches), and they subject to the conditions listed below:

dp(t) >
n∑

q=1,q �=p
apq(t). (1.6)

Besides, βpq(t)u p(t − τpq(t))e−cpq (t)u p(t−τpq (t)) stands for the reproductive function
for class p at time t , βpq(t) labels the birth rate for the species, τpq(t) represents
the generation time, 1

cpq (t) denotes the size at which the population reproduces at its
maximum rate, where p ∈ P := {1, . . . , n}, q ∈ Q := {1, . . . ,m}.

Very recently, some excellent results on the dynamics of Nicholson’s blowflies sys-
temwith patch structure have been established. For instance, Faria in [17] obtained the
periodic attractivity on patch-constructed Nicholson’s blowflies system with multiple
delays of the forms

u′
p(t) = −dp(t)u p(t) +

n∑

q=1,q �=p

apq(t)uq(t)

+ βp(t)u p(t − n pm)e−γp(t)u p(t−n pm), t ≥ t0,

(1.7)

where m > 0, n p ∈ N, dp(t), βp(t), γp(t) are positive, continuous and m−periodic,
apq(t) is nonnegative, continuous andm−periodic, for all p, q. Subsequently, based on
Faria’s conclusions, Zhao et al. [18] infer that sufficient criteria ensuring the existence
of a unique positive periodic solution of system (1.5) that is globally asymptotically
stable can be established only under the following assumptions:

dp(t)vp −
n∑

q=1,q �=p

apq (t)vq −
m∑

q=1

βpq (t)

⎡

⎣
n∑

q=1,q �=p

a+
pqvq +

m∑

q=1

β+
pqvp

⎤

⎦ τpq (t) > 0,

cpq (t)vpα ≤ 2, (1.8)
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and

1 <

{ ∑m
q=1 βpq (t)vp

dp(t)vp−∑n
q=1,q �=p apq (t)vq

}−
,

{ ∑m
q=1 βpq (t)vpe−cpq (t)vpα

dp(t)vp−∑n
q=1,q �=p apq (t)vq−∑m

q=1 βpq (t)[∑n
q=1,q �=p a

+
pqvq+∑m

q=1 β+
pqvp]τpq (t)

}+
≤ 1,

⎫
⎪⎪⎬

⎪⎪⎭

(1.9)

for each t ∈ R, p ∈ P and q ∈ Q, where α > 0, and v = (v1, v2, . . . , vn) is a
positive vector.

In viewof the practical backgroundof biomathematicalmodelswith almost periodic
parameters, and the non-autonomous ones are more difficult to analyse in general. It
is important and interesting to establish sharp sufficient criteria for ascertaining the
existence and globally exponential stability on positive almost periodic solutions of
patch-constructed Nicholson’s blowflies system with multiple delays. On the other
hand, it is preferable and desirable that the biological model not only converges, but
also converges as fast as possible in the real world, as we also know that exponential
stability gives a fast convergence rate to the almost periodic solution. However, there
are few existing results on the research of establishing sharp criteria for ensuring the
stability problem of almost periodic system (1.5) up to now. Addressing this problem
constitutes the purpose of this paper, which will innovate and promote the theory and
application of delay differential equations to some extent. More precisely, the main
contributions of this paper can be summarized as the following three aspects.:

1) A class of delay patch-constructed model for Nicholson’s blowflies system is
proposed, meanwhile, the basic problems for system (1.5) such as positiveness,
persistence, and boundedness are achieved.

2) Under some assumptions, the global exponential stability of positive almost peri-
odic solutions for system (1.5) is established through the fluctuation lemma
alongside innovative inequality analyses, which enhancing and extending the key
findings in [6, 20–22]. In particular, the sharp conditions ensuring the almost peri-
odic stability of scalar delayed Nicholson’s blowflies established in the above
literature are comprehensively covered by the conclusions of this present paper.

3) A numerical simulation example and some comparative analyses are provided to
reveal the uniformity of the theoretical results.

The rest of this article is listed as below. Section 2 presents some preliminaries that will
be used in the later sections. Global exponential stability of almost periodic system
(1.5) is shown in Sect. 3. In Sects. 4 and 5, numerical simulations and conclusions are
given, respectively.

2 Preliminaries

Let C(R,�) represent the set comprising all continuous functions mapping from
R to �, with � ⊆ R. As to p ∈ P and q ∈ Q, suppose that dp, cpq , apq(p �=
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q), βpq , τpq ∈ C(R, [0,+∞)) are almost periodic and

f + = supt∈R f (t), f − = inf
t∈R f (t), where f ∈ C(R,R).

For u = (u1, . . . , un) ∈ R
n , define

|u| = (|u1|, . . . , |un|), ‖u‖ = max
p∈P

|u p|.

Definition 2.1 (see [27]). u ∈ C(R,�) is referred to an almost periodic function on
R, if for any ε > 0, the set

T (u, ε) = {δ : |u(t + δ) − u(t)| < ε, ∀t ∈ R}

is relatively dense on R.

Designate

τp = max
q∈Q τ+

pq , τ = max
p∈P

τp, B+ =
n∏

p=1
C([−τp, 0], [0,+∞)),

and label ut (t0, ϕ)(u(t; t0, ϕ)) as the solution of system (1.5) accompanying the initial
conditions:

ut0 = ϕ, ϕ ∈ B+, in which ϕp(0) > 0 for every p ∈ P. (2.1)

Throughout the paper, when all components of a vector are positive, it is defined as
the positive vector. For a positive vector v = (v1, v2, . . . , vn), we label

L∗
p :=

⎛

⎝ 1

cpq (t)
ln

{ ∑m
q=1 βpq (t)vp

dp(t)vp − ∑n
q=1,q �=p apq (t)vq − ∑m

q=1 βpq (t)[∑n
q=1,q �=p a

+
pqvq + ∑m

q=1 β+
pqvp ]τpq (t)

}
⎞

⎠

+
,

l∗p := sup

⎧
⎨

⎩
ρ|ρ > 0,

m∑

q=1

βpq (t)vpe
−cpq (t)ρ > dp(t)vp −

n∑

q=1,q �=p

apq (t)vq , ∀t ∈ R

⎫
⎬

⎭
,

c0 := min
p∈P,q∈Q c−

pq , c0 := max
p∈P,q∈Q c+

pq ,

and

L∗ := max
p∈P

L∗
p, k∗ ∈ (0, 1) with k∗e−k∗ = c0L∗e−c0L∗

, l∗ := min

{

min
p∈P

l∗p,
k∗

c0

}

.
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For arbitrary p ∈ P and q ∈ Q, we suppose further that

0 <

⎧
⎨

⎩
dp(t)vp −

n∑

q=1,q �=p

apq (t)vq

⎫
⎬

⎭

−
, 1 <

{ ∑m
q=1 βpq (t)vp

dp(t)vp − ∑n
q=1,q �=p apq (t)vq

}−
,

(2.2)
{

dp(t)vp −
n∑

q=1,q �=p
apq (t)vq −

m∑

q=1
βpq (t)

[
n∑

q=1,q �=p
a+
pqvq +

m∑

q=1
β+
pqvp

]

τpq (t)

}−
> 0,

(2.3)

and

L∗cpq(t) < 2 for all t ∈ R, q ∈ Q and p ∈ P. (2.4)

In what follows, we present five lemmas that will play vital roles in establishing
our principal results.

Lemma 2.2 (See [22, Proposition 3.1]) Suppose that μ(t) is an almost periodic func-
tion defined on R. Then

lim inf
t→+∞ μ(t) = μ−, and lim sup

t→+∞
μ(t) = μ+.

Lemma 2.3 Suppose that (2.2) holds. Then u(t; t0, ϕ) exists on [t0,+∞), and is
unique. Moreover, u(t; t0, ϕ) is positive and permanent.

Proof Let [t0, η(ϕ)) be the maximal existence right-interval of u(t; t0, ϕ), and denote
u(t) = u(t; t0, ϕ) for any t ∈ [t0, η(ϕ)). According to ut0 = ϕ ∈ B+ and Theorem
5.2.1 in [24], it is easy to see that ut ∈ B+ for arbitrary t ∈ [t0, η(ϕ)). This, combining
(1.5) and the facts that apq(p �= q) and βpq ∈ C(R, [0,+∞)), leads to

∫ t

t0
e− ∫ t

 dp(s)ds

⎡

⎣
n∑

q=1,q �=p

apq ()uq () +
m∑

q=1

βpq ()u p( − τpq ())e−cpq ()u p(−τpq ())

⎤

⎦

d ≥ 0,

and

u p(t) = u p(t0)e
− ∫ t

t0
dp(s)ds +

∫ t

t0
e− ∫ t

 dp(s)ds

⎡

⎣
n∑

q=1,q �=p

apq()uq()

+
m∑

q=1

βpq()u p( − τpq())e−cpq ()u p(−τpq ())

⎤

⎦ d

≥ u p(t0)e
− ∫ t

t0
dp(s)ds
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> 0, for any t ∈ [t0, η(ϕ)) and p ∈ P.

