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Abstract
We study dynamics of a fast–slow Leslie–Gower predator–prey system with Allee
effect and Holling Type II functional response. More specifically, we show some
sufficient conditions to guarantee the existence of two positive equilibria of the system
and their location, and then we further fully determine their dynamics. Based on
geometric singular perturbation theory and the slow–fast normal form, we determine
the associated bifurcation curve and observe canard explosion. Besides, we also find
a homoclinic orbit to a saddle with slow and fast segments, in which, the stable and
unstable manifolds of the saddle are connected under explicit parameters conditions.
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1 Introduction

The complexity of ecological dynamics has been a challenging field for mathematical
and theoretical ecologists for several decades. As an elementary building block for
many interesting population models, the predator–prey models have attracted consid-
erate interest and remain to be research focus. As we know, the classical Leslie–Gower
predator–prey model [1, 2] can be described as follows:
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{ dx
dt = r x

(
1 − x

K

) − p(x)y,
dy
dt = sy(1 − y

hx ),
(1)

where x and y denote population density of prey and predator at time t , respectively,
p(x) is the functional response, and other parameters r , s, K and h are all positive
which have corresponding biological meanings: r and s stand for the intrinsic growth
rates of prey and predator, respectively, K indicates the prey environment carrying
capacity, and h represents the quality of the prey as food for the predator. The term y

x
is the Leslie–Gower term which measures the loss in the predator population due to
rarity of its favorite food. In the classical Leslie–Gower model, the carrying capacity
of the predator is proportional to the number of prey, stressing the fact that there are
upper limits to the rates of increase in both prey and predator, which are not recognized
in the Lotka–Volterra model. There has been great interest in studying dynamics of
the classical Leslie–Gower model and its variants. Hsu and Huang [3, 4] dealt with
limit cycle, Hopf bifurcation, and global stability of the positive locally asymptoti-
cally stable equilibrium about system (1). Korobeinikov [5] introduced a Lyapunov
function and established global stability of the unique coexisting equilibrium state of
Leslie–Gower predator–prey models. Yuan and Song [6] focused on bifurcation and
stability of a delayed Leslie–Gower predator–prey system. As we know, one important
feature of the prey–predator relationship is the rate of prey consumption by an aver-
age consumer (predator), i.e., functional response. The effects of different functional
responses (Holling type I, II, III, IV, and so on) on the dynamics of the predator–prey
models have been investigated to a great extent [7]. Huang et al. [8] and Dai et al. [9]
concentrated on dynamics of a Leslie–Gower predator–prey model with generalized
Holling type III functional response. Tripathi et al. [10–13] dealt with rich dynam-
ics of Leslie–Gower predator–prey models with Beddington–DeAngelis functional
response. It is well–known that Allee effect [14], which reflects the relation between
population size and fitness, is also a critical factor in characterizing species diversity
maintenance, species evolution, species conservation and management in ecological
research. Therefore, much effort has beenmade to study the dynamics of the predator–
prey models with Allee effect [15]. For instance, Aguirre et al. [16, 17] studied system
(1) with the additive Allee effect

{ dx
dt = r x(1 − x

K − m
x+b ) − p(x)y,

dy
dt = sy(1 − y

hx ),

where m and b are positive constants that indicate the severity of the Allee effect, and
Aguirre [18] also focused on system (1) with the multiplicative Allee effect

{ dx
dt = r x(1 − x

K )(x − m) − p(x)y,
dy
dt = sy(1 − y

hx ),

where m is the Allee threshold of viable population.
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Zhu et al. [19] considered system (1) with another form of Allee effect (indicating
that the intrinsic growth rate of the prey depends on the population size) and Holling
Type I functional response p(x) = ex ,

⎧⎨
⎩

dx
dt = x

(
r x
x+a − bx − c

)
− exy,

dy
dt = sy(1 − y

hx ),

(2)

where a > 0 is the Allee effect constant of the prey, c > 0 is the mortality of the prey,
b > 0 is the intra–specific competition intensity of the prey, and e > 0 represents the
maximal predator per capita consumption rate. Zhu et al. [19] studied the existence and
stability of equilibria, and then showed that system (2) undergoes Bogdanov–Takens
bifurcation of codimension two (or three). Zu and Mimura [20] found that this type of
Allee effect can increase the risk of extinction of both predator and prey by including
Allee effect and Holling Type II functional response. They [20, 21] also showed that
the model can undergo the heteroclinic loop bifurcation and Hopf bifurcation. In this
paper, we concentrate on the dynamics of the slow–fast version of the following system
with Allee effect and Holling Type II functional response p(x) = ex

d+x ,⎧⎨
⎩

dx
dt = x

(
r x
x+a − bx − c

)
− exy

d+x ,

dy
dt = sy(1 − y

hx ).

