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Abstract
In this work, we focus on the application of epidemic approaches to computer viruses
and investigate the dynamic transmission of multiple viruses, aiming to reduce com-
puter destruction. Our goal is to create and examine computer viruses using the
Atangana-Baleanu sense, which is employed in the fractional difference model for
the spread of computer viruses. It included removable storage devices and external
computer peripherals that were infected with computer viruses. The applications of
fixed-point theory and iterative techniques are employed to analyze the existence and
uniqueness results concerning the suggestedmodel.Moreover,we extend several kinds
of Ulam’s stability results for this discrete model. To demonstrate the implications of
changing the fractional order in this instance of numerical simulation, we employed
the Atanagana–Baleanu technique. The graphical outcomes validate our theoretical
findings, which we used to evaluate the impact of infected external computers and
removable storage devices on computer viruses.

Keywords Discrete nabla calculus · Computer virus · Atangana-Baleanu sense ·
Fixed point theory · Existence and uniqueness results · Ulam stability of solution

Mathematics Subject Classification 34A12 · 34D20 · 39A12 · 65P40 · 68M07

1 Introduction

A mathematical model typically explains a system using a collection of variables
along with a set of equations that construct interactions among the variables. The
ordinary differential equations are an essential type of such models. It explains how
variables and their derivatives relate to one another. Thesemodels arewidely available.
An illustration would be population fluctuations in biology and ecology, chemical
reactions in the field of chemistry, economics, particle mechanics in physics, etc.
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It is crucial to understand the theory of ordinary differential equations since it is a
fundamental branch of research and a useful tool for mathematical modelling.

In epidemiology, mathematical modelling helps to identify the factors that affect
a disease’s spread and makes recommendations for prevention measures [1]. One
of the first successes of mathematical epidemiology [2] was a formula to anticipate
how a disease would behave. The overall population is separated into three classes
in this model such as suspended, infected, and recovered and is considered to be
constant. Greater complexity has been obtained in models over the years. It has been
discovered that for a while, a portion of the infected class does not exhibit the signs of
several diseases. SEIRmodels are employed to simulate these disorders [3]. It has only
been possible to simulate the dynamics of epidemiology diseases using integer order
differential equations, despite the fact that this research has been extensively studied
[4–9]. Recent studies have shown that models utilising fractional order differential
equations can successfully explain a wide variety of occurrences in several disciplines
[10–18].

Recent years have seen the advent of incredibly efficient methods for solving
problems using mathematical models thanks to fractional analysis, which has given
mathematics and applied sciences a new lease on life. In terms of the process effect
or problem areas that classical methods are unable to adequately describe, fractional
analysis orders offers greater effectiveness than classical analysis techniques. As a
result of the development of novel derivative and integral operators, it has blossomed
into an area that is intensively researched nowadays. For the sake of their vast range of
applications, fractional calculus are quickly obtaining the popularity and have attracted
the consideration of numerous research initiatives. Since consequently, this topic has
attracted the focus of mathematicians from various disciplines [19–24].

Now a day, the mathematicians [25–31] established the fundamental theory of
fractional differential and difference inequalities with the help of fractional deriva-
tives (FDs) and difference of the Riemann-Liouville (RL) and Caputo operators. Also
researchers [27, 28, 32–37] studied if there exist local, global, extremal solutions,
existence and uniqueness and stability analysis to nonlinear fractional differential
equations (FDEs) and discrete fractional equations utilizing the analyzed fractional
inequalities and the comparison results. However, in order to eliminate singular ker-
nels in the traditional FD, Caputo and Fabrizio [38] introduced the FD employing an
exponential kernel.

In [39], Atangana and Baleanu suggested a novel derivative as generalization of the
Caputo-Fabrizio derivative (C-FD). They used the generalized Mittag-Leffler func-
tion to build the non-local and non-singular kernel. Their fractional operator has all
advantages of C-FD, RL and Caputo derivatives. Some of the advantages of Atangana-
Baleanu derivative (A-BD) appear in the differences between fractional operators [40].
The RL and Caputo derivatives are Markovian, C-FD is non-Markovian, while the A-
BD has both Markovian and non-Markovian aspects. The RL and Caputo derivatives
have power low kernel, and C-FD has exponential decay kernel, while the A-BD has
a Mittag-Leffler function as a kernel which is power low and stretched exponential
kernel. The ABC FD, also known as the new FD in the meaning of Caputo, was devel-
oped by Atangana and Baleanu in [39]. Its kernel is the Mittag-Leffler function. Given
that this operator is nonlocal equipped with a kernel having the nonsingularity, the
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ABC-fractional differential operator is more suitable for providing a more accurate
description of events that occur in the real world. It can be applied in many different
contexts to represent a various type of real life problems [41–53].

