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Abstract
This paper concerns the polynomial-logarithmic stability and stabilization of time-
varying control systems.We present sufficient Lyapunov-like conditions guaranteeing
this polynomial-logarithmic stability with applications to several linear and nonlinear
control systems.

Keywords Asymptotic estimation · Logarithmic stability · Polynomial stability ·
Feedback control

1 Introduction

In control theory, one of the concerns is to explain how the solution of a control
system converges (or reaches) the equilibrium point in a long time. The well known
rapid exponential stabilization is one of useful property that can gives the qualitative
behavior of all static closed-loop system. This property merely follows from the fact
that the linearizationmatrix around the equilibriumpoint isHurwitz [8, 35]. Thenatural
question that can be asked; what do we do if this property is not held? Clearly, this
criterion is not usually possible for nonlinear case e.g. the scalar system ẋ = −x3u2

cannot be exponentially stabilizable by regular state feedback laws; rather than, with
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u(x) = √|x |, we easily get the following polynomial approximation |x(t)| �+∞
c/t1/3. More precisely, the closed-loop system is polynomially stable. Hence, this
paper discusses more responses to the above questions and proposes other alternatives
to the exponential decay rate.

In the list of previous papers [19, 20, 22, 23, 36], we have developed results on the
polynomial stability and stabilization of dynamical systems with applications to sev-
eral control systems where stabilizing feedbacks (resp. stabilizing output feedbacks)
are constructed. Characterization of this polynomial stability by means of Lyapunov
function is proved in [23], while this characterization for homogeneous systems is
obtained with optimal decay rate in [20]. The decay rate estimate in this situation is
the inverse of the degree of homogeneity of the system, and is therefore a strong result
for homogeneous systems. This nice result opened the door for the construction of
homogeneous observers followed by output feedbacks with optimal decay rate.

In this paper, we continue our progress in this area, and we examine the possibility
to “blended” the polynomial and logarithmic stability. For general control system, in
R
n × R

m, of the form ẏ = f (y, u) where f (0, 0) = 0, the logarithmic stabilization
means the construction of suitable time-varying feedback law u(t, y) (Hölderian in
general cases with respect to the state) such that each solution y(t) of the closed-

loop system ẏ = f (y, u(t, y)) decreases like
c

tαlnβ(t)
where α, β > 0 are the

decay rates. Indeed, we have remarked that contrary to polynomial stability that holds
for time invariant/time-varying systems, the polynomial-logarithmic stability usually
concerns the class of time-varying systems; especially for many applied nonlinear
systems, there is indeed part of the state that it is not useful to stabilize: it is sufficient
to know that this part is converging: this the partial asymptotic stabilization [14, 15].
We show in this article that the logarithmic stabilization by static state feedback law of
the form u(x) is insufficient to solve some problems of partial asymptotic stabilization.

In this context, we have developed some sufficient like-integral criteria character-
izing this polynomial-logarithmic stability. The main idea of this coupled property of
polynomial-logarithmic stability that is obtained via a time-varyingLyapunov function
admits the estimate

V̇ � − f (t)V θ

with θ > 1, and f (.) is a positivemeasurable function satisfying the integral constraint

∫ t

t0
f (s)ds � k tα(ln t − ln t0)

β, t0 > 0,

where α, β and k are nonnegative constants. The function t �→ f (t) in the above
inequality plays the role of an excitatory function that reinforces the system to reach the
equilibrium point asymptotically like the inverse of tα lnβ(t). In this context, further
general results are presented and permit us to obtain either polynomial stability or
logarithmic stability.

It is noticed formany previousworks [20, 22, 23] that smooth systems (i.e. Lipschitz
systems that may not be linearizable at the origin), that polynomial stabilization can be
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ensured by regular continuous state feedback laws; even smooth if some parameters in
the state feedbacks aremastered. This regular property of feedbacks remains preserved
for the logarithmic stabilization. We present examples of control systems by proving
how one can build stabilizing feedback laws leading to polynomial-logarithmic decay
estimates. The first example concerns the system double integrator where we have
constructed an unsteady feedback law stabilizing this system in the logarithmic sense.
This preliminary result can be generalized for cascade systems; in particular, the
backstepping technique [8] is extended for this type of stability; and helped us for
the construction of unsteady feedback law stabilizing polynomially-logarithmically
for the toy model of controllable quadratic systems [9]. For this class of systems,
Coron in [9] has proved that solutions of controllable quadratic systems decrease like
c/t , and therefore our result improves those obtained in [9] by increasing the rate of
convergence.

More examples aswell as the bilinear control systems inRn , the Brockett integrator,
and the weak stability in partial sense are treated. For example, for bilinear control
systems in R

n , we have improved the decay rate obtained by Quin in [24]. One of
the strong elements of the treated examples is that we kept the same assumptions
proposed by the authors cited above, and we have improved the convergence speed of
these systems by constructing new and regular (even, smooth, if the parameter β is a
fixed integer) feedbacks.

