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Abstract
Employing the KP reduction approach, the primary goal of this research work is
to investigate the soliton and rational solutions of the (3 + 1)-dimensional nonlocal
Mel’nikov equation with non-zero background. The solutions presented are all N ×
N Gram determinants. In contrast to the previous exact solutions of the nonlocal
model obtained by the KP reduction method, we introduce two types of parameter
constraints into the τ function. This leads to the appearance of rational solutions and
soliton (breather) solutions against a background of periodic wave. In particular, the
soliton types we obtained are dark soliton, antidark soliton, breather, periodic wave
and degenerate soliton. Furthermore, it has been discovered that lumps can appear
in odd or even numbers in two backgrounds, which is a novel finding. The dynamic
behavior of all solutions has been comprehensively analyzed.

Keywords (3 + 1)-dimensional nonlocal Mel’nikov equation · KP hierarchy
reduction approach · Soliton solution · Rational solution

1 Introduction

Nonlinear mathematical physics equations play a significant role in real-life applica-
tions. The nonlinear Schrödinger equations, in particular, are widely applied across
various fields, including nonlinear optics, quantum mechanics, fluid mechanics, and
other areas of nonlinear dynamics [1–4]. Algorithms based on solitons offer a promis-
ing avenue for exploring solutions to nonlinear practical problems [1, 5–9]. In the
past decades, the studies of nonlocal integrable equations in nonlinear mathematical
physics have attracted a lot of attention. Certain soliton equations demonstrate a fas-
cinating characteristic whereby the evolution of their solutions is not simply affected
by time and spatial coordinates, but is also influenced by nonlocal interactions. This
important concept derives from the parity-time symmetry in quantum mechanics,
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which was first proposed by Bender and Boettcher [10]. As a result of the broad uti-
lization of parity-time symmetry in multiple domains, it is naturally combined with
the integrable system. Since then, many types of nonlocal integrable equations have
also been derived [11–15]. One of the most typical examples is the nonlocal nonlinear
Schrödinger equation [16]

iqt (x, t) − qxx (x, t) − 2μq(x, t)q∗(−x, t)q(x, t) = 0, μ = ±1. (1)

Fokas developed high-dimensional variants of the equation above and suggested the
nonlocal DS equation [17–19]. Subsequently, some new nonlocal multidimensional
equations were investigated [20, 21].

Research on nonlocal integrable equations is meaningful because their solutions
possess intriguing characteristics, such as the phenomenon where solutions blow up at
a finite time and the coexistence of kink and soliton solutions [22, 23]. These features
enrich the solutions of nonlinear evolution equations. Various established methods
exist for solving integrable equations, including the Darboux transformation approach
[24], the inverse scattering transform method [25], and the KP reduction method [26–
28]. Among these techniques, the KP reduction method is particularly advantageous,
as it can produce straightforward exact solutions.

The main idea of the KP reduction method is to first obtain the bilinear forms of the
nonlinear evolution system. Then, it involves finding similar bilinear equations within
the KP hierarchy and connecting these two sets of equations through appropriate vari-
able transformations. Finally, the exact solutions of the Gram determinant are derived.
Compared with other methods, the KP reduction method can directly bypass the spec-
tral problem of nonlinear evolution equations, which is more concise and effective
for gaining higher-order (semi-)rational solutions [29]. However, the finiteness of the
bilinear equations within the KP hierarchy means that not all variable substitutions
are successful in reducing the original bilinear equations.

As an integrable extension of the KP equation, the Mel’nikov equation introduces
an addition of the complex field [30–33]:

uxxxx + uxt + 3(u2)xx − 3uyy + λ(ϕϕ∗(x, y, t))xx = 0,

iϕy = uϕ + ϕxx ,
(2)

in which ϕ indicates the complex short wave, u represents a real long wave, and λ

is a real parameter. In many physical domains, soliton equations with self-consistent
sources represent a crucial class of models. Wave interactions on the x, y plane were
initially investigated by Mel’nikov. His groundbreaking research revealed the emer-
gence of the KP equation with self-consistent sources as an integrable extension of
soliton equations [34–36]. Inspired by this, Ma et al. considered a (3+1)-dimensional
Mel’nikov equation [37]

uyy − uzz − uxt − [3u2 + uxx + 2λϕϕ∗]xx = 0,

iϕy = 2uϕ + 2ϕxx ,

iϕz = uϕ + ϕxx .