With establishing an excellent idea from the other investigations,we constructed this
research article in fractional derivative form:We examined some essential lemmas and
definitions in Sect. 2 that will serve as the foundation for the present research. Section3
establishes the comprehensive formulation of the suggested mathematical model and
provides a thoroughmodel description in both integer and discrete fractional meaning.
The description of the proposed model (3.2) is focused to exploring the existence
criteria in Sect. 4 and use limit points and iterative expressions to demonstrate its
uniqueness in Sect. 5. Various criteria of Ulam stability of the model (3.2) is addressed
in Sect. 6. The behavior of this physical phenomenon is simulated to see how it will
actually behave in Sect. 7. The research work is concluded with findings in Sect. 8.

2 Preliminaries

The following notations are offered in this section together with the definitions and
lemma for discrete fractional calculus:

Nξ0 = {ξ0, ξ0 + 1, ξ0 + 2, · · · } , N
T
ξ0+1 = {ξ0 + 1, ξ0 + 2, · · · , T } .

Let B∗ : C
(
N
T
ξ0+1,R

)
be a Banach space with the norm

‖F‖ = max
{
|F(ξ)| : ξ ∈ N

T
ξ0+1

}
.

Definition 2.1 [63, 64]. Let F : Nξ0 → R and 0 < ϑ ≤ 1 be given. The nabla
fractional sum ϑ of F is given as follows

ξ0∇−ϑ
ξ F(ξ) = 1

�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1F(ζ ),

for all ξ ∈ Nξ0+1, σ(ζ ) = ζ − 1 and ξ ϑ̂ := �(ξ + ϑ)

�(ξ)
.

Definition 2.2 [63, 64]. For 0 < ϑ < 1
2 , ξ ∈ Nξ0 and a function F : Nξ0 → R, the

left nabla ABC-fractional difference is

(
ABC
ξ0

∇ϑ
ξ F

)
(ξ) = G(ϑ)

1 − ϑ

ξ∑
ζ=ξ0+1

Eϑ̂

( −ϑ

1 − ϑ
, ξ − σ(ζ )

)
∇F(ξ),
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where G(ϑ) = 1 − ϑ + ϑ

�(1 − ϑ)
and the discrete Mittag-Leffler function for nabla

can be expressed by

Êa,b(η, z) =
∑
k≥0

ηk
z ̂ka+b−1

�(ak + b)
,

for |η| < 1, a, b, z ∈ C and Re(a) > 0.

Definition 2.3 [63, 64]. For ϑ ∈ (0, 1), the left ABC discrete nabla fractional sum of
order ϑ is given by

(
ABC
ξ0

∇−ϑ
ξ F

)
(ξ) = 1 − ϑ

G(ϑ)
F(ξ) + ϑ

G(ϑ)
ξ0∇−ϑ

ξ F(ξ).

Lemma 2.4 [64] Let ξ and ϑ be positive. Then
∑ξ

ζ=ξ0+1 (ξ − σ(ζ ))
̂ϑ−1 = 1

ϑ
(ξ −

ξ0)
ϑ̂ .

3 On the discrete fractional model of a computer virus

Acomputer connected to a network can quickly spread a virus to other associated com-
puters in the network due to the interconnectedness of various networks of computers
and the large number of users on these networks. The host computer’s general or some
data can be destroyed, or it can have unauthorized access to sensitive user data-such as
bank account details and other personal data without the user’s knowledge. Another
way to cause damage is to prevent the host computer from performing its functions
by taking up some mainframe memory or by turning off this portion of the system. A
number of strategies can be suggested with the aid of epidemics to lessen the threat
of viruses. We can look to [54–56, 62] for more information on how viruses operate
in computer networks.

Users need antivirus software to guard against virus disturbances. Due of the signifi-
cance of this, numerous academics and researchers have examined howviruses operate
in computer networks and produced models of how viruses behave in these networks.
Many mathematicians [55, 57–59] have developed a model of how computer viruses
operate before assessing themodel’s viability. The propagation and transmission capa-
bilities of computer viruses are comparable to those of biological viruses. Computer
viruses are distributed over the network in the same manner that biological viruses
are passed from one animal to another [60]. We can use the SIR model to assess the
effectiveness of computer viruses because they act similarly to biological viruses due
to their similarities. The prospective applications of fractional calculus in engineering
and science have sparked a lot of interest recently [29]. Pinto and Machado [61] have
provided a fractional order-based analysis of the spread of computer viruses. In their
approach, interactions between computers and removable storage devices are taken
into account.
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The traditional computer virus model described in [65, 66] has four compartments
labelled S(ξ), L(ξ), B(ξ) and R(ξ) respectively, to represent susceptible, latent com-
puters, computers that are breaking out of their infection state, and computers that have
recovered following infection involving both internal and external viruses at time ξ ,
as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S
′
(ξ) = δ1 + (σ2 − β1S(ξ)) L(ξ)

