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Abstract
A sofic shift is a shift space consisting of bi-infinite labels of paths from a labelled
graph. Being a dynamical system, the distribution of its closed orbits may indicate
the complexity of the shift. For this purpose, prime orbit and Mertens’ orbit count-
ing functions are introduced as a way to describe the growth of the closed orbits.
The asymptotic behaviours of these counting functions can be implied from the ana-
lyticity of the Artin–Mazur zeta function of the shift. Its zeta function is expressed
implicitly in terms of several signed subset matrices. In this paper, we will prove the
asymptotic behaviours of the counting functions for sofic shifts via their zeta function.
This involves investigating the properties of the said matrices. Suprisingly, the proof
simply uses some well-known facts about sofic shifts, especially on the minimal right-
resolving presentations. Furthermore, we will demonstrate this result by revisiting the
case for periodic-finite-type shifts, which are a particular type of sofic shifts. At the
end, we will briefly discuss the application of our finding towards the finite group and
homogeneous extensions of a sofic shift.
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1 Introduction

Let X be a compact metric space equipped with a continuous map T : X → X . For
the discrete dynamical system (X , T ), recall that a point x ∈ X is periodic with period
n ∈ N if T n(x) = x . Moreover, if T k(x) �= x for k = 1, 2, . . . , n − 1, then it has the
prime period n. Its (prime) closed orbit is then defined as

τ(x) =
{

x, T (x), . . . , T n−1(x)
}

.

In many instances, the distribution of closed orbits are closely related to the com-
plexity of a system. For this reason, some counting functions are introduced as a way
to describe the growth of the closed orbits. These are called the prime orbit counting
function

π(N ) =
∑
τ|τ |≤N

1

and the pair of Mertens’ orbit counting functions

M(N ) =
∏
τ|τ |≤N

(
1 − 1

eh|τ |

)
and M (N ) =

∑
τ|τ |≤N

1

eh|τ |

where N ∈ N, h is the topological entropy of the system (which is assumed to be
positive) and τ runs through the closed orbits of size |τ |.

These functions arise as the analogues for the counting functions for primes in
number theory. In particular, the prime number theorem and Mertens’ theorem state
that

∑
p

p≤N

1 ∼ N

ln N
,

∏
p

p≤N

(
1 − 1

p

)
∼ e−γ

ln N
and

∑
p

p≤N

1

p
= ln ln N + M + o(1)

where γ and M are Euler–Mascheroni constant andMeissel–Mertens constant, respec-
tively, and p runs through primes (see [1]). These theorems motivate an analogous
problem in the theory of dynamical systems, which is to obtain the asymptotic
behaviours of the orbit counting functions for a system (see [2]).

As one approach, the analysis on the Artin–Mazur zeta function [3] of a system
can lead to the desired asymptotic results. For a system (X , T ), its Artin–Mazur zeta
function is defined as

ζ(z) = exp

( ∞∑
n=1

F(n)

n
zn

)
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where z ∈ C (in its disc of convergence) and F(n) is the number of periodic points
of period n. The next theorem summarizes how the analiticity of the zeta function
implies the asymptotic behaviours of the orbit counting functions.

Theorem 1 [4] Let (X , T ) be a discrete dynamical system with topological entropy
h > 0 and Artin–Mazur zeta function ζ(z). Suppose that there exists a function α(z)
such that it is analytic and non-zero for |z| < Re−h for some R > 1, and

ζ(z) = α(z)

(1 − ehpz p)m

for |z| < e−h for some m, p ∈ N. Then,

π(N ) ∼ mp · e
hp

(⌊
N
p

⌋
+1

)

(ehp − 1) · N
, M(N ) ∼ pme−mγ

α(e−h) · N m
and

M (N ) = m ln

⌊
N

p

⌋
+ mγ + ln α(e−h) − C + o(1)

where γ is Euler–Mascheroni constant and C is a positive constant specified as

C =
∑
τ

(
ln

(
1

1 − e−h|τ |

)
− 1

eh|τ |

)
. (1)

To sum up, we require ζ(z) to satisfy the following: (i) it extends to a meromorphic
function in the region

{
z ∈ C | |z| < Re−h

}
, (ii) it has no zero in the said region, and

(iii) there are exactly p poles in this region, which have the same order m and are of
the form ωe−h , where ω runs through pth roots of unity.