Next, one can substantiate η(ϕ) = +∞. To do this, for t ∈ [t0, η(ϕ)) and p ∈ P , we
set

mp(t) = max
t0−τp≤s≤t

u p(s), M(t) = max
p∈P

m p(t).

Then

u′
p(s) ≤

( n∑

q=1,q �=p

apq(s) +
m∑

q=1

βpq(s)

)

M(s) for arbitrary s ∈ [t0, t] and p ∈ P,

and thus

u p(s) ≤ u p(t0) +
∫ s

t0

⎛

⎝
n∑

q=1,q �=p

apq() +
m∑

q=1

βpq()

⎞

⎠ M()d

≤ ||ϕ|| +
∫ t

t0
max
p∈P

⎛

⎝
n∑

q=1,q �=p

apq() +
m∑

q=1

βpq()

⎞

⎠ M()d

for all s ∈ [t0, t] and p ∈ P,

which produces

M(t) ≤ ||ϕ|| +
∫ t

t0
max
p∈P

⎛

⎝
n∑

q=1,q �=p

apq() +
m∑

q=1

βpq()

⎞

⎠ M()d

for all t ∈ [t0, η(ϕ)).

According to Gronwall–Bellman inequality, we obtain that

0 < u p(t)

≤ mp(t)

≤ M(t)

≤ ||ϕ||e
∫ t
t0
max
p∈P

(
n∑

q=1,q �=p
apq ()+

m∑

q=1
βpq ()

)

d

for all t ∈ [t0, η(ϕ)) and p ∈ P,

which combining with [25, Theorem 2.3.1] shows that η(ϕ) = +∞.
Choose pl ∈ P such that

0 ≤ l := lim inf
t→+∞ u pl (t) = min

p∈P
lim inf
t→+∞ u p(t).
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Hereafter, we demonstrate l > 0. In contradiction, we suppose that

lim inf
t→+∞ u pl (t) = min

p∈P
lim inf
t→+∞ u p(t) = 0. (2.5)

Let

wp(t) = max

{

ξ : ξ ≤ t, u p(ξ) = min
t0≤s≤t

u p(s)

}

for t ≥ t0. (2.5) allows one can select p∗∗ ∈ P and a strictly monotone increasing
sequence {ξn}+∞

n=1 satisfying limn→+∞ ξn = +∞,

u p∗∗(wp∗∗(ξn)) = min
p∈P

u p(wp(ξn)), lim
n→+∞ u p∗∗(wp∗∗(ξn)) = 0, (2.6)

and then

lim
n→+∞ wp∗∗(ξn) = +∞. (2.7)

Without loss of generality, we further assume the following limits

lim
n→+∞ dp∗∗(wp∗∗(ξn))vp∗∗ , lim

n→+∞ βp∗∗q(wp∗∗(ξn))vp∗∗(q ∈ Q)

and

lim
n→+∞ ap∗∗q(wp∗∗(ξn))vq(q ∈ Q \ {p∗∗})

exist. In addition, we can denote Q = Q1 ∪ Q2 with

Q1 =
{

q ∈ Q| lim
n→+∞ βp∗∗q(wp∗∗(ξn))vp∗∗ > 0

}

and

Q2 =
{

q ∈ Q| lim
n→+∞ βp∗∗q(wp∗∗(ξn))vp∗∗ = 0

}

.

Based on (2.7), it can be observed that there exists n∗∗ > 0 such that

wp∗∗(ξn) > t0 + τp∗∗ for n > n∗∗.
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Let xp(t) = v−1
p u p(t), then

x ′
p(t) = v−1

p

⎡

⎣−dp(t)vpxp(t) +
n∑

q=1,q �=p

apqvq xq(t)

+
m∑

q=1

βpq(t)vpxp(t − τpq(t))e
−cpq (t)vpxp(t−τpq (t))

⎤

⎦ for all p ∈ P.

Therefore,

0 ≥ x ′
p∗∗(wp∗∗(ξn))

= v−1
p∗∗

⎡

⎣ − dp∗∗(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn))

+
n∑

q=1,q �=p∗∗
ap∗∗q(wp∗∗(ξn))vq xq(wp∗∗(ξn))

+
m∑

q=1

βp∗∗q(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn) − τp∗∗q(wp∗∗(ξn)))

×e−cp∗∗q (wp∗∗ (ξn))vp∗∗ xp∗∗ (wp∗∗ (ξn)−τp∗∗q (wp∗∗ (ξn)))

⎤

⎦

≥ v−1
p∗∗

⎡

⎣ − dp∗∗(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn))

+
n∑

q=1,q �=p∗∗
ap∗∗q(wp∗∗(ξn))vq xp∗∗(wp∗∗(ξn))

+
m∑

q=1

βp∗∗q(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn) − τp∗∗q(wp∗∗(ξn)))

×e−cp∗∗q (wp∗∗ (ξn))vp∗∗ xp∗∗ (wp∗∗ (ξn)−τp∗∗q (wp∗∗ (ξn)))

⎤

⎦

= v−1
p∗∗

⎡

⎣xp∗∗(wp∗∗(ξn))(−dp∗∗(wp∗∗(ξn))vp∗∗ +
n∑

q=1,q �=p∗∗
ap∗∗q(wp∗∗(ξn))vq)

+
m∑

q=1

βp∗∗q(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn) − τp∗∗q(wp∗∗(ξn)))
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×e−cp∗∗q (wp∗∗ (ξn))vp∗∗ xp∗∗ (wp∗∗ (ξn)−τp∗∗q (wp∗∗ (ξn)))

⎤

⎦

and

xp∗∗(wp∗∗(ξn))

⎡

⎣dp∗∗(wp∗∗(ξn))vp∗∗ −
n∑

q=1,q �=p∗∗
ap∗∗q(wp∗∗(ξn))vq

⎤

⎦

≥
m∑

q=1

βp∗∗q(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn) − τp∗∗q(wp∗∗(ξn)))

× e−cp∗∗q (wp∗∗ (ξn))vp∗∗ xp∗∗ (wp∗∗ (ξn)−τp∗∗q (wp∗∗ (ξn))), n > n∗∗,

which, together with (2.2) and (2.6), produce

lim
n→+∞ xp∗∗(wp∗∗(ξn)) = 0,

and

lim
n→+∞ xp∗∗(wp∗∗(ξn) − τp∗∗q(wp∗∗(ξn))) = 0, q ∈ Q1. (2.8)

Note that

1 ≥
∑m

q=1 βp∗∗q(wp∗∗(ξn))vp∗∗xp∗∗(wp∗∗(ξn) − τp∗∗q(wp∗∗(ξn)))

xp∗∗(wp∗∗(ξn))[dp∗∗(wp∗∗(ξn))vp∗∗ − ∑n
q=1,q �=p∗∗ ap∗∗q(wp∗∗(ξn))vq ]

× e−cp∗∗q (wp∗∗ (ξn))vp∗∗ xp∗∗ (wp∗∗ (ξn)−τp∗∗q (wp∗∗ (ξn)))

≥
∑m

q=1 βp∗∗q(wp∗∗(ξn))vp∗∗

dp∗∗(wp∗∗(ξn))vp∗∗ − ∑n
q=1,q �=p∗∗ ap∗∗q(wp∗∗(ξn))vq

× e−cp∗∗q (wp∗∗ (ξn))vp∗∗ xp∗∗ (wp∗∗ (ξn)−τp∗∗q (wp∗∗ (ξn))), n > n∗∗,

Letting n → +∞, it follows from (2.2), (2.8) and Lemma 2.2 that

1 ≥
∑

q∈Q1
limn→+∞ βp∗∗q(wp∗∗(ξn))vp∗∗

limn→+∞ dp∗∗(wp∗∗(ξn))vp∗∗ −
n∑

q=1,q �=p∗∗
limn→+∞ ap∗∗q(wp∗∗(ξn))vq

=
∑m

q=1 limn→+∞ βp∗∗q(wp∗∗(ξn))vp∗∗

limn→+∞ dp∗∗(wp∗∗(ξn))vp∗∗ − ∑n
q=1,q �=p∗∗ limn→+∞ ap∗∗q(wp∗∗(ξn))vq

= limn→+∞
[ ∑m

q=1 βp∗∗q(wp∗∗(ξn))vp∗∗

dp∗∗(wp∗∗(ξn))vp∗∗ − ∑n
q=1,q �=p∗∗ ap∗∗q(wp∗∗(ξn))vq

]

≥ lim inf t→+∞
[ ∑m

q=1 βp∗∗q(t)vp∗∗

dp∗∗(t)vp∗∗ − ∑n
q=1,q �=p∗∗ ap∗∗q(t)vq

]
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=
{ ∑m

q=1 βp∗∗q(t)vp∗∗

dp∗∗(t)vp∗∗ − ∑n
q=1,q �=p∗∗ ap∗∗q(t)vq

}−

> 1.