+ (σ3 − β2S(ξ)) B(ξ) + ηR(ξ) − (σ1 + μ + θ)S(ξ),

L
′
(ξ) = δ2 + (β1L(ξ) + β2B(ξ) + θ) S(ξ) − (σ1 + σ2 + μ + α) L(ξ),

B
′
(ξ) = δ3 + αL(ξ) − (σ1 + σ3 + μ) B(ξ),

R
′
(ξ) = δ4 + (S(ξ) + L(ξ) + B(ξ)) σ1 − (η + μ) R(ξ),

(3.1)

where the parameters δ1, δ2, δ3, δ4, σ1, σ2, σ3, β1, β2, η, μ, θ , α are positive constants
and the assumptions of these parameters are considered in [65, 66]. The aforemen-
tioned system (3.1) can be expressed in ABC discrete fractional order nabla form as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC
ξ0

∇ϑ S(ξ) = δ1 + (σ2 − β1S(ξ)) L(ξ)

+ (σ3 − β2S(ξ)) B(ξ) + ηR(ξ) − (σ1 + μ + θ)S(ξ),
ABC
ξ0

∇ϑ L(ξ) = δ2 + (β1L(ξ) + β2B(ξ) + θ) S(ξ)

− (σ1 + σ2 + μ + α) L(ξ),
ABC
ξ0

∇ϑ B(ξ) = δ3 + αL(ξ) − (σ1 + σ3 + μ) B(ξ),
ABC
ξ0

∇ϑ R(ξ) = δ4 + (S(ξ) + L(ξ) + B(ξ)) σ1 − (η + μ) R(ξ),

(3.2)

where the initial conditions are S0 ≥ 0, L0 ≥ 0, B0 ≥ 0, R0 ≥ 0. Here, ABC
ξ0

∇ϑ is
used for the ABC discrete nabla difference operator of order ϑ ∈ (0, 1].

The proof for the existence of a solution to the proposedmodel (3.2)will be achieved
by employing a successive iterative method. For this, we used Definition 2.1 and
Definition 2.3 to help us create the model (3.2), and we obtain

S(ξ) − S0 = (1 − ϑ)

G(ϑ)

[
δ1 +

(
σ2 − β1S(ξ)

)
L(ξ)

+
(

σ3 − β2S(ξ)

)
B(ξ) + ηR(ξ) − (σ1 + μ + θ)S(ξ)

]

+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

×
[
δ1 +

(
σ2 − β1S(ζ )

)
L(ζ )

+
(

σ3 − β2S(ζ )

)
B(ζ ) + ηR(ζ ) − (σ1 + μ + θ)S(ζ )

]
,

L(ξ) − L0 = (1 − ϑ)

G(ϑ)

[
δ2 +

(
β1L(ξ) + β2B(ξ) + θ

)
S(ξ)
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−
(

σ1 + σ2 + μ + α

)
L(ξ)

]

+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

[
δ2 +

(
β1L(ζ ) + β2B(ζ ) + θ

)
S(ζ )

−
(

σ1 + σ2 + μ + α

)
L(ζ )

]
,

B(ξ) − B0 = (1 − ϑ)

G(ϑ)

[
δ3 + αL(ξ) −

(
σ1 + σ3 + μ

)
B(ξ)

]

+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

[
δ3 + αL(ζ ) −

(
σ1 + σ3 + μ

)
B(ζ )

]
,

R(ξ) − R0 = (1 − ϑ)

G(ϑ)

[
δ4 +

(
S(ξ) + L(ξ) + B(ξ)

)
σ1 −

(
η + μ

)
R(ξ)

]

+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

[
δ4

+
(
S(ζ ) + L(ζ ) + B(ζ )

)
σ1 −

(
η + μ

)
R(ζ )

]
.

Consider the following functions Wi for i = 1, 2, 3, 4

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W1(ξ, S) = δ1 + (σ2 − β1S(ξ)) L(ξ)

+ (σ3 − β2S(ξ)) B(ξ) + ηR(ξ) − (σ1 + μ + θ)S(ξ),

W2(ξ, L) = δ2 + (β1L(ξ) + β2B(ξ) + θ) S(ξ) − (σ1 + σ2 + μ + α) L(ξ),

W3(ξ, B) = δ3 + αL(ξ) − (σ1 + σ3 + μ) B(ξ),

W4(ξ, R) = δ4 + (S(ξ) + L(ξ) + B(ξ)) σ1 − (η + μ) R(ξ).