(3)

It is believed that ecological systems in nature usually evolve on different time scales.
Therefore, considering the fact that the growth of the prey and its predator occurs
on different time scales, many researchers have devoted to studying the dynamics of
the fast–slow predator–prey models [22–32]. Wang et al. [22, 23] studied dynamics
of a slow–fast predator–prey model with the generalized Holling type III functional
response. Chen and Zhang [24] studied canard explosion of a slow–fast predator–prey
model with the Sigmoid functional response. Atabaigi [25] analyzed dynamics of a
slow–fast generalist predator–prey model with Holling type III functional response.
Saha et al. [26] investigated dynamics of a slow–fast modified Leslie–type prey–
generalist predator system with piecewise-smooth Holling type I functional response.
Zhu and Liu [27] investigated canard cycles and relaxation oscillation in a slow–
fast predator–prey model with the generalized Holling type II functional response
and Allee effect. Zhao and Shen [28] focused on canards and homoclinic orbits of
a slow–fast modified May–Holling–Tanner predator–prey model with weak multiple
Allee effect. Shi and Wen [29] investigated canard cycles and their cyclicity of the
slow–fast version of system (2). Chowdhury, Banerjee and Petrovskii [30] studied
canards, relaxation oscillations, and pattern formation in a slow–fast ratio–dependent
predator–prey model. Li et al. [31] concentrated on relaxation oscillation and canard
explosion in a slow–fast predator–prey model with Holling type I functional response
and addictive Allee effect. Wen and Shi [32] proved the existence and uniqueness
of a canard cycle with cyclicity at most two in a singularly perturbed Leslie–Gower
predator–prey model with prey harvesting. With these great success, one may wander
what about the dynamics in the slow–fast version of system (3). Motivated by this,



197 Page 4 of 17 T. Shi, Z. Wen

by assuming that prey reproduces much faster than predator, that is, ε = s/r � 1,
exploiting the transformation

x = r

b
x̄, y = r2

be
ȳ, t = t1

r
,

and dropping the bars, we rewrite system (3) into

⎧⎨
⎩

dx
dt1

= x
(

x
A+x − α − x − y

β+x

)
,

dy
dt1

= εy
(
1 − ky

x

)
,

(4)

where A = ab
r , α = c

r , β = bd
r , and k = r

eh . Note that A in system (4) corresponds
to Allee effect constant a in system (3).

Obviously, system (4) is topologically equivalent to

{
dx
dt = x2

((
x − (α + x)(A + x)

)
(β + x) − y(A + x)

)
,

dy
dt = εy(A + x)(β + x)(x − ky).

(5)

From the perspective of geometric singular perturbation theory (GSPT), system (5) is
called the fast system.We are going to study dynamics of system (5), including canard
explosion and homoclinic orbit.

2 Preliminaries

In this section, to study the dynamics of system (5), we first give some preliminary
results, based on geometric singular perturbation theory [33] and the slow–fast normal
form [34].

2.1 The Slow and Fast Limiting Dynamics

Introducing τ = εt , we obtain the associated slow system of system (5)

{
ε dx
dτ

= x2
((
x − (α + x)(A + x)

)
(β + x) − y(A + x)

)
,

dy
dτ

= y(A + x)(β + x)(x − ky).
(6)

Setting ε = 0 in systems (5) and (6), we arrive at the fast subsystem

{
dx
dt = x2

((
x − (α + x)(A + x)

)
(β + x) − y(A + x)

)
,

dy
dt = 0,

(7)
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and the slow subsystem

{
0 = x2

((
x − (α + x)(A + x)

)
(β + x) − y(A + x)

)
,

dy
dτ

= y(A + x)(β + x)(x − ky),
(8)

respectively. According to GSPT, our aim is to study dynamics of system (5) by
combining the limiting information of systems (7) and (8).