In the literature, this approach was used to determine the orbit growths of ergodic
toral automorphisms [5, 6] and several types of shift spaces. These include shifts of
finite type [2, 7], periodic-finite-type (PFT) shifts [4], Dyck andMotzkin shifts [8], and
bouquet-Dyck shifts [9]. Similar results can be deduced for beta shifts [10], negative
beta shifts [11] and shifts of quasi-finite type [12], albeit these findings are not stated
in their respective papers.

While we focus on the approach via zeta function, there are other methods to obtain
the orbit growth of a system, such as using orbit Dirichlet series [13], orbit monoids
[14] and estimates on the number of periodic points [15–17]. Furthermore, similar
research problem has been studied for group actions on dynamical systems, and some
recent results include the orbit growths of nilpotent group shifts [18], algebraic flip
systems [19] and flip systems for shifts of finite type [20]. Since our introduction on
this subject is rather short, we encourage readers to explore those papers above, and
additionally the expository chapters by Nordin et al. [21] and Ward [22].

Our attention now is on sofic shifts (see [23]). Sofic shifts are a class of shift spaces
constructed from labelled graphs. Examples are shifts of finite type and PFT shifts.
The zeta function for the sofic shifts has long been known, and in fact, it is a rational
function. However, it is implicitly expressed in terms of several signed subset matrices,
making it rather sophisticated.
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The orbit growth of the sofic shifts is yet to be determined completely. A sofic
shift with specification property [12] (which is equivalent to topological mixing in
this case) is a shift of quasi-finite type, so its orbit growth is deduced from the result
in [12] and Theorem 1. However, this finding does not cover the case for a general
irreducible sofic shift.

As mentioned above, PFT shifts are a particular type of sofic shifts. In [4], we had
obtained the orbit growth of irreducible PFT shifts with irreducible Moision–Siegel
(MS) presentations [24, 25]. Our result is shown in the next theorem. However, this
result is incomplete because it does not cover the case for irreducible PFT shifts with
reducible MS presentations.

Theorem 2 Let X be an irreducible PFT shift of period T ∈ N with topological
entropy ln λ > 0. Suppose that its MS presentation is irreducible. Then,

π(N ) ∼ kT · λ
kT

(⌊
N

kT

⌋
+1

)

N (λkT − 1)
, M(N ) ∼ kT e−γ

αN
and

M (N ) = ln

⌊
N

kT

⌋
+ γ + ln α − C + o(1)

where kT is the period of the MS presentation for some k ∈ N, γ is the Euler–
Mascheroni constant, α is a positive constant specified by

α = lim
z→λ−1

(1 − λkT zkT ) · ζ(z) (2)

where ζ(z) is its Artin–Mazur zeta function, and C is another positive constant
specified in (1).

Hence, our paper here aims to obtain the orbit growth, i.e. the asymptotic behaviours of
the orbit counting functions, for a general sofic shift. Suprisingly, thewell-knownwork
by Lind and Marcus [23] on sofic shifts, especially on their minimal right-resolving
presentations, is sufficient to lead to our result.Wewill demonstrate our result to obtain
the orbit growth of any PFT shift for the sake of completeness to our previous work in
[4]. Our main results can be found in Theorems 4 and 8. At the end, we provide a short
remark on the application of our finding towards the finite group and homogeneous
extensions of a sofic shift.

We shall point out that an earlier version of this paper can be found in [26]. However,
it does not include our current result here about the orbit growth of PFT shifts.

2 Sofic Shifts and Their Orbit Growth

2.1 Sofic Shifts

Now,webriefly discuss somebackgroundon sofic shifts and their important properties.
All these facts can be found in [23].
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Let G = (V , E) be a finite directed graph with vertex set V and edge set E . For
an edge e ∈ E , denote its initial and terminal vertices as i(e) ∈ V and t(e) ∈ V ,
respectively. We assume that each vertex is neither a source nor a sink, i.e. it must
have incoming and outgoing edges. For a finite set A, let L : E → A be the label of
each edge with an element of A. The pair G = (G,L) is called a labelled graph.

A sequence {ek}n
k=1 of edges is called a path of length n if t(ek) = i(ek+1) for

k = 1, 2, . . . , n − 1. The label of the path is the corresponding sequence {L(ek)}n
k=1.

We define a bi-infinite path {ek}k∈Z and its label {L(ek)}k∈Z in a similar way. Denote
P∞(G) as the set of bi-infinite paths in G.