(3)
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In fact, the Eq. (3) is a high-dimensional generalization of the KP equation with self-
consistent sources.

In this present work, we propose the (3 + 1)-dimensional nonlocal Mel’nikov
equation in the form

uyy − uzz − uxt − [3u2 + uxx + 2λϕ(x, y, z, t)ϕ(x,−y,−z, t)]xx = 0,

iϕy = 2uϕ + 2ϕxx ,

iϕz = uϕ + ϕxx .

(4)

The nonlocal Eq. (4) is derived by employing the reduction ϕ∗(x, y, z, t) =
ϕ(x,−y,−z, t) in the (3 + 1)-dimensional local Eq. (3). In the case of conjugate
reduction ϕ(x, y, z, t) = ϕ∗(−x, y, z,−t), Cao and his group have studied the soli-
ton and rational solutions against a constant background [38]. The key contributions
of our work are as follows:

(i) Multi-soliton and rational solutions on a periodic wave and a constant back-
ground are constructed. This result is mainly achieved by imposing two parameter
restrictions on the solution of the τ function in the KP hierarchy.

(ii) The breather of the (3+1)-dimensional nonlocalMel’nikov equation is obtained
for the first time. In contrast to Ref. [38], we add the case of degenerate antidark-soliton
and degenerate dark-soliton.

(iii) Comparedwith previouswork,when N is even, some results are similar to those
in Refs. [39–41]. However, for odd values of N , both soliton and rational solutions
coexist in two different backgrounds. In contrast to the findings in Refs. [39, 40],
where lumps always appeared in pairs, this paper demonstrates that an odd or even
number of lumps can emerge.

The following summarizes the general organization of this work. In Sect. 2, we
establish the framework for constructing soliton solutions and provide the accom-
panying proofs. Sections3 and 4 delve into the analysis of the dynamic behaviors
exhibited by soliton solutions. In Sect. 5, the rational solutions within two kinds of
backgrounds are generated. Finally, we conclude with a summary of our findings in
Sect. 6.

2 Soliton Solutions in Two Different Backgrounds

For the purpose of constructing soliton solutions, through introducing bilinear trans-
formation

ϕ = g

f
, u = 2(ln f )xx , (5)

under the condition

f (x, y, z, t) = f (x,−y,−z, t), (6)
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where g represents a complex-valued function and f is real, then Eq. (4) could be cast
into the bilinear equations

(2D2
x − i Dy)g · f = 0,

(D2
x − i Dz)g · f = 0,

(D4
x + Dx Dt − D2

y + D2
z − 2λ) f · f = −4λg(x, y, z, t)g(x,−y,−z, t),

(7)

in which D represents the Hirota operator [42].

Theorem 2.1 The nonlocal Eq. (4) admits soliton solutions

ϕ = g

f
, u = 2(ln f )xx , (8)

where

f = det
1≤i, j≤N

(M (0)
i,k ), g = det

1≤i, j≤N
(M (1)

i,k ),

and the components of the matrix include

M (n)
i,k = μike

−ξi−ψk + 1

pi + qk

(
− pi
qk

)n

(9)

with

ξi = pi x − (i z + 2iy)p2i +
(

λ

pi
− 4p3i

)
t + ξi0,

ψk = qkx + (i z + 2iy)q2k +
(

λ

qk
− 4q3k

)
t + ψk0.

Here N defines an integer, and pi , qk represent random complex constants.

Further, there are two parameter conditions to consider:
(I) Assume N is even, i.e. N = 2L , by choosing

μik = μL+i,L+k, μL+i,k = μi,L+k, pk = qL+k, qi = pL+i ,

ξk0 = ψL+k,0, ψi0 = ξL+i,0,
(10)

in which i, k = 1, 2, ..., L .
(II) Assume N is odd, i.e. N = 2L + 1, by considering

p2L+1 = q2L+1, μ2L+1,L+i = μi,2L+1, ξ2L+1,0 = ψ2L+1,0, (11)

where i = 1, 2, ..., 2L + 1.
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Proposition 2.1 In Theorem (2.1), by taking μik = σi,kμi , we obtain the nonsingular
solutions (8) under the condition

qi = p∗
i , (12)

where σi,k is the Kronecker delta.

To get soliton solutions with a nonzero background, we take the parameter restric-
tion that is distinct from the one given in Theorem (2.1).