This is a contradiction, and hence, l > 0. ��
Remark 2.4 In Lemma 2.3, we have not required the assumption that lim inf t→+∞ βpq

(t) > 0 for p ∈ P, q ∈ Q, which is crucial for achieving persistence in [22]. This
indicates that the persistence result obtained in this paper extends the corresponding
ones in the aforementioned literature.

Lemma 2.5 (See [7, Lemma 2.3]) For arbitrary X ∈ (0, 2], K > 0 and K �= X,

e−X |K − X | >
∣
∣Ke−K − Xe−X

∣
∣ .

Lemma 2.6 Denote u(t) = u(t; t0, ϕ) for arbitrary t ∈ [t0,+∞) and choose pl , pL ∈
P such that

L = lim sup
t→+∞

u pL (t) = max
p∈P

lim sup
t→+∞

u p(t), l = lim inf
t→+∞ u pl (t) = min

p∈P
lim inf
t→+∞ u p(t).

Moreover, assume that (2.2)-(2.3) are satisfied. Then

l∗ ≤ l = lim inf
t→+∞ u pl (t) ≤ lim sup

t→+∞
u pL (t) = L ≤ L∗.

Proof With the aid of Lemma 2.3 and the fluctuation Lemma [26, Lemma A.1], we
can select {tk}+∞

k=1 and {hk}+∞
k=1 satisfying that

lim
k→+∞ tk = +∞, lim

k→+∞ u pL (tk) = L with lim
k→+∞ u′

pL
(tk) = 0, (2.9)

and

lim
k→+∞ hk = +∞, lim

k→+∞ u pl (hk) = l with lim
k→+∞ u′

pl
(hk) = 0. (2.10)

Without compromising generality, we can also assume that the following limits exist.

lim
k→+∞ dpL (tk), lim

k→+∞ uq(tk)(q �= pL), lim
k→+∞ βpLq(tk),

lim
k→+∞ cpLq(tk), lim

k→+∞ apLq(tk), lim
k→+∞ u pL (tk − τpLq(tk)),

lim
k→+∞ dpl (hk), lim

k→+∞ uq(hk)(q �= pl), lim
k→+∞ βplq(hk),

lim
k→+∞ cplq(hk), lim

k→+∞ aplq(hk), lim
k→+∞ u pl (hk − τplq(hk)).

For arbitrary ε > 0, there exists T > 0 such that

u pL (t) < L + ε for every t > T .
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Thus, for each t ∈ (T + τpL ,+∞), one has

−dpL (t)(L + ε) < v−1
pL

⎡

⎣−dpL (t)vpL u pL (t) +
n∑

q=1,q �=pL

apLq(t)vquq(t)

+
m∑

q=1

βpLq(t)vpL u pL (t − τpLq(t))e
−cpL q (t)u pL (t−τpL q (t))

⎤

⎦

< v−1
pL

⎛

⎝
n∑

q=1,q �=pL

apLq(t)vpL +
m∑

q=1

βpLq(t)vpL

⎞

⎠ (L + ε),

which, combined with the second inequality in (2.2), suggests that

|u′
pL (t)| < v−1

pL

⎛

⎝
n∑

q=1,q �=pL

apLq(t)vpL +
m∑

q=1

βpLq(t)vpL

⎞

⎠ (L + ε)

≤ v−1
pL

⎛

⎝
n∑

q=1,q �=pL

a+
pLq

vpL +
m∑

q=1

β+
pLq

vpL

⎞

⎠ (L + ε),

and

u′
pL (tk) = v−1

pL

⎧
⎨

⎩
−dpL (tk)vpL u pL (tk) +

n∑

q=1,q �=pL

apLq(tk)vquq(tk)

+
m∑

q=1

βpLq(tk)vpL u pL (tk − τpLq(tk))e
−cpL q (tk )u pL (tk−τpL q (tk))

⎫
⎬

⎭

= v−1
pL

⎧
⎨

⎩
−dpL (tk)vpL u pL (tk) +

n∑

q=1,q �=pL

apLq(tk)vquq(tk)

+
m∑

q=1

βpLq(tk)vpL

cpLq(tk)
cpLq(tk)u pL (tk)e

−cpL q (tk )u pL (tk )

+
m∑

q=1

βpLq(tk)vpL

cpLq(tk)

[
cpLq(tk)u pL (tk − τpLq(tk))e

−cpL q (tk )u pL (tk−τpL q (tk ))

−cpLq(tk)u pL (tk)e
−cpL q (tk )u pL (tk )

]
⎫
⎬

⎭

≤ v−1
pL

⎧
⎨

⎩
−dpL (tk)vpL u pL (tk) +

n∑

q=1,q �=pL

apLq(tk)vquq(tk)
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+
m∑

q=1

βpLq(tk)vpL u pL (tk)e
−cpL q (tk )u pL (tk )

+
m∑

q=1

βpLq(tk)vpL |(1 − θq)e
−θq ||u pL (tk) − u pL (tk − τpLq(tk))|

⎫
⎬

⎭

≤ v−1
pL

⎧
⎨

⎩
−dpL (tk)vpL u pL (tk) +

n∑

q=1,q �=pL

apLq(tk)vquq(tk)

+
m∑

q=1

βpLq(tk)vpL u pL (tk)e
−cpL q (tk )u pL (tk )

+
m∑

q=1

βpLq(tk)vpL

∫ tk

tk−τpL q (tk )
|u′

pL (s)|ds
⎫
⎬

⎭

≤ v−1
pL

⎧
⎨

⎩
−dpL (tk)vpL u pL (tk) +

n∑

q=1,q �=pL

apLq(tk)vquq(tk)

+
m∑

q=1

βpLq(tk)vpL u pL (tk)e
−cpL q (tk )u pL (tk )

+
m∑

q=1

βpLq(tk)

⎛

⎝
n∑

q=1,q �=pL

a+
pLq

vq +
m∑

q=1

β+
pLq

vpL

⎞

⎠ (L + ε) · τpLq(tk)

⎫
⎬

⎭
,

tk > T + τpL , (2.11)

where θq represents the intermediate point of the differential mean value theorem and
q ∈ Q.

By taking the limits on both sides of (2.11), it follows from (2.9) that

0 ≤ v−1
pL

L

⎡

⎣− lim
k→+∞ dpL (tk)vpL + lim

k→+∞

n∑

q=1,q �=pL

apLq(tk)vq

+ lim
k→+∞

m∑

q=1

βpLq(tk)vpL e
− lim

k→+∞ cpL q (tk )L

+ L + ε

L
lim

k→+∞

m∑

q=1

βpLq(tk)

⎛

⎝
n∑

q=1,q �=pL

a+
pLq

vq +
m∑

q=1

β+
pLq

vpL

⎞

⎠ · τpLq(tk)

⎤

⎦
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and

lim
k→+∞

m∑

q=1

βpLq(tk)vpL e
− lim

k→+∞ cpL q (tk )L

≥ lim
k→+∞

⎧
⎨

⎩
dpL (tk)vpL −

n∑

q=1,q �=pL

apLq(tk)vq

−
m∑

q=1

βpLq(tk)

⎡

⎣
n∑

q=1,q �=pL

a+
pLq

vq +
m∑

q=1

β+
pLq

vpL

⎤

⎦ τpLq(tk)
L + ε

L

⎫
⎬

⎭
. (2.12)

Letting ε → 0, (2.3), (2.12) and Lemma 2.2 yield

L ≤ lim
k→+∞

1

c
pL q

(tk )

× ln

⎧
⎪⎨

⎪⎩

∑m
q=1 β

pL q
(tk )v

pL

d
pL

(tk )v
pL

− ∑n
q=1,q �=p a

pL q
(tk )vq − ∑m

q=1 β
pL q

(t)
[ ∑n

q=1,q �=p a+
pL q

vq + ∑m
q=1 β

+
pL q

v
pL

]
τ
pL q

(tk )

⎫
⎪⎬

⎪⎭
,

which combined the definition of L∗ implies that L ≤ L∗.
It still needs to confirm that l∗ ≤ l = lim inf t→+∞ u pl (t). Otherwise, l

∗ >

lim inf t→+∞ u pl (t). Note that

l lim
k→+∞ cplq(hk) ≤ lim

k→+∞ cplq(hk) lim
k→+∞ u pl (hk − τplq(hk)) ≤ c0L∗,

and

l lim
k→+∞ cplq(hk) ≤ k∗ < 1, l lim

k→+∞ cplq(hk)e
−l lim

k→+∞ cpl q (hk)

= min
s∈[l lim

k→+∞ cpl q (hk), c0L∗]
se−s .