2.2 The Critical Manifold

It follows that the critical manifold of system (8) is given by

C0 = {(x, y)|x = 0} ∪ {(x, y)|y = C(x)} := C1 ∪ C2, (9)

where

C(x) = (β + x)

(
x

A + x
− α − x

)
. (10)

To state conveniently, throughout the remainder of the paper, we always assume
that

0 < A < 1 and 0 < α <
(
1 − √

A
)2

. (11)

Then we easily find that the critical manifold C2 has a unique fold point Q(xQ, yQ),
where yQ = C(xQ). Besides, one also notice that y = C(x) intersects the x–axis at
two points Eb1(xb1, 0) and Eb2(xb2, 0), where

xb1 = 1

2

(
1 − A − α −

√
(1 − α − A)2 − 4Aα

)
and

xb2 = 1

2

(
1 − A − α +

√
(1 − α − A)2 − 4Aα

)
.

Hence the critical manifoldC2 can be divided into the following two parts by the point
Q

Cr
2 ={

(x, y)|y=C(x), xb1 < x < xQ
}
and Ca

2 ={
(x, y)|y = C(x), xQ < x < xb2

}
. (12)

According to GSPT, one immediately has the following results.

Lemma 1 One has,

(i) Cr
2 is normally hyperbolic repelling; and C

a
2 is normally hyperbolic attracting.

(ii) Cr
2 and C

a
2 perturb to nearby invariant manifolds Cr

2,ε and C
a
2,ε, respectively.
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2.3 Equilibria and their Dynamics

One first easily notices that the set � = {(x, y)|0 < x < xb2, y ≥ 0} is positively
invariant and is attracting with respect to the flow of system (5). Additionally, one also
has the following results by direct calculation.

Lemma 2 System (5) has two boundary equilibria Eb1 and Eb2 with 0 < A < 1 and

0 < α <
(
1 − √

A
)2
. Furthermore, Eb1 is a saddle and Eb2 is an unstable node.

Next, we turn to positive equilibria of system (5). Cleary, the abscissa of positive
equilibria should satisfy

kx3 + (
k(α + A + β − 1) + 1

)
x2 + (

βk(α + A − 1) + A(αk + 1)
)
x + αAβk = 0.

(13)

Let

�1 = (k(α + A + β − 1) + 1)2 − 3k
(
βk(α + A − 1) + A(αk + 1)

)
,

�2 = −27k3αAβ + 9k
(
k(α + A + β − 1) + 1

)(
βk(α + A − 1) + A(αk + 1)

)
+ 2

(
k(α + A + β − 1) + 1

)3
.

Now we can state the results about the number, position and dynamics of positive
equilibria of system (5).

Theorem 1 If 0 < ε � 1, 0 < A < 1, and 0 < α <
(
1 − √

A
)2
, �2

2 − 4�3
1 < 0,

and
√

�1 − k(α + A + β − 1) − 1 > 0, then system (5) has two positive equilibria
E1(x1, y1) and E2(x2, y2) with xb1 < x2 < x1 < xb2. Additionally, E2 is saddle, and

(i) if k <
xQ
yQ

, then x2 < x1 < xQ. Moreover, if k <
xQ
yQ

and k is not sufficiently close to
xQ
yQ

, then E1 is unstable node.

(ii) if k = xQ
yQ

, then x2 < x1 = xQ. Moreover, E1 is stable focus.

(iii) if k >
xQ
yQ

, then x2 < xQ < x1. Moreover, if k >
xQ
yQ

and k is not sufficiently close to
xQ
yQ

, then E1 is stable node.

Proof The statements about the existence of two positive equilibria and their location
follow from direct calculation. To study the dynamical behavior of the positive equi-
librium (x, y), we find the Jacobian matrix of system (5) at the equilibrium (x, y)

J (x, y) =
[
x2

(
(β + x)(1 − α − A − 2x) − (A + x)(α + x) + x − y

)
−x2 (A + x)

εy(β + x) (A + x) −εky(β + x) (A + x)

]
.
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Clearly, its trace Tr(J (x, y)) and determinant Det(J (x, y)) are given by

Tr(J (x, y)) = x2(A + x)

(
x

A + x
− x − α +

(
A − (A + x)2

)
(β + x)

(A + x)2

)

− εx(β + x)(A + x)