Theorem 2.2 The nonlocal Eq. (4) admit soliton solutions

ϕ = g

f
, u = 2(ln f )xx , (13)

where

f = det
1≤i, j≤N

(M (0)
i,k ), g = det

1≤i, j≤N
(M (1)

i,k ),

with the components of the matrix have the following forms

M (n)
i,k = μiσi,ke

−ξi−ψk + 1

pi + qk

(
− pi
qk

)n

, (14)

with

ξi = pi x − (i z + 2iy)p2i +
(

λ

pi
− 4p3i

)
t + ξi0,

ψk = qkx + (i z + 2iy)q2k +
(

λ

qk
− 4q3k

)
t + ψk0.

Here, μi , pi , qk are arbitrary complex constants and require

pi = qi . (15)

2.1 Evidence Supporting Theorems (2.1) and (2.2)

Lemma 2.1 The bilinear Eq. (7) are transformed from the bilinear forms in KP hier-
archy [43]

(D4
x1 − 4Dx1Dx3 + 3D2

x2)τn · τn = 0,

(Dx1Dx−1 − 2)τn · τn = −2τn+1 · τn−1,

(D2
x1 − Dx2)τn+1 · τn = 0,

(16)

which possess a Gram determinant solution

τn = |M (n)
i,k |1≤i,k≤N . (17)
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Here, M (n)
i,k is defined as follows:

M (n)
i,k = μik + 1

pi + qk
φ

(n)
i χ

(n)
k ,

φ
(n)
i = pni e

ξi ,

χ
(n)
k = (−qk)

−neψk ,

(18)

with

ξi = 1

pi
x−1 + pi x1 + p2i x2 + p3i x3 + ξi0,

ψk = 1

qk
x−1 + qkx1 − q2k x2 + q3k x3 + ψk0.

Notably, set x−1 = λt , x1 = x, x2 = −i z − 2iy, x3 = −4t , then Eq. (16) can be cast
into Eq. (7).

Proof of Theorem (2.1). We rewrite τ (n) as eξi+ψk ˜

M (n)
i,k and impose restrictions on

the parameters. Based on (10) and (11), it is possible to derive

(ξL+i + ψL+k)(x,−y,−z, t) = (ψi + ξk)(x, y, z, t),

(ξ2L+1 + ψ2L+1)(x,−y,−z, t) = (ξ2L+1 + ψ2L+1)(x, y, z, t).
(19)

According to the above results, we can obtain the following relations:

˜

M (n)
i,k (x, y, z, t) = ˜

M−(n)
L+k,L+i (x,−y,−z, t),

˜

M (n)
L+i,k(x, y, z, t) = ˜

M−(n)
L+k,i (x,−y,−z, t),

˜

M ( j,l)
i,L+k(x, y, z, t) = ˜

M−(n)
k,L+i (x,−y,−z, t),

˜

M ( j,l)
i,2L+1(x, y, z, t) = ˜

M−(n)
2L+1,L+i (x,−y,−z, t),

˜

M ( j,l)
2L+1,k(x, y, z, t) = ˜

M−(n)
L+k,2L+1(x,−y,−z, t),

˜

M ( j,l)
L+i,2L+1(x, y, z, t) = ˜

M−(n)
2L+1,i (x,−y,−z, t),

˜

M ( j,l)
2L+1,L+k(x, y, z, t) = ˜

M−(n)
k,2L+1(x,−y,−z, t),

˜

M ( j,l)
2L+1,2L+1(x, y, z, t) = ˜

M−(n)
2L+1,2L+1(x,−y,−z, t).

(20)

In summary, we yield τ (n)(x, y, z, t) = τ−(n)(x,−y,−z, t) whether N is odd or
even, and when n = 0, the condition (6) holds. Regarding the proof of Proposition
(2.1), we omit it here as it is similar to that in Ref. [44].
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Proof of Theorem (2.2). Based on the condition (15), when i = k, then we know

(ξi + ψi )(x, y, z, t) = 2pi x + 2

(
λ

pi
− 4p3i

)
t + ξi0 + ψi0

= (ξi + ψi )(x,−y,−z, t), (21)

furthermore, the following result could be deduced

M (n)
i,i (x, y, z, t) = μi e

(−ξi−ψi )(x,y,z,t) + 1

2pi
(−1)(n)

= μi e
(−ξi−ψi )(x,−y,−z,t) + 1

2pi
(−1)−(n)

= M−(n)
i,i (x,−y,−z, t).