From (2.10) and the definition of l∗, we acquire

0 = − lim
k→+∞ dpl (hk)vpl lim

k→+∞ u pl (hk) +
n∑

q=1,q �=pL

lim
k→+∞ aplq(hk)vq lim

k→+∞ uq(hk)

+
m∑

q=1

limk→+∞ βplq(hk)vpl

limk→+∞ cplq(hk)
lim

k→+∞ cplq(hk) lim
k→+∞ u pl (hk − τplq(hk))

e
− lim

k→+∞ cpl q (hk ) lim
k→+∞ u pl (hk−τpl q (hk))

≥ − lim
k→+∞ dpl (hk)vpl lim

k→+∞ u pl (hk) +
n∑

q=1,q �=pL

lim
k→+∞ aplq(hk)vq lim

k→+∞ uq(hk)
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+
m∑

q=1

lim
k→+∞ βplq(hk)vpl le

−l lim
k→+∞ cpl q (hk )

≥
⎡

⎣− lim
k→+∞ dpl (hk)vpl + lim

k→+∞

n∑

q=1,q �=pL

aplq(hk)vq

+ lim
k→+∞

m∑

q=1

βplq(hk)vpl e
−l lim

k→+∞ cpl q (hk )

⎤

⎦

> 0,

a clear contradiction, indicating that l∗ ≤ l = lim inf t→+∞ u pl (t). This proves
Lemma 2.6. ��
Lemma 2.7 Let ū p(t) = ū p(t; t0, ϕ) be a solution of (1.5) with the initial data (2.1)
and ϕ′

p ∈ C([−τp, 0],R). If the assumptions of Lemma 2.6 and (2.4) are satisfied.
Then, for any ε > 0, there exists a relatively dense subset �ε of R incorporating the
property that, for each θ ∈ �ε, there is a sufficiently large N > 0 such that

|ū p(t + θ) − ū p(t)| <
ε

2
for arbitrary t > N , p ∈ P.

Proof Define

ū p(t) ≡ ū p(t0 − τp), for arbitrary t ∈ (−∞, t0 − τp). (2.13)

For θ ∈ R, from (2.4) and Lemma 2.5, one can take N0 ∈ (max {t0, t0−θ} , +∞),
l̄ ∈ (0, l∗) and L̄ > L∗ satisfying that

L̄cpq(t) < 2 for any t ∈ R, q ∈ Q, p ∈ P,

and

l̄ < ū p(t), ū p (t + θ) < L̄ for arbitrary t ≥ N0.

As to t ∈ R, set

U (t) = (U1(t),U2(t), . . . ,Un(t)), Up(t) = ū p (t + θ)

ū p(t)
− 1,

and

�p(θ, t) = −[dp(t + θ) − dp(t)]ū p(t + θ) +
n∑

q=1,q �=p

[apq (t + θ) − apq (t)]ūq (t + θ)

+
m∑

q=1

[βpq (t + θ) − βpq (t)]ū p(t + θ − τpq (t + θ))e−cpq (t+θ)ū p(t+θ−τpq (t+θ))
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+
m∑

q=1

βpq (t)
[
ū p(t + θ − τpq (t + θ))e−cpq (t+θ)ū p(t+θ−τpq (t+θ))

−ū p(t − τpq (t) + θ)e−cpq (t+θ)ū p(t−τpq (t)+θ)
]

+
m∑

q=1

βpq (t)
[
ū p(t − τpq (t) + θ)e−cpq (t+θ)ū p(t−τpq (t)+θ)

−ū p(t − τpq (t) + θ)e−cpq (t)ū p(t−τpq (t)+θ)
]
.

Let K0 = max{t0 + N0 + τ, t0 + N0 + τ − θ}. Then, for all t > K0, we have

U ′
p(t) = ū′

p(t + θ)ū p(t) − ū p(t + θ)ū′
p(t)

[ū p(t)]2

= 1
[
ū p(t)

]2

⎧
⎨

⎩
ū p(t)

⎡

⎣�p (θ, t) − dp(t)ū p (t + θ) +
n∑

q=1,q �=p

apq (t)ūq (t + θ)

+
m∑

q=1

βpq (t)ū p(t − τpq (t) + θ)e−cpq (t)ū p(t−τpq (t)+θ)

⎤

⎦ − ū p(t + θ)

×
⎡

⎣−dp(t)ū p(t) +
n∑

q=1,q �=p

apq (t)ūq (t)

+
m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

⎤

⎦

⎫
⎬

⎭

= 1
[
ū p(t)

]2

⎧
⎨

⎩
ū p(t)�p (θ, t) + ū p(t)

n∑

q=1,q �=p

apq (t)ūq (t + θ)

+ ū p(t)
m∑

q=1

βpq (t)ū p(t − τpq (t) + θ)e−cpq (t)ū p(t−τpq (t)+θ)

− ū p(t + θ)

n∑

q=1,q �=p

apq (t)ūq (t)

−ū p(t + θ)

m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

⎫
⎬

⎭

= �p (θ, t)

ū p(t)
+ 1

[ū p(t)]2

⎧
⎨

⎩
ū p(t)

n∑

q=1,q �=p

apq (t)ūq (t + θ)

−ū p(t + θ)

n∑

q=1,q �=p

apq (t)ūq (t)

⎫
⎬

⎭

+ 1

[ū p(t)]2

⎧
⎨

⎩
ū p(t)

m∑

q=1

βpq (t)ū p(t − τpq (t) + θ)e−cpq (t)ū p(t−τpq (t)+θ)

−ū p(t + θ)

m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

⎫
⎬

⎭



Almost Periodic Dynamics of a Delayed Patch-Constructed… Page 17 of 33   272 

= �p (θ, t)

ū p(t)
+

∑n
q=1,q �=p apq (t)

ū p(t)

{

(ūq (t + θ) − ūq (t)) − ūq (t)
ū p(t + θ) − ū p(t)

ū p(t)

}

+ 1

[ū p(t)]2

⎧
⎨

⎩
ū p(t)

m∑

q=1

βpq (t)ū p(t − τpq (t) + θ)e−cpq (t)ū p(t−τpq (t)+θ)

− ū p(t)
m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

+ ū p(t)
m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

−ū p(t + θ)

m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

⎫
⎬

⎭

= �p (θ, t)

ū p(t)
+

∑n
q=1,q �=p apq (t)

ū p(t)

{

(ūq (t + θ) − ūq (t)) − ūq (t)
ū p(t + θ) − ū p(t)

ū p(t)

}

+ 1

[ū p(t)]2

⎧
⎨

⎩
ū p(t)

m∑

q=1

βpq (t)
[
ū p(t − τpq (t) + θ)e−cpq (t)ū p(t−τpq (t)+θ)

−ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))
]

−
m∑

q=1

βpq (t)ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))[ū p(t + θ) − ū p(t)]
⎫
⎬

⎭

= �p (θ, t)

ū p(t)
+

∑n
q=1,q �=p apq (t)

ū p(t)
ūq (t)(Uq (t) −Up(t))

+
∑m

q=1 βpq (t)

ū p(t)

{[
ū p(t − τpq (t))(1 +Up(t − τpq (t)))e−cpq (t)ū p(t−τpq (t))(1+Up(t−τpq (t)))

−ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))
]

− ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))Up(t)
}

= �p (θ, t)

ū p(t)
+

∑n
q=1,q �=p apq (t)

ū p(t)
ūq (t)Uq (t)

+
∑m

q=1 βpq (t)

ū p(t)

[
ū p(t − τpq (t))(1 +Up(t − τpq (t)))e−cpq (t)ū p(t−τpq (t))(1+Up(t−τpq (t)))

−ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))

]

−
{∑n

q=1,q �=p apq (t)

ū p(t)
ūq (t)Up(t) +

∑m
q=1 βpq (t)

ū p(t)
ū p(t − τpq (t))e−cpq (t)ū p(t−τpq (t))Up(t)

}

.