LetA be equippedwith the discrete topology. So, the setAZ of bi-infinite sequences
from A is equipped with the product topology. The sofic shift presented by G is the
set

X =
{

x ∈ AZ | x = {L(ek)}k∈Z for some {ek}k∈Z ∈ P∞(G)
}

paired together with a (left) shift map σ : X → X , which maps x = {xk}k∈Z to
σ(x) = {xk+1}k∈Z. The graph G is called a presentation of X .

An element x ∈ X is a called a point. A finite sequence w = a1a2 . . . an from
A is called a word of length |w| = n if there exist x ∈ X and k ∈ Z such that
xk xk+1 . . . xk+n−1 = w. Denote B(X ) as the set of words in X . The shift X is said to
be irreducible if for all w, w̃ ∈ B(X ), either ww̃ ∈ B(X ) or there exists u ∈ B(X )

such that wuw̃ ∈ B(X ).
Any word in X is the label of some path in G. It is possible to have more than

one such path for each word. This is similarly true for points as well. Besides that,
the sofic shift itself can be presented by different labelled graphs. We will choose a
presentation that has some useful properties.

A labelled graph is said to be right-resolving if for every vertex, its outgoing edges
have different labels. Any sofic shift has a presentation of this form. In fact, we can
proceed further to obtain the minimal right-resolving presentation, which is the one
with the fewest vertices among all right-resolving presentations. For an irreducible
sofic shift, this presentation is unique up to graph isomorphism.

Recall that a non-negative square matrix A is irreducible if for every pair of indices
i and j , there exists n ∈ N such that the i j-entry of An , denoted as (An)i j , is positive.
In this case, its period is defined as gcd{n ∈ N | (An)i i > 0} and this value is the
same for any index i . We can define the irreducibility and period of a directed graph
based on its adjacency matrix. Equivalently, a graph G is irreducible if for any pair of
vertices v and ṽ, there exists a path from v to ṽ.

For a labelled graphG = (G,L), its adjacencymatrix AG is the adjacencymatrix of
the underlying graph G. The irreducibility and period ofG is defined according to G. If
G is irreducible, then its sofic shift is also irreducible. The converse is false. However,
a sofic shift is irreducible if and only if its minimal right-resolving presentation is also
irreducible.

A word w ∈ B(X ) is said to be synchronising in G if all paths with the label w end
at the same terminal vertex. If X is irreducible and G is its minimal right-resolving
presentation, then any word w ∈ B(X ) can be extended into a synchronising word
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ww̃ in G for some w̃ ∈ B(X ). In this case, it is guaranteed that X has a synchronising
word in G.

A right-resolving presentation G of an irreducible sofic shift X can be modified
to become its minimal right-resolving presentation. For this purpose, we define the
follower set of a vertex in G as the set of labels of paths that begin at that vertex. We
form an equivalence relation on the vertex set V as follows: v ∈ V is related to ṽ ∈ V
if both have the same follower set. Now, construct the merged graph of G as follows:

(i) the vertices are the equivalence classes Ci under this relation,
(ii) for vertices Ci and C j , there exists an edge with label a ∈ A from Ci to C j if

there exist vertices vi ∈ Ci , v j ∈ C j and an edge with label a from vi to v j in the
original graph G.

For an irreducible right-resolving presentation G, its merged graph is the minimal
right-resolving presentation of X .

A right-resolving presentation can also be used to determine the topological entropy
of a sofic shift. For any choice of a right-resolving presentation G, the topological
entropy of X is given by h (X ) = ln ρ

(
AG

)
, where ρ

(
AG

)
denotes the spectral

radius of the adjacency matrix AG .
A sofic subshift of X is a subset Y ⊆ X such that it is itself a sofic shift. Their

topological entropies are related by h (Y) ≤ h (X ). Furthermore, if X is irreducible,
then the equality holds true if and only if Y = X .

Any labelled graph G can be decomposed into several irreducible subgraphs Hi ,
which are called the irreducible components of G. This produces the corresponding
irreducible sofic subshifts Yi from the original shift X . The topological entropy of X
can be found as h (X ) = maxi h (Yi ). If X is irreducible, then there exists a maximal
irreducible component of G that presents X .

The Artin–Mazur zeta function of a sofic shift is relatively complicated in closed
form. For this purpose, let G be a right-resolving presentation ofX with the underlying
graphG = (V , E). For simplicity,we denote the vertex set asV = {1, 2, . . . , S}where
S = |V |. Observe that for each a ∈ A and v ∈ V , there is at most one outgoing edge
from v with label a. If such an edge exists, then we denote the terminal vertex as v(a).