(22)

For another case, where i �= k, we get

M (n)
i,k (x, y, z, t) = 1

pi + qk

(
− pi
qk

)(n)

= 1

qi + pk

(
− pk

qi

)−(n)

= M−(n)
k,i (x,−y,−z, t). (23)

In conclusion, the following condition holds for any integer N

τ (n)(x, y, z, t) = τ−(n)(x,−y,−z, t), (24)

this completes the proof.

3 Dynamical Behavior of Multi-solitons on a Constant Background

By setting N = 1, one-soliton solution is obtained

M (n)
1,1 = μ11e

−ξ1−ψ1 +
(

− p1
q1

)(n) 1

p1 + q1
, (25)

with

−ξ1 − ψ1 = −((p1 + q1)x + (i z + 2iy)(q21 − p21) +
(

λ

p1
− 4p31 + λ

q1
− 4q31

)
t + ξ10 + ψ10).

Since p1 = q1, the solution is independent of y, z.We construct two types of behaviors
based on the situations in which p1 is a real number and a pure imaginary number (see
Fig. 1):
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Fig. 1 Three types of one-soliton solutionswhenλ = 1:aAntidark soliton forϕwith p1 = 1, μ11 = −1+i .
b Dark soliton for ϕ with p1 = 1, μ11 = 10. c Periodic wave solution for ϕ with p1 = i, μ11 = 10

When p1 assumes a real value, the solutions for the |ϕ| component include both dark
solitons, characterized by a realμ11, and antidark solitons, characterized by a complex
μ11. Conversely, when p1 is an pure imaginary number, the |ϕ| and |u| components
display periodic wave solutions.

The exact solution (8) for the two solitons can be obtained by taking the form

ϕ = g

f
, u = 2(ln f )xx

with

f =
∣∣∣∣∣
μ11e−ξ1−ψ1 + 1

p1+q1
1

p1+q2
1

p2+q1
μ22e−ξ2−ψ2 + 1

p2+q2

∣∣∣∣∣ ,

g =
∣∣∣∣∣
μ11e−ξ1−ψ1 − p1

q1(p1+q1)
− p1

q2(p1+q1)− p2
q1(p2+q1)

μ22e−ξ2−ψ2 − p2
q2(p2+q2)

∣∣∣∣∣ .

Here, we mainly consider the asymptotic properties of ϕ. Within the constraints of
Proposition (2.1), we take p1 = q∗

1 = eiθ to prevent singularities. Consequently, f
and g are represented as

f = (μ2
11 − μ2

12)e
−ξ1−ψ1−ξ2−ψ2 + μ11

2 cos θ
(e−ξ1−ψ1 + e−ξ2−ψ2)

−μ12

2
(e−ξ1−ψ2+iθ + e−ξ2−ψ1−iθ ) + sin2 θ

4 cos θ2
,

g = (μ2
11 − μ2

12)e
−ξ1−ψ1−ξ2−ψ2 − μ11

2 cos θ
(e−ξ1−ψ1−2iθ + e−ξ2−ψ2+2iθ )

+μ12

2
(e−ξ1−ψ2+iθ + e−ξ2−ψ1−iθ ) + sin2 θ

4 cos θ2
. (26)

Next, to delve deeper into the collision characteristics exhibited by the two solitons,
we make asymptotic analysis [45–48] of the above solution:

(I) Before collision (t → −∞)
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Soliton 1 (−ξ2 − ψ2 → −∞,−ξ1 − ψ1 ≈ 0):

ϕ−
1 � e−2iθ −μ11 + sin2 θeξ1+ψ1+2iθ

2 cos θ

μ11 + sin2 θeξ1+ψ1

2 cos θ

,

Soliton 2 (−ξ2 − ψ2 → 0,−ξ1 − ψ1 ≈ +∞):

ϕ−
2 �

μ2
11−μ2

12
μ11

− eξ2+ψ2−2iθ

2 cos θ

μ2
11−μ2

12
μ11

+ eξ2+ψ2

2 cos θ

,

(I) After collision (t → +∞)
Soliton 1 (−ξ2 − ψ2 → +∞,−ξ1 − ψ1 ≈ 0):

ϕ+
1 �

μ2
11−μ2

12
μ11

− eξ1+ψ1+2iθ

2 cos θ

μ2
11−μ2

12
μ11

+ eξ1+ψ1

2 cos θ

,

Soliton 2 (−ξ2 − ψ2 → 0,−ξ1 − ψ1 ≈ −∞):

ϕ+
2 � e2iθ

−μ11 + sin2 θeξ2+ψ2−2iθ

2 cos θ

μ11 + sin2 θeξ2+ψ2

2 cos θ

.