Finally, we have observed that along the literature that this mixed stability is not
frequently studied in dynamical systems/or dynamical control systems, but there are
fewer works in infinite-dimensional concerning the polynomial stability, even with
optimal rate of decreasing [4, 12].

This paper is outlined as follows: the next section deals with the notion of logarith-
mic stability and stabilization of time-varying systems/time-varying control systems.
The main results are presented in Sects. 2 and 3 where several Lyapunov criteria
are proved. In Sect. 4, we illustrate our contribution by examples of control systems
where time-varying stabilizing feedback laws in logarithmic stability sense are built.
In Sect. 5, we present links between the controllability of the linearized system and
the logarithmic stabilizability. Finally, the conclusion is given in Sect. 6.

2 Logarithmic Stability: Main Results

In this paper, we adopt the notations: ||.|| (resp. 〈, 〉) denotes the Euclidean
norm (resp. the inner product) on R

n , L1([0, +∞)) is the Lebesgue space
with norm ||.||1, ′ is the symbol of transposition. The set Q

+
odd =

{r ∈ Q
∗+ : r = p

q , where p and q are odd nonnegative integers}, Q+
even is the set of

nonnegative rational numbers m of the form m = p
q where p ∈ 2N and q an odd

integer, and � is the symbol of asymptotic equivalent.
A functionα : R+ → R+ is said aK-function ifα is continuous and strictly increasing
with α(0) = 0. If the function α is unbounded, then it is a K∞-function. A function
β : R+ × R+ → R+ is belongs to class KL if for every fixed t � 0, β(., t) ∈ K∞
and for each fixed s ∈ R+, β(s, t) → 0 as t → +∞.



186 Page 4 of 32 C. Jammazi et al.

Before presenting the notion of polynomial-logarithmic stability, we introduce the
following preliminary results.

2.1 Preliminary Results: Logarithmic Feedback Stabilization

One of our concerns is to understand how solutions of dynamical systems of the form
ẋ(t) = X(x(t)), X(0) = 0 tend to the equilibrium point! In his textbook, E. de Sontag
[29], for example, proposes the following definition: (the equilibrium point 0 globally
asymptotically stable (GAS)) if

∃ β ∈ KL, s.t ||x(t, x0)|| � β(||x0||, t), ∀ x0, ∀ t � 0.

Consider, for example, the scalar control system in R × R.

ẋ = u. (1)

Our objective is to construct two types of feedback laws.

• A static stabilizing feedback law of the form u(x) leading to logarithmic stability
estimate of the closed-loop system (1) i. e. there exist nonnegative constants c, α

such that

|x(t)|�+∞
c

lnα(t)
.

In this case, we said that the closed-loop system ẋ(t) = u(x) is logarithmically
stable; or the system (1) is logarithmically stabilizable.

• A time-varying stabilizing feedback of the form u(t, x) leading to polynomial-
logarithmic stability estimate of the closed-loop system (1) i. e. there exist
nonnegative constants c, α, β such that

|x(t)|�+∞
c

tα lnβ(t)
.

As solution for the first case, we consider the static feedback of the form

u(x) =
{ −x3 exp(− 1

x2
), if x �= 0

0, if x = 0.

Clearly this feedback u is continuous (even C1) and stabilizes logarithmically the
scalar system (1).
Indeed, the Lyapunov stability follows by considering the Lyapunov function

V = 1

2
x2,
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where its time derivative along the system (1) is given, for x �= 0, by

V̇ = −4 V 2 exp

(
− 1

2 V

)
.

For V �= 0, let the change of variable z := 1

V
, then z(t) satisfies the following

ODE.

ż = − V̇

V 2 = 4 exp
(
− z

2

)
, (2)

where its solution is given by

z(t) = 2 ln(c0 + 2 t), where c0 = exp

(
z(0)

2

)
,

which implies

V (x(t)) = 1

2 ln(c0 + 2 t)
,

and

|x(t)|�+∞
c√
ln(t)

, where c regroups all posi tive constants.

This result can be generalized as follows.

Theorem 1 Consider the dynamical system

ẋ = X(x), X(0) = 0, where X ∈ C0(Rn, Rn). (3)

Assume that there exist a C1− function V : R
n → R, some positive constants

c1, c2, r1 and r2 such that,

(1) for every x ∈ R
n, the Lyapunov function V satisfies

c1 ||x ||r1 � V (x) � c2 ||x ||r2 ,
(2) there exists a nonnegative constant c such that for V �= 0, we have along the

system (3)

V̇ (x) � −c exp

(
− 1

V

)
V 2(x).

Then, 0 ∈ R
n is globally logarithmically stable. More precisely,

||x(t)||�+∞
c

ln
1
r1 (t)

, (4)
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where c regroups all positive constants.