(2.14)

Define

G(x, y) : [c0l̄, c0 L̄] × [c0l̄, c0 L̄] → R, G(x, y) =
{

xe−x−ye−y

x−y , x �= y,
(1 − x)e−x , x = y.

(2.15)
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Clearly, G(x, y) is continuous on R
2. It follows from Lemma 2.5 that

|G(x, y)| < e−x for all (x, y) ∈ D := [c0l̄, c0 L̄] × [c0l̄, c0 L̄].

Therefore, it is possible to choose an enough small r > 0 obeying that, for arbitrary
(u, v) ∈ D, p ∈ P and t ∈ R,

|G(u, v)| <
1

erτp

[

e−u − 2r ū p(t)
∑m

q=1 βpq(t)l̄

]

, (2.16)

and then

|ue−u − ve−v| ≤ 1

erτp

[

e−u − 2r ū p(t)
∑m

q=1 βpq(t)l̄

]

|u − v|. (2.17)

In view of Lemma 2.6, it is evident that ū p(t) and ū′
p(t) are bounded on [t0, +∞).

It follows from (2.13) that ū p(t) is uniformly continuous on R. Hence, for arbitrary
ε > 0, we are able to select a small enough ε̃ > 0 satisfying that

|apq(t) − apq(t + θ)| < ε̃, |βpq(t) − βpq(t + θ)| < ε̃,

|cpq(t) − cpq(t + θ)| < ε̃, |τpq(t) − τpq(t + θ)| < ε̃,

it then follows that

|�p(θ, t)|
ū p(t)

<
1

4L̄
rε, (2.18)

where t ∈ R, p ∈ P, q ∈ Q. Furthermore, for ε̃ > 0, by exploiting the characteristics
of the set of uniform almost periodic functions [27, P. 19, corollary 2.3], it’s possible
to select a relatively dense subset �ε̃ of R agreeing that

|apq(t) − apq(t + θ)| < ε̃, |βpq(t) − βpq(t + θ)| < ε̃,

|cpq(t) − cpq(t + θ)| < ε̃, |τpq(t) − τpq(t + θ)| < ε̃,

}

θ ∈ �ε̃, t ∈ R, p ∈ P, q ∈ Q.

(2.19)

For the simplicity of notation, we designate �ε = �ε̃. Then, for any θ ∈ �ε, (2.18)
and (2.19) give us

|�p(θ, t)|
ū p(t)

<
1

4L̄
rε. (2.20)

Denote

Y (t) = (Y1(t),Y2(t), . . . ,Yn(t)), Yp(t) = ertUp(t), where p ∈ P.
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Let I (t) = supt0−τ<s≤t {ers‖U (s)‖}, and pt be an index such that

|Ypt (t)| = ‖Y (t)‖. (2.21)

It is easy to see that ert‖U (t)‖ ≤ I (t), and I (t) is nondecreasing.
We are now in a position to complete the subsequent verification in two cases.

Case 1. If

I (t) > ert‖U (t)‖ for arbitrary t > K0, (2.22)

we assert that

I (t) ≡ ‖I (K0)‖ for any t > K0. (2.23)

Assume contrarily that there exists s1 > K0 obeying that I (s1) > I (K0). Since

I (s1) > ers1‖U (s1)‖, and ert‖U (t)‖ ≤ I (K0) for arbitrary t ∈ [t0 − τ, K0],

there must be a constant α ∈ (K0, s1) such that

erα‖U (α)‖ = I (s1) ≥ I (α),

which leads to a contradiction with (2.22). Hence, the aforementioned assertion is true
and we can choose s2 > K0 satisfying

‖U (t)‖ ≤ e−r t I (t) = e−r t I (K0) <
ε

4L̄
for arbitrary t ≥ s2. (2.24)

Case 2. If there is a s∗ obeying that s∗ ≥ K0 and I (s∗) = ers
∗‖U (s∗)‖. It can be

deduced from (2.14), (2.17), (2.20) and the definition of Dini derivative that

0 ≤ D−(ers |Ups∗ (s)|)
∣
∣
∣
∣
s=s∗

≤ rers
∗ |Ups∗ (s∗)| + ers

∗ |�ps∗ (θ, s∗) |
ū ps∗ (s∗)

+ ers
∗
∑n

q=1,q �=ps∗ aps∗q (s
∗)

ū ps∗ (s∗)
ūq (s

∗)(|Uq (s
∗)| − |Ups∗ (s∗)|)

−
∑m

q=1 βps∗q (s
∗)

ū ps∗ (s∗)
ū ps∗ (s∗ − τps∗q (s

∗))ers
∗−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗))|Ups∗ (s∗)|

+ ers
∗
∑m

q=1 βps∗q (s
∗)

ū ps∗ (s∗)
1

cps∗q (s
∗)

∣
∣
∣
∣cps∗q (s

∗)ū ps∗ (t − τps∗q (s
∗))

× (1 +Ups∗ (t − τps∗q (s
∗)))e−cps∗ q (s∗)ū ps∗ (t−τps∗ q (s∗))(1+Ups∗ (t−τps∗ q (s∗)))

− cps∗q (s
∗)ū ps∗ (t − τps∗ q (s

∗))e−cps∗ q (s∗)ū ps∗ (t−τps∗ q (s∗))

∣
∣
∣
∣
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≤ rers
∗ |Ups∗ (s∗)| + ers

∗ |�ps∗ (θ, s∗) |
ū ps∗ (s∗)

+ ers
∗
∑n

q=1,q �=ps∗ aps∗q (s
∗)

ū ps∗ (s∗)
ūq (s

∗)(|Uq (s
∗)| − |Ups∗ (s∗)|)

−
∑m

q=1 βps∗q (s
∗)

ū ps∗ (s∗)
ū ps∗ (s∗ − τps∗ q (s

∗))
{
ers

∗−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗))|Ups∗ (s∗)|

− ers
∗ 1

erτps∗
|Ups∗ (s∗ − τps∗q (s

∗))|
[

e−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗)) − 2r ū ps∗ (s∗)
∑m

q=1 βps∗q (s
∗)l̄

]}

= rers
∗ |Ups∗ (s∗)| + ers

∗ |�ps∗ (θ, s∗) |
ū ps∗ (s∗)

+
∑n

q=1,q �=ps∗ aps∗ q (s
∗)

ū ps∗ (s∗)

ūq (s
∗)(ers∗ |Uq (s

∗)| − ers
∗ |Ups∗ (s∗)|)

−
∑m

q=1 βps∗q (s
∗)

ū ps∗ (s∗)
ū ps∗ (s∗ − τps∗ q (s

∗))
{

ers
∗−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗))|Ups∗ (s∗)|

− ers
∗ 1

erτps∗
|Ups∗ (s∗ − τps∗ q (s

∗))|
[

e−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗)) − 2r ū ps∗ (s∗)
∑m

q=1 βps∗q (s
∗)l̄

]}

≤ ers
∗ |�ps∗ (θ, s∗) |

ū ps∗ (s∗)

+
∑n

q=1 βps∗q (s
∗)

ū ps∗ (s∗)

{

−
[

ū ps∗ (s∗ − τps∗q (s
∗))e−cps∗ q ū ps∗ (s∗−τps∗ q (s∗)) − r ū ps∗ (s∗)

∑m
q=1 βps∗q (s

∗)

]

ers
∗ |Ups∗ (s∗)| +ū ps∗ (s∗ − τps∗q (s

∗)) e
rτps∗ q (s∗)

erτps∗
er(s

∗−τps∗ q (s∗))|Ups∗ (s∗ − τps∗q (s
∗))|

×
[

e−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗)) − 2r ū ps∗ (s∗)
∑m

q=1 βps∗q (s
∗)l̄

]}

≤
∑n

q=1 βps∗q (s
∗)

ū ps∗ (s∗)

{

−
[

ū ps∗ (s∗ − τps∗ q (s
∗))e−cps∗ q ū ps∗ (s∗−τps∗ q (s∗)) − r ū ps∗ (s∗)

∑m
q=1 βps∗q (s

∗)

]

I (s∗)

+ ū ps∗ (s∗ − τps∗ q (s
∗))

[

e−cps∗ q (s∗)ū ps∗ (s∗−τps∗ q (s∗)) − 2r ū ps∗ (s∗)
∑m

q=1 βps∗q (s
∗)l̄

]

I (s∗)
}

+ers
∗ |�ps∗ (θ, s∗) |

ū ps∗ (s∗)

≤ r I (s∗) + ers
∗ |�ps (θ, s∗) |

ū ps (s
∗)

− 2r I (s∗)

= −r I (s∗) + ers
∗ |�ps (θ, s∗) |

ū ps (s
∗)

≤ −r I (s∗) + ers
∗ 1

4L̄
rε.