When μ12 = 0, an elastic collision will occur between the two solitons. At this
point, their amplitudes satisfy |ϕ+

i (−ξi − ψi )| = sin2 θ |ϕ−
i (−ξi − ψi )|, i = 1, 2. By

taking different parameters, several types of two-soliton solutions are derived. The
images of these specific exact solutions are depicted in the (x, z) plane in Fig. 2 and
in the (x, t) plane in Fig. 3, respectively. It is interesting to note that the two solitons
interact with each other within the (x, z) plane, yet they remain parallel to one another
within the (x, t) plane.

In addition, to obtain the two-soliton solutions on the periodic background, one can
consider taking N = 3 and letting p3 be a pure imaginary number (see Fig. 4).

For getting three-soliton solutions, we choose N = 3 and rewrite μi j = σi jμi .
Figure 5 shows four different kinds of three-soliton solutions.

4 Dynamical Behavior of Multi-solitons and Breather on a Periodic
Background

Different from Theorem (2.1), the dynamic behaviors of soliton solutions in Theorem
(2.2) will be analyzed here. According to the parameter selection in (15), we know

− ξi − ψi = −
(
2pi x + 2

(
λ

pi
− 4p3i

)
t + ξi0 + ψi0

)
, (27)
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Fig. 2 Five different types of two-soliton solutions in the (x, z) plane with λ = 1, t = 0, p1 = 1 + i : a
μ11 = i . b μ11 = − 1

2 + i
3 . c μ11 = 2. d μ11 = 1 + i . e μ11 = −1 + i

Fig. 3 Five different types of two-soliton in the (x, t) plane with λ = 1, t = 1, p1 = 1 + i : a μ11 = i . b
μ11 = − 1

2 + i
3 . c μ11 = 2. d μ11 = 1 + i . e μ11 = −1 + i

the above condition shows that the solutions are independent of y, z. By dividing the
real and imaginary parts of p, various soliton solutions can be obtained.

For the one-soliton solutions, we get the same figure as shown in Fig. 1. When
N = 2, the solutions of Eq. (4) are

ϕ = g

f
, u = 2(ln f )xx , (28)

where

f = μ1μ2e
−ξ1−ψ1−ξ2−ψ2 + μ1e−ξ1−ψ1

2p2
+ μ2e−ξ2−ψ2

2p1
+ 1

4p1 p2
− 1

(p1 + p2)2
,

g = μ1μ2e
−ξ1−ψ1−ξ2−ψ2 − μ1e−ξ1−ψ1

2p2
− μ2e−ξ2−ψ2

2p1
+ 1

4p1 p2
− 1

(p1 + p2)2
.

(29)
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Fig. 4 Two-soliton solutions on a periodic wave background with λ = 1, t = 0, p1 = 1 + i, p3 = 2i : a
μ11 = i, μ33 = 2i . b μ11 = 2, μ33 = 2. c μ11 = − 1

2 + i
3 , μ33 = 2i . d μ11 = 1 + i, μ33 = 2i . e

μ11 = −1 + i, μ33 = 2i

Fig. 5 Four kinds of three-soliton in the (x, z) plane with λ = 1, t = 0, p1 = 1 + i, p3 = 2: a μ1 =
2, λ3 = 2. b μ1 = 2i, μ3 = 2. c μ1 = − 1

2 + i
3 , μ3 = 2. d μ1 = − 1

2 + i
4 , μ3 = − 1

2 + i

When p1, p2 are real numbers, the constant background yields the two-soliton solu-
tions. Next, if we take p1 to be a real number and let p2 be purely imaginary, we
derive one-soliton solutions on a periodic wave background. By comparing these two-
soliton solutions with those obtained in Theorem (2.1), the solutions presented here
are depicted on the (x, t) plane. Figure 6 displays three kinds of two-soliton and two
kinds of one-soliton.