4 Existence Results

We consider some hypotheses before stating and discussing on the main theorems of
the present section:

(H1) If S(ξ), S∗(ξ), L(ξ), L∗(ξ), B(ξ), B∗(ξ), R(ξ), R∗(ξ) ∈ C

(
N
T
ξ0+1,R

)
are

continuous and ε1, ε2, ε3 > 0 such that ‖L‖ ≤ ε1, ‖B‖ ≤ ε2 and ‖S‖ ≤ ε3.
(H2) If 1 > 0 such that for all S, S∗ ∈ B∗ and each ξ ∈ N

T
ξ0+1, we have

|W1(ξ, S) − W1(ξ, S∗)| ≤ 1 |S − S∗|.
(H3) If φ ∈ C

(
N
T
ξ0+1,R

+
)
is non decreasing function and λ > 0, for ξ ∈ N

T
ξ0+1

such that
ε

�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1φ(ζ + ϑ − 1) ≤ λεφ(ξ + ϑ − 1).

Theorem 4.1 Under the assumptions (H1), (H2) and i < 1, for i = 1, 2, 3, 4, the
kernels Wi satisfy Lipschitz condition.
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Proof First, we examine W1(ξ, S). By utilising S(ξ) and S∗(ξ), we calculate

∥∥W1(S) − W1(S
∗)

∥∥ = ‖δ1 + (σ2 − β1S) L + (σ3 − β2S) B + ηR − (σ1 + μ + θ)S

− [
δ1 + (

σ2 − β1S
∗) L + (

σ3 − β2S
∗) B + ηR − (σ1 + μ + θ)S∗]∥∥

≤ [β1 ‖L‖ + β2 ‖B‖ + σ1 + μ + θ ]
∥∥S − S∗∥∥

∥∥W1(S) − W1(S
∗)

∥∥ ≤ 1
∥∥S − S∗∥∥ ,

(4.1)

where 1 = β1ε1+β2ε2+σ1+μ+θ . As a result, the Lipschitz constant 1 makesW1
satisfy the criterion. We verify this requirement for W2(ξ, L) in the following. Due to
this, we have

∥∥W2(L) − W2(L
∗)

∥∥ = ‖δ2 + (β1L + β2B + θ) S − (σ1 + σ2 + μ + α) L

− [
δ2 + (

β1L
∗ + β2B + θ

)
S − (σ1 + σ2 + μ + α) L∗]∥∥

≤ [β1 ‖S‖ + σ1 + σ2 + μ + α]
∥∥L − L∗∥∥

∥∥W2(L) − W2(L
∗)

∥∥ ≤ 2
∥∥L − L∗∥∥ ,

(4.2)

where 2 = β1ε3 + σ1 + σ2 + μ + α. With the help of the Lipschitz constant 2, W2
fulfills the criteria of Lipschitz. On W3(ξ, B), we can write

∥∥W3(B) − W3(B
∗)

∥∥ = ∥∥δ3 + αL − (σ1 + σ3 + μ) B − [
δ3 + αL − (σ1 + σ3 + μ) B∗]∥∥

≤ [σ1 + σ3 + μ]
∥∥B − B∗∥∥

∥∥W3(B) − W3(B
∗)

∥∥ ≤ 3
∥∥B − B∗∥∥ ,

(4.3)

where 3 = σ1 + σ3 + μ. Using the Lipschitz constant 3, it follows that W3 satisfies
Lipschitz condition. Now W4(ξ, R), we have

∥∥W4(R) − W4(R
∗)

∥∥ = ∥∥δ4 + (S + L + B) σ1 − (η + μ) R − [
δ4 + (S + L + B) σ1 − (η + μ) R∗]∥∥

≤ [η + μ]
∥∥R − R∗∥∥

∥∥W4(R) − W4(R
∗)

∥∥ ≤ 4
∥∥R − R∗∥∥ ,

(4.4)

where 4 = η + μ. Hence, W4 is also meets Lipschitzian with constant 4. As a
findings of (4.1)–(4.4), the outcome is accomplished since Wi , where i = 1, 2, 3, 4,
meet the Lipschitz property. 
�



182 Page 8 of 20 R. Dhineshbabu et al.

Assume

S(ξ) − S0 = (1 − ϑ)

G(ϑ)
W1(ξ, S(ξ)) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W1(ζ, S(ζ )),

L(ξ) − L0 = (1 − ϑ)

G(ϑ)
W2(ξ, L(ξ)) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W2(ζ, L(ζ )),

B(ξ) − B0 = (1 − ϑ)

G(ϑ)
W3(ξ, B(ξ)) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W3(ζ, L(ζ )),

R(ξ) − R0 = (1 − ϑ)

G(ϑ)
W4(ξ, R(ξ)) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W4(ζ, R(ζ )).

(4.5)

Theorem 4.2 If � = max [1, 2, 3, 4] < 1, then the system (3.2) at least has a
solution.

Proof Consider

{
�1n (ξ) = Sn(ξ) − S(ξ), �2n (ξ) = Ln(ξ) − L(ξ),

�3n (ξ) = Bn(ξ) − B(ξ), �4n (ξ) = Rn(ξ) − R(ξ).