= x2(A + x)C ′(x) − εx(β + x)(A + x),

and

Det(J (x, y)) = εx2y(β + x)(A + x)
(
3kx2 + 2(k(α + A + β − 1) + 1)x

+ (
βk(α + A − 1) + A(αk + 1)

))
= −εx2y(β + x)(A + x)H ′(x),

respectively.
Obviously, one has, for the equilibrium E2 if exists, Det(J (x2, y2)) = −εx22 y2(β+

x2) (A + x2) H ′(x2) < 0 and Tr2(J (x2, y2)) − 4Det(J (x2, y2)) > 0, which implies
that E2 is saddle. While, for the equilibrium E1, Det(J (x1, y1)) = −εx21 y1(β +
x1) (A + x1) H ′(x1) > 0 and Tr2(J (x1, y1)) − 4Det(J (x1, y1)) > 0 (resp.
Tr2(J (x1, y1)) − 4Det(J (x1, y1)) < 0) for sufficiently small ε > 0 if x1 �= xQ and
x1 is not sufficiently close to xQ (resp. x1 = xQ). Besides, one also has, if x1 < xQ
(resp. x1 > xQ) and x1 is not sufficiently close to xQ , then Tr(J (x1, y1)) > 0
(resp. Tr(J (x1, y1)) < 0) for sufficiently small ε > 0, and if x1 = xQ , then
Tr(J (x1, y1)) = −εx1 (β + x1) (A + x1) < 0. Additionally, one also notices that
if k is not sufficiently close to xQ

yQ
, then x1 is not sufficiently close to xQ . Hence, the

dynamical behavior of E1 follows. �	

Remark 1 One can also determine the number, stability and topological types of posi-
tive equilibria through analyzing fast dynamics and slow dynamics along C2 (see [35,
36] for details).

Taking ε = 0.0005, A = 0.4, α = 0.05, and β = 1.8, here we illustrate the phase
portraits and types of positive equilibria E1 and E2 in Fig. 1a–c when k = 1.1, k =
1.417692643, and k = 3, respectively, which satisfy corresponding conditions given
in (i), (ii), and (iii) of Theorem 1.

2.4 Slow–Fast Normal Form

From Theorem 1, we know that when k = xQ
yQ

, the fold point Q(xQ, yQ) is also an
equilibrium point of system (5), that is, xQ = x1, and it is easy to verify that Q is a
non–degenerate canard point [34] of system (5).



197 Page 8 of 17 T. Shi, Z. Wen

Fi
g.
1

Il
lu
st
ra
tio

ns
of

sa
dd

le
E
2
an
d
a
un

st
ab
le
no

de
E
1
;b

st
ab
le
fo
cu
s
E
1
;c

st
ab
le
no

de
E
1



Canard Cycles and Homoclinic Orbit of a Leslie–Gower Predator–Prey… Page 9 of 17 197

Now we transform system (5) into its slow–fast normal form given in [34]. To get
started, let T = x2 (A + x) t , and then system (5) can be written as

⎧⎨
⎩

dx
dT = −y + (β + x)

(
x

A+x − α − x
)

,

dy
dT = ε

y(β+x)
x

(
1 − ky

x

)
.

(14)

Then we move the point (xQ, yQ) to the origin through X = x − xQ,Y = y − yQ ,
and system (14) becomes

⎧⎨
⎩

dX
dT = −Y +

(
A(A−β)

(A+xQ)
3 − 1

)
X2 + A(β−A)

(A+xQ)
4 X

3 + O(X4),

dY
dT = ε

(
a00 + a10X + a20X2 + (a01 + a11X + a02Y ) Y + O(|X ,Y |3)) ,

(15)

where

a00 = yQ(β + xQ)(xQ − kyQ)

x2Q
, a10 = β yQ(2kyQ − xQ) + kxQ y2Q

x3Q
,

a20 = β yQ(xQ − 3kyQ) − kxQ y2Q
x4Q

,

a01 = (β + xQ)(xQ − 2kyQ)

x2Q
, a11 = (2kxQ yQ + 4βkyQ − βxQ)

x3Q
, a02 = − k(β + xQ)

x2Q
.