Proof Using the comparison principle [26], and we solve the ODE: Ė(t) =
−c exp(− 1

E
) E2(t) with E(0) > 0. The uniqueness result leads to E(t) > 0, ∀ t �

0. The estimation (4) then follows from the change of variable z = 1

E
and the solution

of the ODE:

ż(t) = c exp(−z(t)), z(0) = z0.

��
Another situation can be interest when we ask how to build static feedback law u

such that the solution of the closed-loop system (1) satisfies the estimate

|x(t)| �+∞
c

lnβ(ln(t))
?

As a solution of this question, we can take

u(x) =
{

−x3 exp
(
−

(
1
x2

+ exp
(

1
x2

)))
, if x �= 0

0, if x = 0.

It is clear that u is continuous at x = 0, even, u is C1 on R.

Indeed, we have for x �= 0,

|u(x)| � |x |3 exp

(
− 1

x2

)
� |x |3 → 0, as x → 0,

and

u(x)

x
→ 0, as x → 0.

Testing the candidate Lyapunov function

V = 1

2
x2,

where its time derivative along the closed-loop system is given, for V �= 0, by

V̇ = −4 V exp

(
−

(
1

2 V
+ exp

(
1

2 V

)))
.

For z := 1

V
, V �= 0, we get

ż = 4 exp
(
− z

2
− exp

( z
2

))
. (5)
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The solution of (5) is given by

z(t) = 1

2
ln(ln(c0 + 2 t)), c0 = exp

(
exp

(
z(t0)

2

))
,

and therefore

V (t) = 2

ln(ln(c0 + 2 t))
,

which implies the asymptotic estimation

|x(t)| �+∞
c√

ln(ln(t))
.

As the previous result, we have.

Proposition 1 Consider the dynamical system (3). Assume that there exist a C1−
function V : Rn → R, some positive constants c1, c2, r1 and r2 such that,

(1) for every x ∈ R
n, the Lyapunov function V satisfies

c1 ||x ||r1 � V (x) � c2 ||x ||r2 ,

(2) there exists a nonnegative constant c such that for V �= 0, we have

V̇ (x) � −c exp

(
−

(
1

V
+ exp

(
1

V

)))
V 2.

Then, 0 ∈ R
n is globally logarithmically stable (i. e. ||x(t)|| �+∞ c

ln
1
r1 (ln(t))

).

A pathological case:
Consider the system in R

2 × R:

ẋ = u3, ẏ = |u|.

Clearly this system is not stabilized by regular static state feedback of the form u(x);
this is due to Brockett necessary condition [5]. Usually, to get around the Brockett
obstruction, a partial asymptotic stabilization by static feedback laws is required [16]
(i. e. construction of an adequate state feedback law u(x) such that in closed-loop
we have x(t) → 0, and y(t) converges to some value not necessarily zero); for more
details on this point see later the Example 5.

Hence, a logarithmic stabilizing feedback is not sufficient to study the partial
asymptotic stabilization! Because the integral

∫ +∞
e

dt
lnα(t) = +∞.

To overcome this problem, a time-varying feedback law of the form u(t, (x, y))
leading to polynomial-logarithmic stability estimate of the state x as follows

|x(t)|�t→∞
1

tα lnβ(t)
,
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is required. The choice of α or β leads to the convergence of the state y.

3 Time-Varying System and Polynomial-Logarithmic Stability

Consider the continuous time-varying system

{
ẋ = X(t, x),
x(t0) = x0, (t0, x0) ∈ [0, +∞) × R

n,
(6)

and we assume that

X(t, 0) = 0, ∀t � 0.

Definition 1 The nonlinear time-varying system (6) is said to be locally polynomially
logarithmically stable (P-L stable in abbreviation) if the following properties are
satisfied:

• The origin x = 0 of the system (6) is Lyapunov stable, i. e. ∀ε > 0, ∀ t0 �
0, ∃η = η(ε, t0) > 0 : ||x(t0)|| < η �⇒ ||x(t)|| < ε ∀t � t0.

• There exist positive numbers α, β, andM(x(t0)) function on the initial conditions,
such that if 1

(∃ r > 0, ∀ t0 � 0, ||x(t0)|| � r
)

�⇒
(

||x(t)|| � M(x(t0))

tα lnβ(t)
, ∀ t � t0 + s, ∀ s > 0

)
. (7)

Remark 1 (1) The second condition (7) means that each solution x(t) of (6) con-
verges asymptotically to the trivial equilibrium point 0, and therefore reflects the
attractiveness condition.

(2) Obviously, if we take in the Definition 1, α = 0, then the time-varying system

is said logarithmically stable; more precisely ||x(t)||�+∞
c

lnβ(t)
, while the case

β = 0 correspond to the polynomial stability; i.e. ||x(t)|| �+∞
c

tα
.