We construct a labelled graph G j for j = 1, 2, . . . , S from G. Its vertex set V j is the
collection of subsets of V with j distinct vertices. For each subset v( j) ∈ V j , arrange
the vertices in increasing order, i.e. v( j) = {v1, v2, . . . , v j }where v1 < v2 < . . . < v j .
For every v( j), ṽ( j) ∈ V j and a ∈ A, there is an edge from v( j) to ṽ( j) if all vertices
v1(a), v2(a), . . . , v j (a) are defined, distinct and contained in ṽ( j). The label of this
edge is a if

{
v1(a), v2(a), . . . , v j (a)

}
is an even permutation of ṽ( j), or−a otherwise.

Define the signed subset matrix A j from G j as follows: for v( j), ṽ( j) ∈ V j , the
v( j)ṽ( j)-entry of A j is the number of edges with positive labels minus the number of
edges with negative labels from v( j) to ṽ( j). Note that G1 is simply G, so A1 is the
adjacency matrix AG .

From the above setting, the Artin–Mazur zeta function of X is given by

ζ(z) =
S∏

j=1

(
det

(
I j − A j z

))(−1) j

(3)
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where I j is the identity matrix (of the same size to A j ). Since each determinant gives
out a polynomial in terms of z, the zeta function is a rational function.

2.2 Orbit Growth of Sofic Shifts

As explained above, any sofic shift can be decomposed into several irreducible sofic
subshifts, which can be studied separately. So, it is sufficient to consider an irreducible
sofic shift from now on. Moreover, the topological entropy of an irreducible sofic shift
is zero if and only if it is finite, and in fact, it is entirely a single closed orbit. To avoid
triviality, we can also assume that the topological entropy is positive.

Let X be an irreducible sofic shift with positive topological entropy. Let G be
its minimal right-resolving presentation. Our assumption implies that its adjacency
matrix AG is irreducible. Denote p and λ as the period and spectral radius of AG
respectively. The assumption also implies that λ > 1. By Perron–Frobenius theory,

there are exactly p eigenvalues of AG with modulus λ, of the form zk = λ ·exp
(
2kπ

p i
)

for k = 0, 1, . . . , p − 1, and they are simple (see [23]).
Our aim is to apply Theorem 1 to deduce the orbit growth of X . From (3), observe

that

ζ(z) =
S∏

j=1

∏
μ

(1 − μz)(−1) j

where μ runs through non-zero eigenvalues of A j . So, any zero or pole of ζ(z) is in
the form μ−1. As per Theorem 1, we will show that ζ(z) can be written as

ζ(z) = α(z)

1 − λpz p
, α(z) =

S∏
j=1

∏
μ

|μ|<λ

(1 − μz)(−1) j

and moreover, the desired function α(z) is analytic and non-zero for |z| < Rλ−1

where

R = min
μ

|μ|<λ

{
λ

|μ|
}

.

Equivalently, we require that each z−1
k is a simple pole of ζ(z), while all zeros and

other poles are located at or beyond radius Rλ−1. The former statement is true based
on Perron–Frobenius theory above. For the latter, by comparing spectral radii, it is
sufficient to prove that ρ(A j ) < λ for j �= 1.

Now for j = 2, 3, . . . , S, define G̃ j as the labelled graph G j but all negative labels
become positive instead. Note that G̃ j is indeed right-resolving. Let Ã j be its adjacency
matrix. Clearly, we have

∣∣(A j
)

uv

∣∣ ≤ ( Ã j )uv for each uv-entry, and consequently

ρ(A j ) ≤ ρ( Ã j ) (see [23]). Next, we prove that ρ( Ã j ) < λ for j �= 1.
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Lemma 3 ρ( Ã j ) < λ for j �= 1.

Proof Let X̃ j be the sofic shift presented by G̃ j . It is easy to see that X̃ j ⊆ X . Indeed,
due to the constructions of G j and G̃ j , any bi-infinite path in G̃ j gives j corresponding
bi-infinite paths in G. All these paths have the same label.

We claim that X̃ j �= X for j �= 1. Take a synchronising word w ∈ B(X ) in G. Let
x ∈ X be a point containing w, i.e. there exists k ∈ Z such that xk xk+1 . . . xk+|w|−1 =
w. For the sake of contradiction, suppose that x ∈ X̃ j . There exists a bi-infinite path
p̃ in G̃ j with label x . This path gives bi-infinite paths p1, p2, . . . , p j in G. Since w is
synchronising in G, the edges at coordinate k + |w| − 1 for the paths p1, p2, . . . , p j

have the same terminal vertex v inG. Hence, the edge at the said coordinate for the path
p̃ has the terminal vertex {v} in G̃ j . This is a contradiction since any vertex in G̃ j is a
subset of j distinct vertices from G. Overall, this shows that x /∈ X̃ j and consequently
X̃ j � X .