Further employing the transformation X = − (A+xQ)
√

yQ(kyQ(2β+xQ)−βxQ)

x3/2Q (α+A+β+3xQ−1)
X1, Y =

− yQ(A+xQ)(kyQ(2β+xQ)−βxQ)

x3Q(α+A+β+3xQ−1)
Y1, T = x3/2Q√

yQ(kyQ(2β+xQ)−βxQ)
T1, we convert system

(15) into the slow–fast normal form

{ dX1
dT1

= −Y1h1(X1,Y1, λ, ε) + X2
1h2(X1,Y1, λ, ε) + εh3(X1,Y1, λ, ε),

dY1
dT1

= ε
(
X1h4(X1,Y1, λ, ε) − λh5(X1,Y1, λ, ε) + Y1h6(X1,Y1, λ, ε)

)
,

(16)

where

λ = x5/2Q (β + xQ)(xQ − kyQ)(α + A + β + 3xQ − 1)
√
yQ(A + xQ)(kyQ(2β + xQ) − βxQ)3/2

,

h1(X1, Y1, λ, ε) = 1,

h2(X1, Y1, λ, ε) = 1 + (α + β + 2xQ − 1)
√
yQ(kyQ(2β + xQ) − βxQ)

x3/2Q (α + A + β + 3xQ − 1)2
X1 + O(X2

1),

h3(X1, Y1, λ, ε) = 0,

h4(X1, Y1, λ, ε) = 1 +
√
yQ(A + xQ)(kyQ(3β + xQ) − βxQ)

x5/2Q (α + A + β + 3xQ − 1)
√
kyQ(2β + xQ) − βxQ

X1 + O(X2
1),

h5(X1, Y1, λ, ε) = 1,
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h6(X1, Y1, λ, ε) = (β + xQ)(xQ − 2kyQ)√
xQ

√
yQ(kyQ(2β + xQ) − βxQ)

+ O(X1, Y1). (17)

Note that
λ = 0 ⇔ k = xQ

yQ
. (18)

Therefore, we have

a1 = ∂h3
∂X1

(0, 0, 0, 0) = 0, a2 = ∂h1
∂X1

(0, 0, 0, 0) = 0,

a3 = (α + β + 2xQ − 1)
√
yQ(β + xQ)

xQ(α + A + β + 3xQ − 1)2
,

a4 =
√
yQ(A + xQ)(2β + xQ)

x2Q
√

β + xQ(α + A + β + 3xQ − 1)
, a5 = h6(0, 0, 0, 0) = −

√
β + xQ√

yQ
,

(19)

and further

B = −a2 + 3a3 − 2a4 − 2a5

= 1

x2Q
√
yQ(β + xQ)(α + A + β + 3xQ − 1)2

(
18x5Q + 6x4Q(2(α + A − 1) + 5β)

+ 2x3Q(α + A + β − 1)(α + A + 7β − 1) + x2Q

(
2β(α + A + β − 1)2

+yQ(α − 8A − 5β − 1)
)

− xQ yQ
(
β(α + 18A − 1) + 2A(α + A − 1) + β2

)
− 4Aβ yQ(α + A + β − 1)

)
.

(20)
Hence the singular Hopf bifurcation curve and the maximal canard curve of the

slow–fast normal form (16) are given by

λH (
√

ε) = −a1 + a5
2

ε + O(ε
3
2 ) =

√
β + xQ
2
√
yQ

ε + O(ε
3
2 ), (21)

and

λc(
√

ε) = −
(
a1 + a5

2
+ 1

8
B

)
ε + O(ε

3
2 )

= 1

8x2Q
√
yQ(β + xQ)(α + A + β + 3xQ − 1)2

(
18x5Q + 6x4Q(2(α + A − 1)

+ 5β) + 2x3Q(α + A + β − 1)(α + A + 7β − 1)

+ x2Q

(
2β(α + A + β − 1)2 + yQ(−α + 8A + 5β + 1)

)
+ xQ yQ

(
β(α + 18A − 1) + 2A(α + A − 1) + β2

)
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+ 4Aβ yQ(α + A + β − 1)
)
ε + O(ε

3
2 ), (22)

respectively.
Correspondingly, the singular Hopf bifurcation curve and themaximal canard curve

of system (5) can be expressed as, respectively

kH (
√

ε)= xQ
yQ

− A + xQ

2
√

β + xQ(2β + xQ)
3
2

(
xQ yQ

) 5
2
(α + A + β + 3xQ − 1)