Following this, we conclude that

∣∣�1n (ξ)
∣∣ = (1 − ϑ)

G(ϑ)
|W1(ξ, Sn(ξ)) − W1(ξ, S(ξ))| + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1 |W1(ζ, Sn(ζ )) − W1(ζ, S(ζ ))| .

(4.6)

The condition (H2) and Lemma 2.4 in (4.6) give

∥∥�1n (ξ)
∥∥ ≤ 1(1 − ϑ)

G(ϑ)
‖Sn − S‖ + 1ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1 ‖Sn − S‖

≤ 1(1 − ϑ)

G(ϑ)
‖Sn − S‖ + 1ϑ (ξ − ξ0)

ϑ̂

G(ϑ)�(ϑ)ϑ
‖Sn − S‖

≤
[

�(ϑ)(1 − ϑ) + (T − ξ0)
ϑ̂

G(ϑ)�(ϑ)

]
1 ‖Sn − S‖

∥∥�1n (ξ)
∥∥ ≤

[
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]n

n1 ‖Sn − S‖ , (4.7)
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in which we have Sn → S for 1 < 1 and as n → ∞. In a similar way

∥∥�2n (ξ)
∥∥ ≤

[
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]n

n2 ‖Ln − L‖ , (4.8)

∥∥�3n (ξ)
∥∥ ≤

[
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]n

n3 ‖Bn − B‖ , (4.9)

∥∥�4n (ξ)
∥∥ ≤

[
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]n

n4 ‖Rn − R‖ , (4.10)

According to (4.7)–(4.10), when n → ∞, then �in → 0 and i < 1 for i = 2, 3, 4.
Finally, a solution exists for the system (3.2). 
�

5 Unique Solution

We will demonstrate the uniqueness of solutions for our proposed model (3.2).

Theorem 5.1 If (H1) is satisfied and the following is true, then the ABC model (3.2)
has exactly one solution

[
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]
i ≤ 1, (5.1)

for i = 1, 2, 3, 4.

Proof From the assumption (4.5), for NT
ξ0+1, it follows that

∣∣S(ξ) − S∗(ξ)
∣∣ = 1 − ϑ

G(ϑ)

∣∣W1(ξ, S(ξ)) − W1(ξ, S∗(ξ))
∣∣

+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

∣∣W1(ζ, S(ζ )) − W1(ζ, S∗(ζ ))
∣∣ .

(5.2)

The condition (H2) and Lemma 2.4 in (5.2) follow that

∥∥S − S∗∥∥ ≤ 1(1 − ϑ)

G(ϑ)

∥∥S − S∗∥∥ + 1ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

∥∥S − S∗∥∥

≤ 1(1 − ϑ)

G(ϑ)

∥∥S − S∗∥∥ + 1 (ξ − ξ0)
ϑ̂

G(ϑ)�(ϑ)

∥∥S − S∗∥∥

∥∥S − S∗∥∥ ≤
[

�(ϑ)(1 − ϑ) + (T − ξ0)
ϑ̂

G(ϑ)�(ϑ)

]
1

∥∥S − S∗∥∥
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and so

∥∥S − S∗∥∥
[
1 −

(
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

)
1

]
≤ 0. (5.3)

The relation (5.3) can only be justified if ‖S − S∗‖ = 0, so we have S = S∗. Also,
together with

∥∥L − L∗∥∥ ≤
[

�(ϑ)(1 − ϑ) + (T − ξ0)
ϑ̂

G(ϑ)�(ϑ)

]
1

∥∥L − L∗∥∥ ,

As we approach

∥∥L − L∗∥∥
[
1 −

(
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

)
1

]
≤ 0.

This means that ‖L − L∗‖ = 0 and L = L∗. In addition

∥∥B − B∗∥∥ ≤
[

�(ϑ)(1 − ϑ) + (T − ξ0)
ϑ̂

G(ϑ)�(ϑ)

]
1

∥∥B − B∗∥∥ ,

from this

∥∥B − B∗∥∥
[
1 −

(
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

)
1

]
≤ 0.

is true if ‖B − B∗‖ = 0, which results in B = B∗. In similar manner

∥∥R − R∗∥∥ ≤
[

�(ϑ)(1 − ϑ) + (T − ξ0)
ϑ̂

G(ϑ)�(ϑ)

]
1

∥∥R − R∗∥∥ ,

from the above relation, we obtain

∥∥R − R∗∥∥
[
1 −

(
�(ϑ)(1 − ϑ) + (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

)
1

]
≤ 0. (5.4)

The relation (5.4) satisfy when ‖R − R∗‖ = 0. Thus R = R∗. So, our model (3.2)
admits a unique solution. 
�

6 Hyers-Ulam Stability

To begin this section, we are going to focus on some necessary inequalities and notions
for our model (3.2) to meet the hypotheses of different kinds of the Ulam’s stability.
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Now, focus on an IVP (3.2) and these inequalities [33, 35]