Since X̃ j is a proper subshift of X , the topology entropy of X̃ j is strictly less than
that of X . This implies that

ln ρ( Ã j ) = h(X̃ j ) < h(X ) = ln λ

and hence ρ( Ã j ) < λ. 	

Tracing back the arguments above, we deduce the orbit growth of X based on

Theorem 1.

Theorem 4 Let X be an irreducible sofic shift with topological entropy ln λ > 0.
Suppose that its minimal right-resolving presentation has period p. Then,

π(N ) ∼ pλ
p
(⌊

N
p

⌋
+1

)

N (λp − 1)
, M(N ) ∼ pe−γ

αN
and

M (N ) = ln

⌊
N

p

⌋
+ γ + ln α − C + o(1)

where γ is the Euler–Mascheroni constant, α is a positive constant specified by

α = lim
z→λ−1

(1 − λpz p) · ζ(z)

where ζ(z) is the Artin–Mazur zeta function in (3), and C is another positive constant
specified in (1).

Remark 1 For an irreducible sofic shift, the period of the sofic shift is defined as
gcd{n ∈ N | F(n) > 0}, where F(n) is the number of periodic points of period n.
This period is a divisor of the period of the minimal right-resolving presentation, but
they are not necessarily equal (see [23]). Notice that the period of the presentation
(which is p) appears in the asymptotic results above, instead of the period of the
sofic shift itself. This is interesting to see that the period of the presentation is more
prominent in determining the orbit growth.
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3 Periodic-Finite-Type Shifts and Their Orbit Growth

Since PFT shifts are a certain type of sofic shifts, we can deduce their orbit growth
from Theorem 4. However, we hope to obtain a more specific result. As we shall see,
a PFT shift is commonly constructed from some sets of forbidden words instead of a
labelled graph. So, we want to relate the number of such sets with the orbit growth.
We will discuss this later on.

3.1 Periodic-Finite-Type Shifts

Here, we provide some background on PFT shifts and their important properties. All
these facts can be found in [4, 24, 25].

Consider a finite setA. Let S be the set of all finite sequences constructed fromA.
For a finite sequence w ∈ S and bi-infinite sequence x ∈ AZ, we say that w occurs
in x at coordinate i ∈ Z if xi xi+1 . . . xi+|w|−1 = w, and denote it as w ≺i x .

For some T ∈ N, we construct finite subsets F0,F1, . . . ,FT −1 of S (which can
be empty). An element from the subsets is called a forbidden word. Define the set
X ⊆ AZ as follows: x ∈ X if there exists s ∈ {0, 1, . . . , T − 1} such that for all
i ∈ Z, we have w ⊀s+i x for all w ∈ Fi mod T . The periodic-finite-type (PFT) shift
constructed from F0,F1, . . . ,FT −1 is the set X equipped with the shift map σ as
defined previously. We call T the (PFT)-period ofX . For special case T = 1, the shift
X is called a shift of finite type.

Intuitively, each point x ∈ X has its own initial coordinate s such that no forbidden
word fromF0 occurs at coordinate s, no forbidden word fromF1 occurs at coordinate
s + 1, and so on. This is similarly true for going backwards.

A PFT shift can be constructed from different collections of such sets, and even
different periods (seeExample 1). In fact,we canmodify the sets such that all forbidden
words in the sets have the same length.

A PFT shift is a sofic shift, i.e. it can be presented by a labelled graph. Let X be a
PFT shift of period T such that all forbidden words have the same length � ∈ N. We
construct a labelled graph for X , which is a T -partite graph, as follows:

(i) the vertex set is partitioned into some subsets (or parts) V0, V2, . . . , VT −1 such
that Vj = A�\F j for all j ∈ {0, 1, . . . , T − 1}, where A� is the set of all finite
sequences from A of length �;

(ii) for all j , there exists an edge from vertex v = a1a2 . . . a� ∈ Vj to vertex ṽ =
b1b2 . . . b� ∈ Vj+1 mod T if a2a3 . . . a� = b1b2 . . . b�−1, and its label is b�.

We call this graph as Moision–Siegel (MS) presentation of X .

Remark 2 TheMSpresentation constructed in [4, 24, 25] requires furthermodification
that all sets except F0 are empty. However, this is not needed here.