ε+O(ε
3
2 ),

(23)

and

kc(
√

ε) = xQ
yQ

− A + xQ

8
(
(β + xQ)(2β + xQ)

) 3
2
x

7
2
Q y

5
2
Q(α + A + β + 3xQ − 1)3(

18x5Q + 6x4Q(2(α + A − 1) + 5β)

+ 2x3Q(α + A + β − 1)(α + A + 7β − 1)

+ x2Q

(
2β(α + A + β − 1)2 + yQ(−α + 8A + 5β + 1)

)
+ xQ yQ

(
β(α + 18A − 1) + 2A(α + A − 1) + β2

)
+ 4Aβ yQ(α + A + β − 1)

)
ε + O(ε

3
2 ).

(24)

3 Canard Cycles and Homoclinic Orbit of the Slow–Fast System (5)

In this section, we focus on canard cycles and homoclinic orbit of the slow–fast system

(5). From Theorem 1, we know when 0 < A < 1, 0 < α <
(
1 − √

A
)2
, and k = xQ

yQ
,

the positive equilibrium E1 of system (5) coincides with Q and the other positive
equilibrium E2 is saddle of system (5).

Theorem 2 Assume that 0 < ε � 1, 0 < A < 1, and 0 < α <
(
1 − √

A
)2
, one has,

(i) there exists a k0 > 0 such that for |k− xQ
yQ

| < k0, system (5) has exactly two positive

equilibria Q∗ and E∗
2 in the small neighborhood of Q and E2, respectively, and

Q∗ → Q and E∗
2 → E2 as (ε, k) → (0, xQ

yQ
). Furthermore, there exists a singular

Hopf bifurcation curve k = kH (
√

ε) such that Q∗ is stable for k > kH (
√

ε)

and unstable for k < kH (
√

ε). Additionally, the singular Hopf bifurcation is
supercritical if B < 0 and subcritical if B > 0.
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Fig. 2 The critical manifold C2. Double arrows indicate fast flow, and single arrows indicate slow flow. a
The sketch of the canard cycles for system (5). b The sketch of the homoclinic orbit for system (5)

(ii) there exists a parameterized smooth family s → (k(s,
√

ε), γ (s,
√

ε)) of periodic
orbits bifurcated from the slow–fast cycles γ (s) for each s ∈ (

0, yQ − y2
)
and

γ (s,
√

ε) → γ (s) as ε → 0, where γ (s) (see Fig.2a) is defined by

γ (s) = {
(x,C(x))|x ∈ [σl(yQ − s), σr (yQ − s)]} ∪ {

(x, yQ − s)|x
∈ [σl(yQ − s), σr (yQ − s)]} , for s ∈ (

0, yQ − y2
)
.

Furthermore, for δ ∈ (0, 1) and s ∈ [εδ, yQ − y2 − εδ], the canard explosion
occurs, where

∣∣k(s,√ε) − kc(
√

ε)
∣∣ ≤ e−1/ε1−δ

.

(iii) there exists one homoclinic orbit to the saddle E2 for system (5) if k = kc(
√

ε).

Proof According to Theorems 3.1 in [34], for 0 < ε � 1, there exists λ0 > 0 such
that for |λ| < λ0, system (5) has two positive equilibria Q∗ and E∗

2 in the small neigh-
borhood of Q and E2, respectively, and Q∗ → Q and E∗

2 → E2 as (ε, k) → (0, xQ
yQ

).

Furthermore, there exists a singular Hopf bifurcations curve λ = λH (
√

ε) such that
Q∗ is stable forλ < λH (

√
ε) and unstable forλ > λH (

√
ε). Nowwe show that dλ

dk < 0

for k sufficiently close to xQ
yQ

. It follows from λ = x5/2Q (β+xQ)(xQ−kyQ)(α+A+β+3xQ−1)√
yQ(A+xQ)(kyQ(2β+xQ)−βxQ)3/2

in (17) that

dλ

dk
=

√
yQx

5/2
Q (β + xQ)(α + A + β + 3xQ − 1)

(
kyQ(2β + xQ) − xQ(4β + 3xQ)

)
2(A + xQ)(kyQ(2β + xQ) − βxQ)5/2

=
√
yQx

5/2
Q (β + xQ)(α + A + β + 3xQ − 1)

(
(kyQ − xQ)(2β + xQ) − 2xQ(β + xQ)