Definition 2 The control system

ẋ = Y (x, u), Y (0, 0) = 0,

where x ∈ R
n is the state, u ∈ R

m the control, and Y ∈ C0(Rn+m, Rn), is said
to be locally (resp. globally) polynomially-logarithmically stabilizable by means of
continuous time-varying feedback laws if there exists u ∈ C0([0, +∞) × R

n, Rm)

such that

u(t, 0) = 0 ∀ t � 0,

1 If this second condition holds for all r > 0, then 0 ∈ R
n is said to be globally P-L stable for ẋ = X(t, x).
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and 0 ∈ R
n is locally (resp. globally) P-L stable for the closed-loop system ẋ =

Y (x, u(t, x)).

Our first main result of this subsection is the following.

Theorem 2 Consider the nonlinear time-varying system (6). Assume that there exist
a C1− function V : [t0, +∞[×R

n → R, some positive constants c1, c2, r1 and r2
such that,

(1) for every x ∈ R
n, the Lyapunov function V satisfies

c1 ||x ||r1 � V (t, x) � c2 ||x ||r2 , (8)

(2) there exists a continuous and nonnegative function f : [t0, +∞[→ (0, +∞)

with the “growth condition”:
∫ t

t0
f (s)ds � k tα(ln(t + 1) − ln(t0 + 1))β where

α, β and k are nonnegative constants such that

V̇ (t, x) � −c f (t) V γ (t, x), γ > 1 and c > 0.

Then, 0 ∈ R
n is globally polynomially-logarithmically stable.

Proof Clearly,with the assumptions of the theorem, the considered system isLyapunov
stable; this follows from conditions 1. and 2. of the theorem. The logarithmic stability
follows from the comparison principle [26, Lemma pp. 110] theorem. Indeed, consider
the differential equation with initial condition E0 = E(t = t0).

{
Ė(t) = −c f (t) Eγ , t � t0,
E(t0) = E0.

(9)

The Cauchy problem (9) admits a unique maximal solution on [t0, +∞), hence if
E0 = 0, then E(t) = 0 ∀ t � t0. Moreover, if E0 > 0 then E(t) > 0 ∀ t � t0; in this
case, we denote by F(t) = 1

Eγ−1(t)
. Clearly F satisfies on [t0, +∞) the differential

equation Ḟ = c(γ − 1) f (t) which leads to the following solution:

E(t) =

⎧⎪⎨
⎪⎩

(
E1−γ
0 + (γ − 1) c

∫ t

t0
f (s)ds

) 1
1−γ

, if E0 �= 0

0, if E0 = 0.

We consider the differential inequality

V̇ � −c f (t) V γ ,

and let V0 := V (x0) such that V0 � E0, we obtain by comparison Lemma

V (t) � E(t), ∀ t � t0. (10)
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Now, by using the assumption
∫ t

t0
f (s)ds ≥ k tα lnβ

( t + 1

t0 + 1

)
, then from (10) we get

V (x(t)) � 1(
V 1−γ
0 + (γ − 1) c k tα lnβ

( t+1
t0+1

)) 1
γ−1

.

If we denote by b = E1−γ
0 and a = (γ − 1) c k. Then, from (8), the solution can be

estimated by

||x(t)|| �
(
1

c1

) 1
r1 1(

a tα lnβ
(

t+1
t0+1

)
+ b

) 1
(γ−1) r1

.

��
Sometimes we need only a logarithmic stability estimate; the next proposition

provides sufficient conditions to get this stability estimate for the system (6). Without
loss of generality, we consider t0 = 0 and x0 = x(0) for the rest of the paper.

Proposition 2 Consider the nonlinear time-varying system (6). Assume that there exist
a C1− function V : [0, +∞[×R

n → R, some positive constants c1, c2, r1 and r2
such that,

(1) for every x ∈ R
n, the Lyapunov function V satisfies

c1 ||x ||r1 � V (t, x) � c2 ||x ||r2 ,

(2) the Lyapunov function V satisfies the inequality

V̇ � − c

1 + t
V 1+γ , γ > 0,

then, (6) is globally logarithmically stable. More precisely, the state x satisfies the
estimate

||x(t)|| �+∞
c

ln
1

γ r1 (t)
.

Proof The time derivative of V along the system (6) satisfies the constraint V̇ �
−c f (t)V 1+γ , where in this case

∫ t

0

ds

1 + s
= ln(1 + t). Then Theorem 2 allows to

conclude. ��
Remark 2 If we replace the condition (2) by the following

V̇ � −c f (t)V 1+γ , γ > 0, (11)
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where f : [0, +∞) → (0, +∞) a measurable function such that

∫ t

0
f (s)ds � lnβ(ln(1 + t + ε)), 0 < ε < e − 1, and β > 0. (12)

Then

||x(t)|| � c

ln
β

γ r1 (ln t)
, t → +∞. (13)

The next proposition deals with logarithmic stability by using comparison estimate
for scalar system.