⎧
⎨
⎩

∣∣∣ABCξ0
∇ϑ Ŝ(ξ) − W1

(
ξ, Ŝ(ξ)

)∣∣∣ ≤ ε1,

∣∣∣ABCξ0
∇ϑ L̂(ξ) − W2

(
ξ, L̂(ξ)

)∣∣∣ ≤ ε2,∣∣∣ABCξ0
∇ϑ B̂(ξ) − W3

(
ξ, B̂(ξ)

)∣∣∣ ≤ ε3,

∣∣∣ABCξ0
∇ϑ R̂(ξ) − W4

(
ξ, R̂(ξ)

)∣∣∣ ≤ ε4

(6.1)

and

⎧
⎨
⎩

∣∣∣ABCξ0
∇ϑ Ŝ(ξ) − W1

(
ξ, Ŝ(ξ)

)∣∣∣ ≤ ε1φ1(ξ),

∣∣∣ABCξ0
∇ϑ L̂(ξ) − W2

(
ξ, L̂(ξ)

)∣∣∣ ≤ ε2φ2(ξ),∣∣∣ABCξ0
∇ϑ B̂(ξ) − W3

(
ξ, B̂(ξ)

)∣∣∣ ≤ ε3φ3(ξ),

∣∣∣ABCξ0
∇ϑ R̂(ξ) − W4

(
ξ, R̂(ξ)

)∣∣∣ ≤ ε4φ4(ξ),

(6.2)

where ξ ∈ N
T
ξ0+1.

Definition 6.1 The IVP (3.2) is Hyers-Ulam (HU) stable if Ai > 0, εi > 0 for
N
4
1 and for every solution Ŝ(ξ), L̂(ξ), B̂(ξ), R̂(ξ),∈ B∗ of (6.1), there is a solution

S(ξ), L(ξ), B(ξ), R(ξ) ∈ B∗ of (3.2) with

⎧⎨
⎩

∣∣∣Ŝ(ξ) − S(ξ)

∣∣∣ ≤ A1ε1,

∣∣∣L̂(ξ) − L(ξ)

∣∣∣ ≤ A2ε2,∣∣∣B̂(ξ) − B(ξ)

∣∣∣ ≤ A3ε3,

∣∣∣R̂(ξ) − R(ξ)

∣∣∣ ≤ A4ε4, ξ ∈ N
T
ξ0+1.

Definition 6.2 The IVP (3.2) is Hyers-Ulam-Rassias (HUR) stable if Di > 0, εi > 0
for N

4
1 and for each Ŝ(ξ), L̂(ξ), B̂(ξ), R̂(ξ) ∈ B∗ of (6.2), there is a solution

S(ξ), L(ξ), B(ξ), R(ξ) ∈ B∗ of (3.2) with

⎧
⎨
⎩

∣∣∣Ŝ(ξ) − S(ξ)

∣∣∣ ≤ D1ε1φ1(ξ),

∣∣∣L̂(ξ) − L(ξ)

∣∣∣ ≤ D2ε2φ2(ξ),∣∣∣B̂(ξ) − B(ξ)

∣∣∣ ≤ D3ε3φ3(ξ),

∣∣∣R̂(ξ) − R(ξ)

∣∣∣ ≤ D4ε4φ4(ξ), ξ ∈ N
T
ξ0+1.

Remark 6.3 A function Ŝ(ξ) ∈ B∗ is a solution of (6.1) and (6.2) if ∃ f : NT
ξ0+1 → R

satisfying, for ξ ∈ N
T
ξ0+1,

(i) | f1(ξ)| ≤ ε1,
(ii) | f1(ξ)| ≤ ε1φ1(ξ),
(iii) ABC

ξ0
∇ϑ Ŝ(ξ) = W1(ξ, Ŝ(ξ)) + f1(ξ).

In a similar manner, we may define for other classes in the model (3.2) for some fi (ξ)

with i = 2, 3, 4.

Theorem 6.4 If the inequality (5.1) and (H2) hold, then the model (3.2) is HU stable.
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Proof According to Remark 6.3 with Definitions 2.1 and 2.3, we obtain the solution
Ŝ(ξ) is given by

Ŝ(ξ) = Ŝ0 + (1 − ϑ)

G(ϑ)
W1(ξ, Ŝ(ξ)) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W1(ζ, Ŝ(ζ )),

+ (1 − ϑ)

G(ϑ)
f1(ξ) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1 f1(ζ ). (6.3)

From this it follows that

∣∣∣∣∣∣
Ŝ(ξ) − Ŝ0 − (1 − ϑ)

G(ϑ)
W1(ξ, Ŝ(ξ)) − ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W1(ζ, Ŝ(ζ ))

∣∣∣∣∣∣

≤ (1 − ϑ)

G(ϑ)
| f1(ξ)| + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1 | f1(ζ )|

≤
[

(1 − ϑ)

G(ϑ)
+ (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]
ε1. (6.4)

From solution (4.5), for ξ ∈ N, it follows that

∣∣∣Ŝ(ξ) − S(ξ)

∣∣∣ ≤
∣∣∣∣Ŝ(ξ) − Ŝ0 − (1 − ϑ)

G(ϑ)
W1(ξ, Ŝ(ξ)) − ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W1(ζ, Ŝ(ζ ))

∣∣∣∣∣∣

+
⎡
⎣ (1 − ϑ)

G(ϑ)
+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

⎤
⎦

∣∣∣W1(ζ, Ŝ(ζ )) − W1(ξ, S(ξ))

∣∣∣ .