This indicates

ers
∗‖U (s∗)‖ = I (s∗) ≤ 1

4L̄
εers

∗
and ‖U (s∗)‖ ≤ 1

4L̄
ε.



Almost Periodic Dynamics of a Delayed Patch-Constructed… Page 21 of 33   272 

Similarly, we drive

er t̄‖U (t̄)‖ ≤ 1

4L̄
εer t̄ with ‖U (t̄)‖ ≤ 1

4L̄
ε if I (t̄) = er t̄‖U (t̄)‖ and t̄ > s∗.

(2.25)

Furthermore, when I (t̃) > er t̃‖U (t̃)‖ for t̃ > s∗, we can take s∗ ≤ s3 < t̃ such that

I (s3) = ers3‖U (s3)‖, and I (s) > ers‖U (s)‖ for all s ∈ (s3, t̃]. (2.26)

It follows from (2.25) that

‖U (s3)‖ ≤ ε

4L̄
.

A similar reasoning as that employed in Case 1 shows that

I (s) ≡ I (s3) for all s ∈ (s3, t̃].

Consequently,

‖U (t̃)‖ < e−r t̃ I (t̃) = e−r t̃ I (s3) = ‖U (s3)‖e−r(t̃−s3) <
ε

4L̄
,

which implies that there exists N > max{s∗, s2} such that

‖U (t)‖ ≤ ε

4L̄
, and |ū p(t + θ) − ū p(t)| <

ε

2
for arbitrary t > N , p ∈ P.

This completes the proof of Lemma 2.7. ��

3 Global Exponential Stability Analysis

In this section, we will confine ourselves to prove the main results on existence and
global exponential stability of positive almost periodic solution for system (1.5).

Theorem 3.1 If all the conditions in Lemma 2.7 are valid, then system (1.5) admits a
unique almost periodic solution which is globally exponentially stable.

Proof The proof will be subdivided into three steps.

Step 1. Consider z p(t) = z p(t; t0, ϕ) as a solution of system (1.5) that fulfills the
initial data in Lemma 2.7, and designate

z p(t) ≡ z p(t − τp) for arbitrary t ∈ (−∞, t0 − τp), (3.1)
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and

πp(i, t) = −[dp(t + ti ) − dp(t)]z p(t + ti ) +
n∑

q=1,q �=p

[apq (t + ti ) − apq (t)]zq (t + ti )

+
m∑

q=1

[βpq (t + ti ) − βpq (t)]z p(t + ti − τpq (t + ti ))e
−cpq (t+ti )z p(t+ti−τpq (t+ti ))

+
m∑

q=1

βpq (t)[z p(t + ti − τpq (t + ti ))e
−cpq (t+ti )z p(t+ti−τpq (t+ti ))

− z p(t − τpq (t) + ti )e
−cpq (t+ti )z p(t−τpq (t)+ti )]

+
m∑

q=1

βpq (t)[z p(t − τpq (t) + ti )e
−cpq (t+ti )z p(t−τpq (t)+ti )

− z p(t − τpq (t) + ti )e
−cpq (t)z p(t−τpq (t)+ti )] for all t ∈ R and p ∈ P, (3.2)

where {ti }+∞
i=1 is an arbitrary sequence of real numbers. Observing the boundedness of

z p(t) and z′p(t) on [t0, +∞), one can obtain from (3.1) that z p(t) exhibits uniformcon-
tinuity onR. This follows from [27, p.19, Corollary 2.3], along with the characteristics

of almost periodic function family
{ ∑m

q=1 βpq(t),
∑n

q=1,q �=p apq(t), dp(t), cpq(t),

τpq(t)
}
, we can take a sequence {ti }+∞

i=1 which satisfies limi→+∞ ti = +∞ and

∣
∣
∣

m∑

q=1

βpq(t + ti ) −
m∑

q=1

βpq(t)
∣
∣
∣ <

1

i
,

∣
∣
∣

n∑

q=1,q �=p

apq(t + ti ) −
n∑

q=1,q �=p

apq(t)
∣
∣
∣

<
1

i
, |dp(t + ti ) − dp(t)| <

1

i
,

|cpq(t + ti ) − cpq(t)| <
1

i
, |τpq(t + ti ) − τpq(t)| <

1

i
, |πp(i, t)| <

1

i
, (3.3)

for any t ∈ R and i ∈ {1, 2, 3, . . . }.
From the boundedness of z′p(t) on [t0, +∞), ϕ′

p ∈ C([−τp, 0],R), and (3.1),

one can see that {z p(t + ti )}+∞
i=1 is uniformly bounded and equiuniformly continuous

on R. It is readily seen from Arzalà-Ascoli Lemma that there exists a subsequence
{z p(t + tin )}n≥1 of {z p(t + ti )}i≥1 such that z p(t + tin ) (To maintain simplicity, we
continue to use z p(t + ti )) uniformly converges to a continuous function z∗p(t) on any
bounded closed subinterval of R. This, combined with Lemma 2.6, results in

l∗ ≤ z∗p(t) ≤ L∗ for arbitrary t ∈ R, p ∈ P. (3.4)
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Due to (3.2) and (3.3), for any �t ∈ R and t ≥ t0, one gets

z∗p(t + �t) − z∗p(t)
= lim

i→+∞[z p(t + �t + ti ) − z p(t + ti )]

= lim
i→+∞

∫ t+�t

t
z′p(s + ti )ds

= lim
i→+∞

∫ t+�t

t

⎡

⎣−dp(s + ti )z p(s + ti ) +
n∑

q=1,q �=p

apq(s + ti )zq(s + ti )

+
m∑

q=1

βpq(s + ti )z p(s + ti − τpq(s + ti ))e
−cpq (s+ti )z p(s+ti−τpq (s+ti ))

⎤

⎦ ds

= lim
i→+∞

∫ t+�t

t

⎡

⎣−dp(s)z p (s + ti ) +
n∑

q=1,q �=p

apq(s)zq(s + ti )

+
m∑

q=1

βpq(s)z p(s + ti − τpq(s))e
−cpq (s)z p(s+ti−τpq (s)) + πp(i, s)

⎤

⎦ ds

= lim
i→+∞

∫ t+�t

t
πp(i, s)ds +

∫ t+�t

t

⎡

⎣−dp(s)z
∗
p(s) +

n∑

q=1,q �=p

apq(s)z
∗
q(s)

+
m∑

q=1

βpq(s)z
∗
p(s − τpq(s))e

−cpq (s)z∗p(s−τpq (s))

⎤

⎦ ds

=
∫ t+�t

t

⎡

⎣−dp(s)z
∗
p(s) +

n∑

q=1,q �=p

apq(s)z
∗
q(s)

+
m∑

q=1

βpq(s)z
∗
p(s − τpq(s))e

−cpq (s)z∗p(s−τpq (s))

⎤

⎦ ds, (3.5)

where t + ti , t + ti + �t ≥ t0. Apparently, (3.5) leads to

(z∗p(t))′ = −dp(t)z
∗
p(t) +

n∑

q=1,q �=p

apq(t)z
∗
q(t)

+
m∑

q=1

βpq(t)z
∗
p(t − τpq(t))e

−cpq (t)z∗p(t−τpq (t)),

(3.6)

for all t ≥ t0. This shows that z∗p(t) is a solution of system (1.5).
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Step 2. We will confirm that z∗p(t) is almost periodic on R. In accordance with
Lemma 2.7, for any given ε > 0, there exists a relatively dense subset �ε of R
incorporating the characteristic of having a sufficiently large N > 0 corresponding to
that

|z p(t + θ) − z p(t)| <
ε

2
for arbitrary t > N , p ∈ P. (3.7)

For every fixed s ∈ R, select N1 > N such that for each i > N1,

s + ti > N and |z p(s + ti + θ) − z p(s + ti )| <
ε

2
. (3.8)

Letting i → +∞, (3.8) implies that

|z∗p(s + θ) − z∗p(s)| = lim
i→+∞ |z p(s + ti + θ) − z p(s + ti )| ≤ ε

2
< ε,

which means that z∗p(t) is a positively almost periodic function.
Step3.Weshall validate that z∗p(t) is globally exponentially stable. For this purpose,

we label

x∗
p(t) = v−1

p z∗p(t), xp(t) = v−1
p z p(t; t0, ϕ),

and set

w(t) = (w1(t), w2(t), . . . , wn(t)), wp(t) = xp(t)

x∗
p(t)

− 1 for all t ∈ [t0 − τp, +∞).