)
2(A + xQ)(kyQ(2β + xQ) − βxQ)5/2

< 0,
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for k sufficiently close to xQ
yQ

, which indicates that equation

λ = x5/2Q (β+xQ)(xQ−kyQ)(α+A+β+3xQ−1)√
yQ(A+xQ)(kyQ(2β+xQ)−βxQ)3/2

has a unique solution kH (
√

ε) such that

λ < λH (
√

ε) (resp. λ > λH (
√

ε)) if and only if k > kH (
√

ε) (resp. k < kH (
√

ε)).
Therefore, up to now, we have established the statements (i) and (ii) by exploiting the
results in [34]. Now we turn to the statement (iii), according to Theorem 3.2 in [34]
(or Theorem 3.1) in [37], Cr

2,ε will connect to C
a
2,ε transversally if k = kc(

√
ε), which

implies that one of the local stable manifold Es
2 and the local unstable manifolds Eu,r

2
of E2 are connected, and hence the homoclinic orbit follows (see Fig. 2b). The proof
is completed. �	

Canard cycles in Theorem 2 indicate that the prey and predator can coexist in this
system under certain parameters conditions about Allee effect a, the intra–specific
competition intensity b, the mortality c, etc, and the prey and predator evolve in a
periodic way.

Here we exploit numerical simulations to confirm the appearance of canard explo-
sion. We first take ε = 0.00045, A = 0.4, α = 0.05, and β = 1.8, and then choose
k = 1.413512, k = 1.4135104, and k = 1.413510310114, respectively, which yield
canard cycles in Fig. 3a–c respectively.

Remark 2 In Theorem 2, the sign of B determines the properties of the singular Hopf
bifurcation. Due to the complexity of B, generally we can not derive the explicit
conditions on the sign of B. However, we can illustrate that B < 0, B = 0, and
B > 0 are all possible under some suitable conditions by numerical examples. For
instance, we have B = −1.91402 < 0 for A = 0.5, α = 0.03, β = 0.5, and
k = 5.842138; B = 0 for A = 0.5, α = 0.0425729, β = 0.5, and k = 7.372281; and
B = 1.5398 > 0 for A = 0.5, α = 0.05, β = 0.5, and k = 8.780488.

4 Discussion

In this paper, we focused on the dynamical behaviors of a fast–slow Leslie–Gower
predator–prey system with Allee effect and Holling Type II functional response. To be
specific, by applying geometric singular perturbation theory, we first tranform system
(3) into its slow–fast system (5), through which, we find the sufficient conditions for
the existence of two positive equilibria and their location, and then we further fully
detected their dynamics (see Theorem 1). It is worth mentioning that it is generally
hard to find the sufficient conditions to determine whether an equilibrium point is
a node or focus in many predator–prey systems (for example, see Theorem 2.3 in
[38]). However, we indeed find some sufficient conditions to determine when the
equilibrium point E1 is node in Theorem 1. We further transformed system (5) into
its slow–fast normal form, from which we determine the associated bifurcation curve
and characterized its canard cycles and homoclinic orbit to the saddle E2 with slow
and fast segments under explicit parameters conditions (see Theorem 2). Finally, we
also included numerical simulations to to highlight the theoretical results obtained.

From the results in Theorem 2, we see that the existence of canard point Q on the
critical manifold C2 is an organizing center for the complex dynamics including the
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birth of canard cycles and homoclinic orbit. From Fig. 2a or the proof of Theorem
2, canard cycles consist of fast and slow segments. The biological interpretation of
this interesting feature is as follows: the existence of the canard cycle indicates that
the prey and predator can coexist in this concrete system. When the predator density
is lower than a certain level, we have a prey outbreak in a very short time. After the
prey density arrives at some level which is enough to support the reproduction of the
predators, the predator density begins to grow slowly and the prey density begins to
decrease slowly for a long period. As the prey density continuous to decrease slowly,
the predator density declines slowly due to the less food. After some time, the whole
procedure continues and forms a periodic move.

As we know, many important factors [10–13, 15], such as functional response,
Allee effect, fear effect, prey refuge, cooperation hunting and so on, determine rich and
complex dynamics of prey–predator relationship. In the later study, we can consider
the slow–fast dynamics of the predator–preymodels including these factors and expect
to find new dynamical behaviors.
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