Proposition 3 Consider the system (6), we assume that there exist C1− function V :
[0, +∞) × R

n → R, a positive constants c1, c2, r1, r2 such that.
(i) For every x ∈ R

n, the Lyapunov function V satisfies

c1||x ||r1 � V (t, x) � c2||x ||r2 ,

(ii) there exists a continuous function r : R2 → R such that along the system (6) we
have

V̇ + |r(t, V )| � 0,

(iii) the scalar system ż = −r(t, z) is logarithmically stable.
Then, system (6) is globally logarithmically stable.

Proof Since the scalar system ż = −r(t, z) is logarithmically stable, then, there exists
η > 0 such that if |z(0)| < η then |z(t)| � c

lnβ(t+1)
for t > 0 is large enough,β > 0 and

the constant c depending on the initial conditions z(0). Therefore, from the condition
(ii), we get for V (x(0)) < η that V (x(t)) � c

lnβ(t+1)
, and by condition (i), we obtain

for t is large enough

||x(t)|| � c(x(0))

lnβ r1(t + 1)

where c regroups all positive constants depending on the initial conditions. ��
Results of the above Theorems can be abstracted in the following proposition.

Proposition 4 Consider the system (6), and assume that there exist C1− function V :
[0, +∞) × R

n → R, functions α1 and α2 in class K∞ such that,

(i) for every x ∈ R
n, the Lyapunov function V satisfies

α1(||x ||) � V (t, x) � α2(||x ||),
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(ii) the Lyapunov function V satisfies the inequality

V̇ � −c f (t)V 1+γ , c, γ > 0,

and f : [0, +∞) → (0, +∞) a measurable function such that

∫ t

0
f (s)ds � (1 + t)α lnβ(t + 1), where α > 0, and β > 1.

Then, 0 ∈ R
n is globally-polynomially logarithmically stable.

The next result solves the case when γ = 1 in Theorem 2.

Theorem 3 Consider the system (6), and assume that there exist C1− function V :
[0, +∞) × R

n → R, functions α1 and α2 in class K∞ such that,

(i) for every x ∈ R
n, the Lyapunov function V satisfies

α1(||x ||) � V (t, x) � α2(||x ||),

(ii) the Lyapunov function V satisfies the inequality

V̇ � −c ϕ(t)V , where c > 0 (14)

and ϕ : [0, +∞) → (0, +∞) a measurable function such that

∫ t

0
ϕ(s)ds � ln(lnβ(t + 1 + ε)), where 0 < ε < e − 1, and β > 0.

Then, 0 ∈ R
n is globally logarithmically stable.

Proof We denote by V0 := V (0, x(0)) �= 0. Then, from (14), the function V satisfies
the inequalities

ln(
V

V0
) � −c

∫ t

0
ϕ(s)ds

� −c ln
(
lnβ(t + 1 + ε)

)

� ln

(
1

lnβ c(t + 1 + ε)

)
.

Then we get by the growth of the ln function that

V � V0
lnβ c(t + 1 + ε)

,

which together with the condition (ii) implies that 0 ∈ R
n is globally logarithmically

stable. ��
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The next result deals with the logarithmic stability in finite-time. This means that
the target system is finite-time stable and before the settling time, the solution follows
a logarithmic curve.

Theorem 4 Consider the system (6), and assume that there exist C1− function V :
[0, +∞) × R

n → R, functions α1 and α2 in class K∞ such that,

(i) for every x ∈ R
n, the Lyapunov function V satisfies

α1(||x ||) � V (t, x) � α2(||x ||),

(ii) the Lyapunov function V satisfies the inequality

V̇ � −cϕ(t)V a, 0 < a < 1

and ϕ : [0, +∞) → (0, +∞) a continuous function such that

∫ t

0
ϕ(s)ds � lnβ(t + 1), where β > 0.

Then, 0 ∈ R
n is globally logarithmically stable in finite-time.

Proof Consider the ODE

Ė = −c ϕ(t) Ea, E(0) = E0, (15)

the solution of (15) is given by

E(t) =

⎧⎪⎨
⎪⎩

(
E1−a
0 − (1 − a) c

∫ t

0
ϕ(s)ds

) 1
1−a

, if E0 �= 0

0, if E0 = 0.

Then

E(t) �
(
E1−a
0 − (1 − a) c lnβ(1 + t)

) 1
1−a

.

Clearly

E(t) = 0 ∀ t � T ∗ = exp

⎛
⎝

(
E1−a
0

c(1 − a)

) 1
β

⎞
⎠ − 1.

Now, consider V0 such that V0 � E0, then, we conclude by principal comparison that

V (t) � E(t), ∀ t � 0.
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Hence, V (t) = 0 for every t � T ∗∗ = exp

((
V 1−a
0

c(1−a)

) 1
β

)
− 1. ��

For example, the scalar system

ẋ = −2 ln(1 + t)

1 + t
x

1
3

is logarithmically finite-time stable (here we chose β = 2).

4 Applications to Control Systems

4.1 Some Academic Examples

Now, we illustrate our Theorems by further examples.