Note that MS presentation is right-resolving. Unfortunately, the irreducibility of a
PFT shift is not equivalent to the irreducibility of its MS presentation. If the presen-
tation is irreducible, then the shift itself is irreducible. However, the converse is false
(see Example 1).
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The Artin–Mazur zeta function of a PFT shift had been obtained in closed form
in [25]. Then in [4], it was used in our approach to determine the orbit growth of
irreducible PFT shifts with irreducible MS presentations as shown in Theorem 2.
However, we will skip the details of the zeta function since it is not needed in our
work here.

3.2 Orbit Growth of Periodic-Finite-Type Shifts

The construction of a PFT shift depends on the number of sets of forbidden words,
or equivalently, the PFT-period. We can expect that this period affects its orbit growth
too. Indeed, by comparing the results of Theorems 2 and 4, we observe that the period
p of theminimal right-resolving presentation is amultiple of the PFT-period T , though
so far, this is only true for an irreducible PFT shift with irreducible MS presentation.
Our target now is to extend this finding to any irreducible PFT shift, and then obtain
its orbit growth.

Let X be a PFT shift with period T . By previous reason, we shall assume that X is
irreducible and its topological entropy is positive. We assume that all forbidden words
have the same length �.

We shall highlight that there are two issues with the current form ofX , as described
below.

(i) The period T may be unnecessarily large due to repetition. If so, a smaller period
shall be sufficient to describe X .

(ii) Its MS presentation may be reducible despite that X is irreducible.

We will show that there is a collection of sets of forbidden words such that the period
is as small as possible, and the resulting MS presentation is irreducible.

Proposition 5 Let X be an irreducible PFT shift with period T constructed from the
sets F0,F1, . . . ,FT −1. Then, there exist T and sets F̃0, F̃1, . . . , F̃T −1 of forbidden
words such that

(i) F̃0, F̃1, . . . , F̃T −1 construct the same PFT shift X ,
(ii) all forbidden words have the same length,
(iii) F̃0, F̃1, . . . , F̃T −1 are not a repeated sequence (thus, T is minimal), and
(iv) the MS presentation based on F̃0, F̃1, . . . , F̃T −1 is irreducible.

Proof We can assume that all forbidden words in F0,F1, . . . ,FT −1 have the same
length �. Let G be the MS presentation based on the original sets. Since X is irre-
ducible, we can find a maximal irreducible component G̃ of G which presents X . The
irreducibility implies that G̃ is a T -partite graph. Denote the partition of the vertex set
of G̃ as Ṽ0, Ṽ1, . . . , ṼT −1.

Now, construct the new sets F̃0, F̃1, . . . , F̃T −1 such that F̃ j = A�\Ṽ j for all j .
Choose the smallest T , which is a multiple of T , such that F̃0, F̃1, . . . , F̃T −1 forms
the sequence F̃0, F̃1, . . . , F̃T −1 by repeating itself T/T times. It is easy to check that
T and F̃0, F̃1, . . . , F̃T −1 satisfy all properties above, so we skip the proof here. 	


We shall call the setting above as a minimal form of X . The period T is called the
minimal period of X . Note that a minimal form is not unique since the collection of
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sets F̃0, F̃1, . . . , F̃T −1 can vary (see Example 1). However, we will show later that
T is indeed unique (see Corollary 7).

Since theMSpresentation of aminimal formofX is right-resolving and irreducible,
its merged graph is indeed the minimal right-resolving presentation. Interestingly, the
latter presentation is found to be a T -partite graph too.

Proposition 6 LetX be an irreducible PFT shift in minimal form with period T . Then,
its minimal right-resolving presentation is a T -partite graph.

Proof Let � be the length of all forbidden words, and G be the MS presentation of the
minimal form. Denote the partition of its vertex set as V0, V1, . . . , VT −1. Consider
the equivalence relation in the merged graph of G. We claim that two vertices vi ∈ Vi

and v j ∈ Vj with i �= j are in different equivalence classes. In other words, we will
show that vi and v j have distinct follower sets in G.

Without loss of generality, let i < j . Note that there exists a pair Vk and
Vk+ j−i mod T for some k such that Vk �= Vk+ j−i mod T . Otherwise, the partition
V0, V1, . . . , VT −1 and hence the sets F̃0, F̃1, . . . , F̃T −1 are repeated sequences. This
contradicts the properties of the minimal form of X .