Using Lemma 2.4 and inequality (6.4) along with hypothesis (H2), we have that

∥∥∥Ŝ − S
∥∥∥ ≤

[
(1 − ϑ)

G(ϑ)
+ (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]
ε1

+
⎡
⎣ (1 − ϑ)

G(ϑ)
+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

⎤
⎦ 1

∥∥∥Ŝ − S
∥∥∥

≤
[

(1 − ϑ)

G(ϑ)
+ (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

](
ε1 + 1

∥∥∥Ŝ − S
∥∥∥
)

. (6.5)
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Inequality (6.5) yields
∥∥∥Ŝ − S

∥∥∥ ≤ A1ε1,whereA1 =

[
(1 − ϑ)

G(ϑ)
+ (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]

1 − 1

[
(1 − ϑ)

G(ϑ)
+ (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

] .

Similarly, we have
∥∥∥L̂ − L

∥∥∥ ≤ A2ε2,
∥∥∥B̂ − B

∥∥∥ ≤ A3ε3 and
∥∥∥R̂ − R

∥∥∥ ≤ A4ε4 Thus,

the model (3.2) is HU stable. 
�
Theorem 6.5 If the inequality (5.1) and (H3) hold, the model (3.2) is HUR stable.

Proof According to Remark 6.3 and Eq. (6.3), we get

∣∣∣∣∣∣
Ŝ(ξ) − Ŝ0 − (1 − ϑ)

G(ϑ)
W1(ξ, Ŝ(ξ)) − ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1W1(ζ, Ŝ(ζ ))

∣∣∣∣∣∣

≤ (1 − ϑ)

G(ϑ)
| f1(ξ)| + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1 | f1(ζ )|

≤ (1 − ϑ)

G(ϑ)
ε1φ1(ξ) + ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1ε1φ1(ζ )

≤
[
1 + (λ − 1)ϑ

G(ϑ)

]
ε1φ1(ξ). (6.6)

In view of Lemma 2.4 and inequality (6.6) with the aid of Theorem 6.4, we get

∥∥∥Ŝ − S
∥∥∥ ≤

[
1 + (λ − 1)ϑ

G(ϑ)

]
ε1φ1(ξ)

+
⎡
⎣ (1 − ϑ)

G(ϑ)
+ ϑ

G(ϑ)�(ϑ)

ξ∑
ζ=ξ0+1

(ξ − σ(ζ ))
̂ϑ−1

⎤
⎦ 1

∥∥∥Ŝ − S
∥∥∥

≤
[
1 + (λ − 1)ϑ

G(ϑ)

]
ε1φ1(ξ) +

[
(1 − ϑ)

G(ϑ)
+ (T − ξ0)

ϑ̂

G(ϑ)�(ϑ)

]
1

∥∥∥Ŝ − S
∥∥∥ .

From above it follows
∥∥∥Ŝ − S

∥∥∥ ≤ D1ε1φ1(ξ), where

D1 = [1 + (λ − 1)ϑ]

G(ϑ) − 1

[
(1 − ϑ) + (T − ξ0)

ϑ̂

�(ϑ)

] .

Similarly,
∥∥∥L̂ − L

∥∥∥ ≤ D2ε2φ2(ξ),
∥∥∥B̂ − B

∥∥∥ ≤ D3ε3φ3(ξ) and
∥∥∥R̂ − R

∥∥∥ ≤
D4ε4φ4(ξ). So, the model (3.2) is HUR stable. 
�
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7 Numerical Simulations

The mathematical analysis of the epidemic computer virus model with the effect
of external and internal storage media is proposed with the new fractional operator
with given parameters details in [65, 66]. This section demonstrates the numerical
computation findings based on the mathematical study of the computer epidemic
model (3.2) by using the ABC fractional difference operator.