Example 1: the scalar system. Consider in R the control system ẋ = u, and we will
construct time-varying stabilizing feedback u(t, x) renders the closed-loop system
globally logarithmically stable. For k > 1, and k ∈ Q+

odd , consider the Lyapunov
function V (x) = 1

2k x
2k . If we take the time derivative of V along the system we get

V̇ = x2k−1u. Now, by choosing u(t, x) = − f (t)x2p+1 where p ∈ Q+
odd , and f a

nonnegative continuous function such that
∫ t
0 f (s)ds = lnβ(t + 1) and β > 1 (i. e.

f (t) = β lnβ−1(1 + t)

1 + t
), we get

V̇ = − f (t)x2(k+p) � −c f (t)V 1+ p
k , where 0 < c < 1.

By Theorem 2, we have the asymptotic estimation

V
p
k (x(t)) �+∞

c

(ln t)β
,

which means again that

|x(t)| �+∞
c

(ln t)
β
2p

.

Example 2: the double integrator example:
Due to its importance in several mechanical control systems, the double integrator

attract the attentionofmany authors, see [1, 2, 11, 21, 23] and the references therein. For
this example, regular and polynomial-logarithmic time-varying stabilizing feedback
law for the double integrator is constructed.
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Proposition 5 Let p and k be two nonnegative odd rational numbers such that p > 1
and k > 1/2. Let f be a regular function such that f : [0, +∞) → (0, +∞) and

∫ t

0
f (s)ds � (1 + t)α lnβ(1 + t), where α > 0, and β > 1.

Then the double integrator

ẋ = y, ẏ = u, (16)

is polynomially-logarithmically stable under the family of time-varying feedbacks

u(t, x, y) = −x2 k−1 − f ′(t) x p − p f (t) x p−1 y − f (t)
(
y + f (t) x p)1+ p−1

k .

(17)

Proof Let k and p as in the Proposition, and let f be the nonnegative Cκ− function

satisfies the constraint
∫ t

0
f (s)ds � (1 + t)α lnβ(1 + t). More precisely the regular

function f satisfies the inequality f (t) � (1+ t)α−1
(
α lnβ(t + 1) + β lnβ−1(1+ t))

Consider the candidate Lyapunov function V of the form

V (t, x, y) := 1

2 k
x2k + 1

2
(y + f (t) x p)2,

the time derivative of V along the system (16) is given by

V̇ = x2 k−1 y + (y + f (t) x p) (u + p f (t) x p−1 y + f ′(t) x p),

then, under the feedback u given in (17), we get in closed-loop

V̇ = − f (t) x2 (k+ p−1
2 ) − f (t) (y + f (t) x p)2(1+

p−1
2k ). (18)

Since f > 0, then from (18) we have

(
− 1

f (t)
V̇

) 2 k
2 k+p−1

� x2k and

(
− 1

f (t)
V̇

) 2 k
2 k+p−1

� (y + f (t) x p)2,

therefore, we get

2

(
− 1

f (t)
V̇

) 2 k
2 k+p−1

� V

and

V̇ � −c f (t) V α where c =
(
1

2

)α

and α = 1 + p − 1

2 k
> 1.
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Under the integral condition on f , clearly Theorem 2 allows to conclude the
polynomial-logarithmic stabilization of the double integrator ẍ = u; (here y = ẋ). ��
Example 3: the Quadratic control system The quadratic system that we consider
here is presented in [9, Section 5.] and takes the form

ẋ = u, ẏ = x(Ay + Bv) (19)

where the state is (x, y) ∈ R × R
n and the control is (u, v) ∈ R × R

m , A ∈
Mn(R) and B ∈ Mn×m(R). As Coron explain in [9], this system models physical
systems such as, for example, the Euler equation of incompressible fluids.We preserve
Coron’s assumptions and we assume that the pair (A, B) is controllable; and the main
objective is the construction of time-varying feedback laws u and v making the closed
loop system (19) logarithmically-polynomially stable; and therefore we improved the
stabilization result obtained by Coron [9, Theorem 5.2]. The first step is to start with
the reduced system

ẏ = u(Ay + Bv). (20)

Consider the auxiliary linear system

ẏ = Ay + Bv. (21)

Since the pair (A, B) is controllable; then we can choose v := Ky, K ∈ Mm.n(R)

such that A+ BK is Hurwitz; this means that the closed-loop system ẏ = (A+ BK )y
is exponentially stable. Hence, there exists an optimal rate ω0 such that the solution
of the closed-loop system of (21) satisfies the estimate ||y(t)|| � c ||y(0)||e−ω0 t .

This inequality is obtained under a suitable candidate Lyapunov function V (see for
example [35]) such that its time derivative satisfies the estimate

V̇ (y) � −μV (y), μ > 0.