Suppose that there exists v ∈ Vk such that v /∈ Vk+ j−i mod T . Denote the vertex
vi ∈ Vi as the word vi = a1a2 . . . a�. Since G is irreducible, there exists a path
from vi to v in G. We choose such path p of length at least �. Denote its label as
w = b1b2 . . . b|w|. Observe that p passes through the following vertices:

vi = a1a2 . . . a� ∈ Vi ,

a2a3 . . . a�b1 ∈ Vi+1,

a3a4 . . . a�b1b2 ∈ Vi+2modT ,

...

v = b|w|−�+1b|w|−�+2 . . . b|w| ∈ Vk .

This shows that w ends with the word v. We claim that there is no path with label w

that begins at v j ∈ Vj . Indeed, if such path exists, then we can use the argument above
to show that it ends with the vertex v ∈ Vk+ j−i modT . This contradicts our initial
assumption above.

This implies that vi and v j have distinct follower sets. The opposite case where
v ∈ Vk+ j−i modT but v /∈ Vk is proved similarly as above with v j instead. Since
each equivalence class can only contain vertices in the same part of the partition, the
resulting merged graph of G, which is its minimal right-resolving presentation, is still
a T -partite graph. 	

Corollary 7 For an irreducible PFT shift, its minimal period is unique.

Proof Consider twominimal forms of an irreducible PFT shiftX withminimal periods
T1 and T2. The merged graphs of their MS presentations are indeed the minimal right-
resolving presentations of X , which are T1-partite and T2-partite graphs, respectively.
The minimal right-resolving presentations are unique up to graph isomorphism, so
T1 = T2. 	
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Remark 3 Given two minimal forms, their MS presentations may not be isomorphic.
Actually, we can prove that their presentations are related by graph amalgamation and
splitting (see [23]). However, these notions are not needed in our work here.

Finally, we can now deduce the orbit growth of any irreducible PFT shift. Proposi-
tion 6 implies that the period of its minimal right-resolving presentation is a multiple
of its minimal period. Hence, Theorem 4 implies the desired orbit growth, which is
shown below.

Theorem 8 Let X be an irreducible PFT shift of minimal period T with topological
entropy ln λ > 0. Then,

π(N ) ∼ kT · λ
kT

(⌊
N

kT

⌋
+1

)

N (λkT − 1)
, M(N ) ∼ kT e−γ

αN
and

M (N ) = ln

⌊
N

kT

⌋
+ γ + ln α − C + o(1)

where kT is the period of its minimal right-resolving presentation for some k ∈ N, γ

is the Euler–Mascheroni constant, α is a positive constant specified in (2), and C is
another positive constant specified in (1).

Example 1 SetA = {0, 1}. Let X be a PFT shift constructed from the following sets:

F0 = {01, 10, 11}, F1 = {10, 11}, F2 = {11},
F3 = F0, F4 = F1, F5 = {01, 11}.

(a) MS presentation
The corresponding MS presentation is shown in Fig. 1. Observe that the vertex
01 ∈ V2 is a sink. So, the presentation is reducible. By removing the vertex and its
incoming edge, the resulting graph is irreducible and still presents X (see [23]).
This implies that X is irreducible. This example shows that an irreducible PFT
shift does not necessarily produce an irreducible MS presentation.

(b) Minimal form and minimal right-resolving presentation
We follow the proof of Proposition 5 to obtain the minimal form of X with the
following sets:

F̃0 = {01, 10, 11}, F̃1 = {10, 11}, F̃2 = {01, 11}.

The corresponding MS presentation is shown in Fig. 2. We can obtain the minimal
right-resolving presentation of X in Fig. 3 by forming the merged graph of the
above presentation.

Now, consider the PFT shift constructed from the following sets:
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Fig. 1 The MS presentation of X based on the sets F0,F1, . . . ,F5

Fig. 2 The MS presentation of
X based on the sets F̃0, F̃1, F̃2

Fig. 3 The minimal
right-resolving presentation of
X

F ′
0 = {001, 010, 011, 101, 110, 111},

F ′
1 = {010, 011, 100, 101, 110, 111},

F ′
2 = {001, 011, 100, 101, 110, 111}.

The corresponding MS presentation is shown in Fig. 4. We can verify that these
sets construct the same shift X and in fact, this is a minimal form of X . This
example shows that a minimal form of an irreducible PFT shift is not unique, but
the minimal period remains the same.