Then, for arbitrary p ∈ P and t ≥ t0, produces

x ′
p(t) = v−1

p

[
− dp(t)vpxp(t) +

n∑

q=1,q �=p
apq(t)vq xq(t)

+
m∑

q=1
βpq(t)vpxp(t − τpq(t))e−cpq (t)vpxp(t−τpq (t))

]
,

(x∗
p)t0 = v−1

p ϕp, ϕ ∈ B+ with ϕp(0) > 0,

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.9)

and

w′
p(t) = x ′

p(t)x
∗
p(t) − xp(t)(x∗

p(t))
′

(x∗
p(t))

2

= v−1
p

(x∗
p(t))

2

{

x∗
p(t)

[

− dp(t)vpxp(t) +
n∑

q=1,q �=p

apq(t)vq xq(t)

+
m∑

q=1

βpq(t)vpxp(t − τpq(t))e
−cpq (t)vpxp(t−τpq (t))

]
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− xp(t)

[

− dp(t)vpx
∗
p(t) +

n∑

q=1,q �=p

apq(t)vq x
∗
q (t)

+
m∑

q=1

βpq(t)vpx
∗
p(t − τpq(t))e

−cpq (t)vpx∗
p(t−τpq (t))

]}

= 1

vpx∗
p(t)

⎧
⎨

⎩
−dp(t)vpxp(t) +

n∑

q=1,q �=p

apq(t)vq xq(t)

+
m∑

q=1

βpq(t)vpxp(t − τpq(t))e
−cpq (t)vpxp(t−τpq (t))

−
[

− dp(t)vpxp(t) +
n∑

q=1,q �=p

apq(t)vq x
∗
q (t)

xp(t)

x∗
p(t)

+
m∑

q=1

βpq(t)vp
xp(t)

x∗
p(t)

x∗
p(t − τpq(t))e

−cpq (t)vpx∗
p(t−τpq (t))

]
⎫
⎬

⎭

= 1

vpx∗
p(t)

⎧
⎨

⎩

n∑

q=1,q �=p

apq(t)vq x
∗
q (t)[wq(t) − wp(t)]

+
m∑

q=1

βpq(t)vp

[

x∗
p(t − τpq(t))(wp(t − τpq(t)) + 1)

e−cpq (t)vpx∗
p(t−τpq (t))(wp(t−τpq (t))+1)

−(wp(t) + 1)x∗
p(t − τpq(t))e

−cpq (t)vpx∗
p(t−τpq (t))

]
⎫
⎬

⎭
. (3.10)

Now, we prove that z∗p(t) is stable. For any ε > 0, let

k∗ = min
p∈P

v−1
p l∗,

H = k∗ε
L∗ and |(xp)t0(θ) − v−1

p ϕp(θ)| < H with p ∈ P and t ∈ [−τp, t0],

we now verify that

|xp(t) − x∗
p(t)| < ε with p ∈ P and t ∈ [−τp,+∞). (3.11)

It is easy to see that for every t ∈ [t0 − τp, t0],

|wp(t)| =
∣
∣
∣
xp(t) − x∗

p(t)

x∗
p(t)

∣
∣
∣ <

H

x∗
p(t)

≤ H

k∗ . (3.12)
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We assert

|wp(t)| <
H

k∗ for all t > t0 and p ∈ P. (3.13)

If the assertion would not hold, then there exist p1 ∈ P and S1 > t0 satisfying that
either

wp1(S1) = H

k∗ , and |wq(t)| <
H

k∗ for arbitrary t ∈ [t0 − τq , S1) and q ∈ P,

(3.14)

or

wp1(S1) = − H

k∗ , and |wq(t)| <
H

k∗ for arbitrary t ∈ [t0 − τq , S1) and q ∈ P.

(3.15)

If (3.14) is satisfied, and there is a q ∈ Q such that βp1q(S1)wq(S1−τp1q(S1)) �= 0,
we get from (3.3), (3.10), (2.4), Lemmas 2.5 and 2.6 that

0 ≤ w′
p1(S1)

= 1

vp1x
∗
p1(S1)

⎧
⎨

⎩

n∑

q=1,q �=p1

ap1q(S1)vq x
∗
q (S1)[wq(S1) − wp1(S1)]

+
m∑

q=1

βp1q(S1)vp1

[

x∗
p1(S1 − τp1q(S1))(wp1(S1 − τp1q(S1)) + 1)

×e−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))(wp1 (S1−τp1q (S1))+1)

−(wp1(S1) + 1)x∗
p1(S1 − τp1q(S1))e

−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))
]
⎫
⎬

⎭

≤
∑m

q=1 βp1q(S1)

vp1x
∗
p1(S1)cp1q(S1)

{

cp1q(S1)vp1x
∗
p1(S1 − τp1q(S1))(wp1(S1 − τp1q(S1)) + 1)

× e−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))(wp1 (S1−τp1q (S1))+1)

− cp1q(S1)vp1x
∗
p1(S1 − τp1q(S1))e

−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))

− cp1q(S1)vp1wp1(S1)x
∗
p1(S1 − τp1q(S1))e

−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))
}

<

∑m
q=1 βp1q(S1)

vp1x
∗
p1(S1)cp1q(S1)

{

cp1q(S1)vp1x
∗
p1(S1 − τp1q(S1))

× |wp1(S1 − τp1q(S1))|e−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))
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− cp1q(S1)vp1
H

k∗ x
∗
p1(S1 − τp1q(S1))e

−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))
}

=
∑m

q=1 βp1q(S1)

x∗
p1(S1)

x∗
p1(S1 − τp1q(S1))e

−cp1q (S1)vp1 x
∗
p1

(S1−τp1q (S1))

[
− H

k∗ + |wp1(S1 − τp1q(S1))|
]

≤ 0,

which is a contradiction. In addition, when βp1q(S1)wq(S1 − τp1q(S1)) = 0 for all
q ∈ Q, we can establish the aforementioned contradiction as well.

If (3.15) is true, a contradiction arises such that (3.13) holds by a similar manner,
so (3.11) follows, and then

|wp(t)| =
∣
∣
∣
∣
xp(t) − x∗

p(t)

x∗
p(t)

∣
∣
∣
∣

=
∣
∣
∣
∣
v−1
p z p(t) − v−1

p z∗p(t)
v−1
p z∗p(t)

∣
∣
∣
∣

=
∣
∣
∣
∣
z p(t) − z∗p(t)

z∗p(t)

∣
∣
∣
∣

<
H

k∗ .

Thus,

|z p(t) − z∗p(t)| < z∗p(t)
H

k∗ ≤ L∗ H
k∗ = ε for all t ≥ t0 and p ∈ P,

which implies that z∗p(t) is stable.
Finally, it suffices to prove the global exponential attractiveness of z∗p(t). From

(2.4) and Lemma 2.6, one can choose 0 < l̄ < l∗ ≤ l ≤ L ≤ L∗ < L̄ such that

L̄cpq(t) < 2 for all t ∈ R, q ∈ Q, p ∈ P.

According to (2.15) and Lemma 2.5, one can choose a small enough positive constant
r obeying that, for arbitrary (u, v) ∈ D, p ∈ P and t ∈ R,

|G(u, v)| <
1

erτp

[

e−u − 2r x∗
p(t)

∑m
q=1 βpq(t)l̄

]

, (3.16)

and then

∣
∣ue−u − ve−v

∣
∣ ≤ 1

erτp

[

e−u − 2r x∗
p(t)

∑m
q=1 βpq(t)l̄

]

|u − v|. (3.17)
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Define

Wp(t) = ert |wp(t)| for all t ∈ R and p ∈ P. (3.18)

In light of (3.4) and Lemma 2.6, there exists a large enough T ∗ > t0 such that

0 < l̄ < z∗p(t), z p(t) < L̄ for any t > T ∗and p ∈ P. (3.19)

Clearly, for any t ∈ [t0 − τ, T ∗] and p ∈ P ,

Wp(t) < max
s∈[t0−τ, T ∗] ‖e

rsw(s)‖ + 1
�= Mϕ. (3.20)

We claim that

Wp(t) < Mϕ for all t > T ∗ and p ∈ P. (3.21)

Assume that, in contradiction to the conclusion (3.21), there exist p2 ∈ P and T0 > T ∗
satisfying that

Wp2(T0) = Mϕ and Wq(t) < Mϕ for arbitrary t ∈ [t0 − τq , T0) and q ∈ P.