Now, taking the time derivative of V along the reduced system (20), we get
V̇|(20)

= uV̇ . By taking u � 0, for example, u(t, y) = f (t)V γ ,where γ >

1 and f ∈ C1([0, +∞), (0, +∞)) is chosen such that
∫ t

0
f (s)ds � (1 +

t)α lnβ(1 + t), with α > 0, β > 2, (for example, we can choose f (t) = (1 +
t)α−1

(
α lnβ(1 + t) + β lnβ−1(1 + t)

)
), we get

V̇|
(20)

(y(t)) � −μ f (t)V 1+γ (y(t)),



On the Logarithmic Stability Estimates... Page 17 of 32 186

this leads, by Theorem 2, to the polynomial-logarithmic stability of the closed-loop
system (20).

Step 2. For the augmented system, we consider the candidate Lyapunov function W
defined by

W (t, x, y) = 1

k
V k(y) + 1

2

(
x − f (t)V γ (y)

)2
,

where k > 1 is an integer that will be selected after. Taking the time derivative of W
along the system (19), we get, with the new variable z := x − f (t)V γ (y)

Ẇ = x V k−1V̇|
(21)

+ z
(
u − f ′(t)V γ − γ x f (t)V γ−1 V̇|

(21)

)
,

since x = z + f (t)V γ (y), then we get

Ẇ � −μ f (t)V γ+k + z
(
u − f ′(t)V γ (y) − γ x f (t)V γ−1V̇|

(21)
+ V k−1V̇|

(21)

)
,

Now, it is possible to select the time-varying feedback law

u(t, x, y) = f ′(t)V γ (y) + γ x f (t)V γ−1V̇|
(21)

− V k−1V̇|
(21)

− μ f (t)z1+
2γ
k ,

where γ and k are two nonnegative rational numbers such that γ
k ∈ Q+

odd , and then
we get

Ẇ � −μ f (t)V γ+k − μ f (t)z2+
2γ
k , (22)

From (22), it is not hard to see that W satisfies the differential inequality

Ẇ � −μ f (t)W 1+ γ
k . (23)

The conclusion of the polynomial-logarithmic stability follows then from Theorem 2.
The above construction can be extended for general cascade systems as follows:

consider the control system

ẋ = f (x, u), f (0, 0) = 0, (24)

where x ∈ R
n is the state, u ∈ R the control and f ∈ C1(Rn ×R, Rn). Assume there

exist a C1 time-varying stabilizing feedback law ū(t, x), a C1− Lyapunov function V
and a C1− function ϕ : [0, +∞) → (0, +∞) such that along the closed-loop system
ẋ = f (x, ū(t, x)) we have

V̇ � −cϕ(t)V 1+γ , and
∫ t

0
ϕ(s)ds � (t + 1)α lnβ(1 + t), γ, α > 0, and β > 1.

(25)

This means that the closed-loop system (24) is polynomially-logarithmically stable.
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or the augmented system

ẋ = f (x, y), ẏ = u, (26)

where the state is (x, y) ∈ R
n × R and u ∈ R is the control. Consider the Lyapunov

function W of the form

W := 1

k
V k + 1

2
(y − ū(t, x))2, k > 1. (27)

The time derivative of W along (26) can be estimated by

Ẇ = V k−1(
∂V

∂t
+ ∂V

∂x
f (x, y)) + (y − ū(t, x))(u − ∂ ū

∂t
− ∂ ū

∂x
f (x, y)), (28)

Since f ∈ C1(Rn × R, Rn), then by Taylor expansion, there exists a matrix G ∈
C0(Rn × R × R, L(R, Rn)) such that

f (x, y) = f (x, ū(t, x)) + G(x, y, ū(t, x))(y − ū(t, x)),

therefore, the estimate (28) becomes

Ẇ = V k−1(
∂V

∂t
+ ∂V

∂x
f (x, ū(t, x)) + V k−1 ∂V

∂x
G(x, y, ū(t, x))(y − ū(t, x))

+(y − ū(t, x))(u − ∂ ū

∂t
− ∂ ū

∂x
f (x, y)),

= V k−1V̇|
(25)

+ V k−1 ∂V

∂x
G(x, y, ū(t, x))(y − ū(t, x))

+(y − ū(t, x))(u − ∂ ū

∂t
− ∂ ū

∂x
f (x, y))

= V k−1V̇|
(25)

+(y − ū(t, x))

(
u − ∂ ū

∂t
− ∂ ū

∂x
f (x, y)) + V k−1 ∂V

∂x
G(x, y, ū(t, x))

)
.

(29)

Now, it is possible to select the time-varying feedback u as follows

u(t, (x, y)) = ∂ ū

∂t
+ ∂ ū

∂x
f (x, y) − V k−1 ∂V

∂x
G(x, y, ū(t, x)) (30)

− cϕ(t)(y − ū(t, x))1+
2γ
k .

From (25), we have V̇|(25)
� −ϕ(t)V 1+γ where

∫ t

0
ϕ(s)ds � (t + 1)α lnβ(1 + t).