Assume that ξ0 = 0,
(ξ − σ(ζ ))

̂ϑ−1

�(ϑ)
= �(ξ − ζ + ϑ)

�(ϑ)�(ξ − ζ + 1)
, ξ = m and ζ = k in

Eq. (4.5) gives the numerical formulations explicitly in the form of the model (3.2) is
given by

S(m) = S0 + (1 − ϑ)

G(ϑ)

[
δ1 + (σ2 − β1S(m)) L(m)

+ (σ3 − β2S(m)) B(m) + ηR(m) − (σ1 + μ + θ)S(m)
]

+ ϑ

G(ϑ)�(ϑ)

m∑
k=1

�(m − k + ϑ)

�(m − k + 1)

[
δ1 + (σ2 − β1S(k)) L(k)

+ (σ3 − β2S(k)) B(k) + ηR(k) − (σ1 + μ + θ)S(k)
]
,

L(m) = L0 + (1 − ϑ)

G(ϑ)
[δ2 + (β1L(m) + β2B(m) + θ) S(m) − (σ1 + σ2 + μ + α) L(m)]

+ ϑ

G(ϑ)�(ϑ)

m∑
k=1

�(m − k + ϑ)

�(m − k + 1)

[
δ2 + (β1L(k) + β2B(k) + θ) S(k)

− (σ1 + σ2 + μ + α) L(k)
]
,

B(m) = B0 + (1 − ϑ)

G(ϑ)
[δ3 + αL(m) − (σ1 + σ3 + μ) B(m)]

+ ϑ

G(ϑ)�(ϑ)

m∑
k=1

�(m − k + ϑ)

�(m − k + 1)
[δ3 + αL(k) − (σ1 + σ3 + μ) B(k)] ,

R(m) = R0 + (1 − ϑ)

G(ϑ)
[δ4 + (S(m) + L(m) + B(m)) σ1 − (η + μ) R(m)]

+ ϑ

G(ϑ)�(ϑ)

m∑
k=1

�(m − k + ϑ)

�(m − k + 1)
[δ4 + (S(k) + L(k) + B(k)) σ1 − (η + μ) R(k)] .

With the novel fractional operator, a mathematical study of the computer virus
epidemic model is proposed, taking into account the impact of both internal and
exterior media for storage. The new ABC fractional difference operator has been
utilized in a numerical simulation for the computer virusmodel. Consider the following
parameter values δ1 = 0.25, δ2 = 0.28, δ3 = 0.27, δ4 = 0.23, α = 0.033, β1 =
0.0043, β2 = 0.0063, σ1 = 0.021, σ2 = 0.01, σ3 = 0.018, η = 0.015, μ =
0.005, θ = 0.0038 and the initial conditions are (S0, L0, B0, R0) = (50, 5, 4, 5) with
different fractional orderϑ = 0.8, 0.85, 0.9, 0.95, 1 in system (3.2). Figures1, 2, 3 and
4 demonstrate the memory effect using graphs of the solutions that are approximate in
various fractional orders ϑ . It is evident that both internal and external storage devices
are an extensive source of viral transmission. Furthermore, we discovered that external
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Fig. 1 Nature of the obtained solution for S(ξ) with different fractional orders

Fig. 2 Nature of the obtained solution for L(ξ) with different fractional orders

storage devices had a sizable impact on viral infections. Figures1, 2, 3 and 4 show
that as latent, breaking-out, and recovered computers increase quickly, the number of
susceptible computers declines. The simulation in Fig. 2 depicts how the interactions
of latent computers change over time, increasing and then reducing. Figure3 illustrates
how quickly computers are being damaged by the break out, which is also expanding
quickly. As a result of the influence of the fractional operator, the recovery rate of
computing devices is growing smoothly in Fig. 4.
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Fig. 3 Nature of the obtained solution for B(ξ) with different fractional orders

Fig. 4 Nature of the obtained solution for R(ξ) with different fractional orders

8 Conclusion

Discrete fractional equations are gaining increasing importance due to their excep-
tional ability to accurately simulate real-world physical problems. In the context of
the discrete fractional computer virus model employing the ABC fractional difference
operator, our research work presents a novel finding. First and foremost, through the
application of fixed point methodology, we have strengthened the existence hypothesis
for the model, specifically focusing on the existence and uniqueness of the solution.
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Following these findings, we took into account HU stability to determine the stability
of the solution. Next, we examine numerical simulations for the proposed model. To
validate the theoretical findings of the computer virus model, we conducted numerical
simulations at various fractional orders, specifically ϑ = 0.8, 0.85, 0.9, 0.95, 1 and
obtained graphical outcomes. The proliferation of the virus has been demonstrated to
be influenced by both internal and external storage devices. Additionally, we found
that as the time variable ξ increases, the influence of all external storage media on viral
infection intensifies. These findings are particularly valuable for preventing computer
virus infections and mitigating risks from potential outcomes. This research work
employs a novel strategy that can serve as a starting point for discussions on various
real-world scenarios within the context of discrete behavior frameworks. In future
work, we intend to extend the modeling of a computer virus to include stochastic
fractional-order derivatives as well as partial differential equations.

Acknowledgements J. Alzabut is thankful to Prince SultanUniversity andOSTİMTechnical University for
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