(3.22)

Using (3.10), (3.16) and (3.19), we obtain that

0 ≤ D−(ers |wp2 (s)|)
∣
∣
∣
∣
s=T0

≤ rerT0 |wp2 (T0)| + erT0
1

vp2 x
∗
p2 (T0)⎧

⎨

⎩

n∑

q=1,q �=p2

ap2q (T0)vq x
∗
q (T0)[|wq (T0)| − |wp2 (T0)|]

+
m∑

q=1

βp2q (T0)vp2

∣
∣
∣
∣x

∗
p2 (T0 − τp2q (T0))(wp2 (T0 − τp2q (T0)) + 1)

× e−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))(wp2 (T0−τp2q (T0))+1)

− x∗
p2 (T0 − τp2q (T0))e

−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))
∣
∣
∣
∣

−
m∑

q=1

βp2q (T0)vp2 |wp2 (T0)|x∗
p2 (T0 − τp2q (T0))e

−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))

⎫
⎬

⎭

≤ rerT0 |wp2 (T0)| + erT0
1

vp2 x
∗
p2 (T0)

{∑m
q=1 βp2q (T0)

cp2q (T0)

[∣
∣
∣cp2q (T0)vp2 x

∗
p2 (T0 − τp2q (T0))

× (wp2 (T0 − τp2q (T0)) + 1)e−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))(wp2 (T0−τp2q (T0))+1)
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− cp2q (T0)vp2 x
∗
p2 (T0 − τp2q (T0))e

−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))
∣
∣
∣

− cp2q (T0)vp2 |wp2 (T0)|x∗
p2 (T0 − τp2q (T0))e

−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))
]}

≤ rerT0 |wp2 (T0)| +
∑m

q=1 βp2q (T0)

x∗
p2 (T0)

{
x∗
p2 (T0 − τp2q (T0))e

rT0 |wp2 (T0 − τp2q (T0))|

×
[

e−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0)) − 2r x∗
p2 (T0)∑m

q=1 βp2q (T0)l̄

]
1

erτp2

− erT0 |wp2 (T0)|x∗
p2 (T0 − τp2q (T0))e

−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))
}

< rerT0 |wp2 (T0)| +
∑m

q=1 βp2q (T0)

x∗
p2 (T0)

{
x∗
p2 (T0 − τp2q (T0))Mϕ

×
[

e−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0)) − 2r x∗
p2 (T0)∑m

q=1 βp2q (T0)l̄

]

− Mϕx
∗
p2 (T0 − τp2q (T0))e

−cp2q (T0)vp2 x
∗
p2

(T0−τp2q (T0))
}

< rMϕ − 2rMϕ

= −rMϕ

< 0.

This contradicts and suggests that (3.21) is valid. Thus,

Wp(t) = ert |wp(t)|
= ert

|xp(t) − x∗
p(t)|

x∗
p(t)

= ert
|v−1

p z p(t) − v−1
p z∗p(t)|

v−1
p z∗p(t)

= ert
|z p(t) − z∗p(t)|

z∗p(t)
< Mϕ,

which means that

|z p(t) − z∗p(t)| < z∗p(t)Mϕe
−r t ≤ L̄Mϕe

−r t , for any t > T ∗ and p ∈ P.

This concludes the proof of Theorem 3.1. ��

For n = m = 1 and c ≡ 1, system (1.5) becomes the following Nicholson’s
blowflies equation [6] :

u′(t) = −d(t)u(t) + β(t)u(t − τ(t))e−u(t−τ(t)). (3.23)
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One can easily check that the hypotheses (2.2)–(2.4) are satisfied. Then, fromTheorem
3.1, the following corollary can be deduced.

Corollary 3.2 Assume that the conditions of Lemma 2.7 hold, Eq. (3.23) admits a
unique positive almost periodic solution which is globally exponentially stable.

Remark 3.3 Especially, when the impact of delay vanishes, the sharp conditions (2.2)–
(2.4) become

0 <

⎧
⎨

⎩
dp(t)vp −

n∑

q=1,q �=p

apq(t)vq

⎫
⎬

⎭

−
, 1 <

{ ∑m
q=1 βpq(t)vp

dp(t)vp − ∑n
q=1,q �=p apq(t)vq

}−
,

(3.24)
{

dp(t)vp −
n∑

q=1,q �=p
apq(t)vq

}−
> 0, (3.25)

{ ∑m
q=1 βpq(t)vp

dp(t)vp − ∑n
q=1,q �=p apq(t)vq

}+
< e2. (3.26)

These time-delay independent conditions guarantee that system (1.5) has a unique
globally exponentially stable positive almost periodic solution. Specifically, we have
the following corollary:

Corollary 3.4 Given that (3.24)–(3.26) are satisfied, then there exists a positive almost
periodic solution of system (1.5) which is globally exponentially stable.

4 A Numerical Example

In this section, we give a numerical example to support the validity of our results.

Example 4.1 Consider the two-dimensional delay Nicholson’s blowflies system with
patch-structure as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W ′
1(t) = −(2 + 2| cos 2t |)W1(t) + (1 + 1| cos 2t |)W2(t)

+(0.5 + 0.06| cos 2t |)| sin t |(4.05 + (e2 − 4.1))

×W1(t − 1
60e4

| cos t |)e−W1(t− 1
60e4

| cos t |)

+(0.5 + 0.04| cos 2t |)(4.05 + (e2 − 4.1)| sin t |)
×W1(t − 1

50e4
| sin 2t |)e−W1(t− 1

50e4
| sin 2t |)

,

W ′
2(t) = −(3 + 3| sin 2t |)W2(t) + (1 + 1| sin 2t |)W1(t)

+(0.6 + 0.2| sin 2t |)| cos t |(4.05 + (e2 − 4.1))

×W2(t − 1
70e4

| cos 6t |)e−W2(t− 1
70e4

| cos 6t |)

+(1 + 0.2| sin 2t |)(4.05 + (e2 − 4.1)| cos t |)
×W2(t − 1

70e4
| sin 8t |)e−W2(t− 1

70e4
| sin 8t |)

,

(4.1)

where t ≥ t0 = 0.
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Fig. 1 Transient states of system (4.1) with initial values (W1(t),W2(t)) = (0.5, 1), (1, 1.7), (1.5, 2.3)

It is straightforward to verify that (4.1) adheres to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vp = cpq(t) = 1, m = n = 2,
{ ∑m

q=1 βpq (t)vp

dp(t)vp−∑n
q=1,q �=p apq (t)vq

}−
≈ 1.09 > 1,

{ ∑m
q=1 βpq (t)vp

dp(t)vp−∑n
q=1,q �=p apq (t)vq−∑m

q=1 βpq (t)[∑n
q=1,q �=p a

+
pqvq+∑m

q=1 β+
pqvp]τpq (t)

}+

≈ 6.04 < e2,

(4.2)

and L∗cpq(t) ≈ ln 6.04 < 2.
Hence, according to Theorem 3.1, it can be demonstrated that Eq. (4.1) possesses

a positive globally exponentially stable almost periodic solution. The findings are
validated by the subsequent numerical simulations depicted in Fig. 1. The trajectory
of the solutions robustly validates the efficacy and accuracy of the results presented in
this study.

Remark 4.2 Clearly, the results reported in [19–22] and the references therein are not
applicable to system (4.1) because (4.2) fails to meet the requirement of (1.7) and
incorporates time-varying delays. This suggests that our findings significantly extend
the current results, even under constant delay. It is evident that the model we have
examined is highly versatile, and the outcomes of this study both broaden and enhance
the existing findings from [17, 19–22, 27] and the referenced sources.
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5 Conclusions

We remark that, in nature, there is no phenomenon that is purely periodic, and this gives
the idea to consider the almost-periodic situations. So, in this paper, motivated by prior
literature addressing the stringent condition for ensuring global exponential stability
of the positive equilibrium for the autonomous delay Nicholson’s blowflies equation,
this study investigates the global exponential stability of a positive almost periodic
patch-constructed Nicholson’s blowflies system with time-varying delays. Employing
the fundamental properties of almost periodic functions, the fluctuation lemma, and
analysis techniques, this paper establishes several new adequate criteria guaranteeing
the existence and global exponential stability of the positive almost periodic solution
for the addressed system under less stringent conditions. It is notable that in the
absence of delay effects, our findings fully encompass the current results regarding the
stringent criterion ensuring the global exponential stability on the positive equilibrium
of the scalar delay Nicholson’s blowflies equation. We also claim that many results
in the literature dealing with equilibria or periodic solutions of patch-constructed
Nicholson’s blowflies system are special cases of the results in this paper. Hence, the
findings presented in this paper serve to complement and improve the corresponding
scalar almost periodic equation. The approach outlined in this paper can be readily
applied to investigate the sharp stability criteria for other types of biological models
that incorporate multiple time-varying delays, as discussed in [20, 21]. We defer this
endeavor to our future work.
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