For N ≥ 3, the corresponding multi-soliton solutions on both constant and periodic
backgrounds can be obtained. As shown in Fig. 7, there are three different types of
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Fig. 6 Two-soliton within the constant background with λ = 1, t = 1, p1 = 1, p2 = 2: a μ1 = 1, μ2 = 1.
b μ1 = −1 + i, μ2 = 1. c μ1 = −1 + i, μ2 = −1 + i . One soliton within the periodic wave background
with λ = 1, p1 = 1, p2 = 3i : d μ1 = −1 + i, μ2 = 10. e μ1 = 2, μ2 = 10

Fig. 7 Three-soliton solutions on the constant background with λ = 1, t = 1, p1 = 1, p2 = 1
2 , p3 = 3: a

μ1 = −1 + i, μ2 = −1 + i, μ3 = 1. b μ1 = 1, μ2 = 1, μ3 = 1. c μ1 = −1 + i, μ2 = −1 + i, μ3 =
−1 + i . Two-soliton solutions on the periodic wave background with λ = 1, p1 = 1, p2 = 3, p3 = 2i : d
μ1 = 1, μ2 = 1, μ3 = 6. e μ1 = −1 + i, μ2 = 1, μ3 = 6. (f)μ1 = −1 + i, μ2 = −1 + i, μ3 = 6

two-soliton on the periodic wave background and three different forms of three-soliton
on the constant background.
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Fig. 8 Breather in the constant background with λ = 1, p1 = i
10 , p2 = 2i

5 : a μ1 = 1, μ2 = 2. Breather

within the periodic wave backgroundwith λ = 1, p1 = i
10 , p2 = 3i

5 , p3 = 3i
2 : bμ1 = 1, μ2 = 2, μ3 = 1

In what follows, when p1, p2 are imaginary numbers at the same time, the line
breather solutions would be yielded. Figure 8 illustrates breather solutions on two
backgrounds, respectively.

5 Rational Solutions of the (3+ 1)-dimensional Nonlocal Mel’nikov
Equation

This part will finish discussing the evidence and create rational solutions for Eq. (4).
First, we select the matrix elements in the τ function as

m(n)
s j = μsσ(s, j) + As B j

(
1

ps + q j

(
− ps
q j

)n

eξs+ψ j

)
,

ξs = 1

ps
x−1 + psx1 + p2s x2 + p3s x3,

ψ j = 1

q j
x−1 + q j x1 − q2j x2 + q3j x3,

(30)

with differential operators As and Bj denote

As =
ns∑
k=0

csk(ps∂ps )
ns−k, Bj =

n j∑
l=0

d jl(q j∂q j )
n j−l . (31)

Then, after substitution calculation, m(n)
s j can be rewritten as

m(n)
s j =

(
− ps
q j

)n

eξs+ψ j

[
n0∑
k=0

csk(ps∂ ps + ξ ′
i + n)n0−k

×
n0∑
l=0

d jl(q j∂q j + ψ ′
j − n)n0−l

]
1

pi + q j
+ μsσ(s, j). (32)
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where

ξs = psx − (i z + 2iy)p2s +
(

λ

ps
− 4p3s

)
t,

ψ j = q j x + (i z + 2iy)q2j +
(

λ

q j
− 4q3j

)
t,

ξ ′
s = psx − 2(i z + 2iy)p2s −

(
λ

ps
+ 12p3s

)
t,

ψ ′
j = q j x + 2(i z + 2iy)q2j −

(
λ

q j
+ 12q3j

)
t,

and σ(s, j) is the Kronecker delta, csk , d jl , μ, pi , qk are arbitrary complex constants.

Lemma 5.1 On the basis of Theorem (2.1), when N is even, take

nL+s = ns, cL+s,k = dsk, dL+ j,l = c jl , (33)

and when N is odd, take

c2L+1,k = d2L+1,k, (34)

at this time, τ function satisfies τn(x,−y,−z, t) = τ−n(x, y, z, t).

Lemma 5.2 Whether N is odd or even, based on Theorem (2.2), add the condition

csk = dsk, (35)

still leads to the establishment of τn(x,−y,−z, t) = τ−n(x, y, z, t).

Proof Rewrite m(n)
s j as eξs+ψ j ˜M (n)

s j , where
˜

M (n)
s j stands for

˜

M (n)
s j = μsσ(s, j)e−ξs−ψ j +

(
− ps
q j

)n

A′
s B

′
j

1

ps + q j
, (36)

with

A′
s =

ni∑
k=0

csk(ps∂ps + ξ ′
s + n)ni−k,

B ′
j =

n j∑
l=0

d jl(q j∂q j + ψ ′
j − n)n j−l .