As a side note, the graph in Fig. 4 can be formed from the one in Fig. 2 by
in-splitting the vertex 00 ∈ Ṽ0 into the vertices 000, 100 ∈ V ′

0. This example
demonstrates that the MS presentations of minimal forms are related by graph
amalgamation and splitting, as previously mentioned in Remark 3.

(c) Orbit growth
We obtain the zeta function of X by using Fig. 3 and following its construction in
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Fig. 4 The MS presentation of
X based on the sets F ′

0,F
′
1,F

′
2

(3). It is given as

ζ(z) = 1 + z + z2

1 − 2z3
.

We calculate the values of constants in Theorem 8 as follows:

λ = 2
1
3 , T = 3, k = 1, α = 1

2 − 2
2
3

.

Hence, the orbit growth of X is given by

π(N ) ∼ 6 · 2
⌊

N
3

⌋

N
, M(N ) ∼

3
(
2 − 2

2
3

)
e−γ

N
and

M (N ) = ln

⌊
N

3

⌋
+ γ − ln

(
2 − 2

2
3

)
− C + o(1).

4 Additional Remark: Finite Group and Homogeneous Extensions of
Sofic Shifts

As another consequence, our result in Theorem 4 is crucial to prove Chebotarev-like
theorems for finite group extensions of sofic shifts, which is similar to the case for
shifts of finite type [2, 27, 28]. Here, we provide a simple explanation about this topic.

Let X be a sofic shift equipped with the shift map σ . Consider a finite group
K and a function � : X → K which depends on the first two coordinates, i.e.
if x = {xk}k∈Z and y = {yk}k∈Z in X satisfy x0x1 = y0y1, then �(x) = �(y).
The finite group extension of X under K is the product X × K paired with a map
σ̂ : X × K → X × K where σ̂ (x, g) = (σ (x),�(x)g). We also define a free action
of K on X × K by h · (x, g) = (x, gh) for any h ∈ K .

Under this setting, each closed orbit τ of X is associated with a conjugacy class of
K . This is called the Frobenius class of τ , which is denoted by [τ ]. The class [τ ] is
precisely the conjugacy class for the element

�
(
σ |τ |−1(x)

)
�

(
σ |τ |−2(x)

)
. . . � (x) ∈ K

regardless on the choice of x ∈ τ .
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Now, we can count the closed orbits which have the same Frobenius class via
our orbit counting functions. In other words, for a conjugacy class C of K , define
πC (N ), MC (N ) and MC (N ) similarly, except they sum over the closed orbits with
the Frobenius class C . We can follow the same arguments in [2, 27, 28] and apply
our result here to obtain the asymptotic behaviours of these counting functions. For
instance, if σ̂ is topologically mixing on X × K , then

πC (N ) ∼ |C |
|K | · λN+1

N (λ − 1)
, MC (N ) ∼ e−γ |C |/|K |

βN |C |/|K | and

MC (N ) = |C |
|K | ln N + |C |

|K |γ + ln β − C + o(1)

where ln λ is the topological entropy of X , γ is the Euler–Mascheroni constant, and
β and C are some positive constants. We can also prove similar theorems for the finite
homogeneous extensions of sofic shifts, and again, the arguments follow similarly as
in [27, 28].

5 Conclusion

In this paper, we have obtained the orbit growth of sofic shifts via their Artin–Mazur
zeta function in Theorem 4. It was long expected that sofic shifts exhibit somewhat
exponential orbit growth due to their rational zeta function. Indeed, our work here has
obtained the precise form of the orbit growth. Consequently, this result leads to the
orbit growths of the PFT shifts in Theorem 8 and the finite group and homogeneous
extensions of sofic shifts.

As a side note, the approach via zeta function is applicable to any discrete dynamical
system, as long as its zeta function fulfills the assumptions in Theorem 1. However,
it is often very difficult to verify these assumptions for some systems due to the
sophisticated form of their corresponding zeta function. As an example in symbolic
dynamics, this situation can be seen in sofic-Dyck shifts [29], in which their zeta
function is expressed implicitly in terms of several power series. In fact, the zeta
function is an algebraic function, thus it is more difficult to study for its analyticity.

Sofic-Dyck shifts are a massive class of shift spaces, which also include sofic shifts.
Our future work aims to determine the orbit growth of the sofic-Dyck shifts, or if not,
their subshifts such as Markov–Dyck shifts [30] and shift spaces mentioned in [31].
Some advanced theories in other mathematical fields may be required for this purpose.
We hope that this paper provides a new interest, insight and idea to the readers to tackle
the problem on the orbit growth of those shift spaces.
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