(37)

According to the Eqs. (10), (32)–(33), it is easy to find

ξ ′
L+s(x,−y,−z, t) = ψ ′

s(x, y, z, t), ψ ′
L+ j (x,−y,−z, t) = ξ ′

j (x, y, z, t), (38)
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Fig. 9 One-lump on the constant
background with λ = 1, t =
0, p1 = 1, a11 = 0, n0 = 1

then we have

˜

M (n)
L+s,L+ j (x,−y,−z, t) = ˜

M (−n)
js (x, y, z, t).

Furthermore, based on the previous proof process for (19), one can deduce that
τn(x,−y,−z, t) = τ−n(x, y, z, t).

When N = 2L + 1, based on the above conditions (11), (34), we know that
ξ ′
2L+1(x,−y,−z, t) = ψ ′

2L+1(x, y, z, t). Then, the conclusion of τn(x,−y,−z, t) =
τ−n(x, y, z, t) is completed. We disregard Lemma (5.2)’s evidence because it is iden-
tical to Lemma (5.1). ��

5.1 Two Backgrounds with Rational Solutions

In the case of N = 1 and p1 = q1, we have

˜

M (n)
11 =

(
− p1
q1

)(n)

[
p1q1

(p1 + q1)2
+

( −p1
p1 + q1

+ ξ ′
1 + n + a11

) ( −q1
p1 + q1

+ ψ ′
1 − n + b11

)]
1

p1 + q1
,

(39)

then (3+1)-dimensional nonlocal Mel’nikov equation has one-lump solution ϕ = g
f ,

as shown in Fig. 9. The bright lump is located in the (x, z) plane and also present in
the (x, y) plane.

When N = 2, under p2 = q1, q2 = p1, q1 = p∗
1 , we can conclude three different

kinds of lump solutions including bright lump (p21R > 3p21I ), bi-peak lump (13 p
2
1R ≤

p21I ≤ 3p21R) and dark lump (p21I > 3p21R). Figure 10 illustrates the existence of the
lump and W-type soliton in distinct planes.

For the rational solutions within another background, we consider N = 2, then
one-lump and M-type soliton in different planes are generated (see Fig. 11).
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Fig. 10 Rational solutions within a constant background to the Eq. (4) with λ = 1, a11 = 0, t = 0.5: a
p1 = 3 + i . b p1 = 1 + i . c p1 = 1 + 2i . d p1 = 2 + i

Fig. 11 Rational solutions to the Eq. (4) with λ = 1, t = 1, a11 = 0, p1 = 1
2 , p2 = i, c2 = 1 + 3i . a

One-lump on the periodic wave background when y = 0. b–c M-type soliton when x = 0

When N = 3, n1 = n2 = 1, p3, q3 are purely imaginary values, dark-lump and
bi-model lump are obtained (see Fig. 12).

6 Conclusion

By utilizing the KP reduction method, the soliton solutions and rational solutions of
the (3 + 1)-dimensional nonlocal Mel’nikov equation in the constant and periodic
wave background are studied. Through the imposition of two parameter constraints
on the τ function, we can derive soliton solutions on both the constant background
and the periodic wave background. These soliton patterns encompass various types,
including anti-dark solitons, dark solitons, periodic wave solutions, and degenerate
solitons. Notably, our study introduces breather of the (3 + 1)-dimensional nonlocal
Mel’nikov equation for the first time, representing a novel discovery.

In addition, we take another form of τ function to get the rational solutions, which
contains lump and M(W)-type soliton. Unlike the case described in Ref. [38, 39],
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Fig. 12 Rational solutions to the Eq. (4) on the periodic wave background with λ = 1, t = 0.5, a11 =
0, p2 = i, p3 = 2i, c3 = 8 + 8i . a Dark-lump when p1 = 1 + i . b Bi-model lump when p1 = 1 + 2i

where lumps appear in pairs, the lumps presented here can be either odd or even. This
demonstrates that the dynamic behavior of the nonlocal model in partial reverse-space
is more richer. These new discoveries greatly advance our comprehension of nonlocal
equations and warrant further investigation into these intriguing physical phenomena.
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