Then, the estimate () becomes

Ẇ � −cϕ(t)(V k+γ + (y − ū(t, x))2+
2γ
k ). (31)
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It is not hard to see that

Ẇ � −cϕ(t)W 1+ γ
k ,

with assumption on ϕ we conclude that system (26) is polynomially-logarithmically
stable under the feedback (30).

Hence, we have proved the following result.

Proposition 6 Consider the C1− control system in R
n × R

m

ẋ = f (x, u), f (0, 0) = 0.

Assume there exist aC1 time-varying stabilizing feedback law ū(t, x), aC1−Lyapunov
function V and a C1− function ϕ : [0, +∞) → (0, +∞) such that along the closed-
loop system ẋ = f (x, ū(t, x)) we have

V̇ � −cϕ(t)V 1+γ , and
∫ t

0
ϕ(s)ds � (t + 1)α lnβ(1 + t), γ, α > 0, and β > 1.

Then, the augmented system

ẋ = f (x, y), ẏ = u,

is polynomially-logarithmically stabilizable by C0− feedback law.

Remark 3 For the case when u ∈ R
m, we adopt the same proof by considering in (27)

the candidate Lyapunov function W = 1

k
V k + 1

2
||y − ū(t, x)||2.

Example 4: the bilinear control system
Consider the finite dimensional bilinear control system ẋ = Ax+uBx,where x ∈ R

n

the state, u ∈ R the control, and A, B are two square matrices in R
n×n . The well

known result of such system due to Quin [24], where quadratic and optimal stabilizing
feedback law is established. The solution of the closed-loop system is asymptotically

equivalent to
1√
t
. In this section, we will adopt Quin’s [24] assumptions which are.

(H1) : ∃Q = Q∗ ∈ R
n×n, Q > 0, s.t . QA + A∗Q = 0.

(H2) : ∀ x0 ∈ R
n, x∗

0e
A∗t QBeAt x0 = 0 �⇒ x0 = 0.

The assumption (H1) means the dissipation of the matrix A, while the second (H2)

means that QB is invertible since det(eAt ) = etr(At) > 0.
We denote by λmin(Q) (resp. λmax(Q)) the smallest (resp. the largest) eigenvalue of
the matrix Q.
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The question that arises is how to construct a time-varying stabilizing feedback law
u(t, x) such that the solution of the closed-loop system obeys the estimate

||x(t)|| �∞
c

tα lnβ t
.

Lemma 1 There exists a nonnegative constant k0 such that

|〈x, QB x〉| � k0||x ||2.

Proof Theproof follows from (H2) andhomogeneity argument.Clearly the continuous
function h : x �→ |〈x, QB x〉| is homogeneous of degree 2 with respect to standard
dilation. In the compact unity sphere S, and based on assumption (H2), there exists
η > 0 such that |〈x, QB x〉| � η. Now, for x �= 0, we have x

||x || ∈ S, then the
conclusion follows from the homogeneity of h. ��
Then, we have,

Proposition 7 Let f be a nonnegative continuous function such that

∫ t

0
f (s)ds = (1 + t)α lnβ(1 + t), where α > 0, and β > 1. (32)

Then, the bilinear control system ẋ = Ax + uBx is P-L stabilizable under the time-
varying feedback u of the form

u(t, x) = −c f (t)(〈x, QB x〉)1+m, wi th m ∈ Q
+
even and c > 0. (33)

Proof Taking the time derivative of V = 1
2 〈x, Qx〉 along the closed-loop system,

then by the assumption (H1), we have V̇ = −c f (t)(〈x, QB x〉)2+m, which implies
by Lemma 1 that V̇ � −c f (t)||x ||2+m . Since λmin(Q)

2 ||x ||2 � V (x) � λmax (Q)
2 ||x ||2;

the two inequalities together imply

V̇ � − c

(λmax (Q))1+m
2
f (t)V 1+m

2 ,

where c regroups all constants. With the integral condition on f , and by Theorem 2,
we conclude the polynomial-logarithmic stability of the closed-loop system. ��

For example, consider the following plane control system [24]

ẏ1 = y2 + 2y1u
ẏ2 = −y1 + y2u,

(34)

where y := (y1, y2) ∈ R
2 the state and u ∈ R the control. In this example we have the

form ẏ = Ay + uBy with A =
(

0 1
−1 0

)
, and B =

(
2 0
0 1

)
. The assumptions
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(H1) and (H2) are satisfied with Q = q I2, q > 0. Clearly for t � 0 the excitation
f (t) = 2(1 + t)

(
ln2(1 + t) + ln(1 + t)

)
satisfies the condition (32), then the scalar

time-varying feedback u(t, y) = −16(1 + t)
(
ln2(1 + t) + ln(1 + t)

)
(2y21 + y22 )

3

stabilizes polynomially-logarithmically the system (34) (here q = m = 2).
Example 5: the Brockett’s integrator. In this part we turn to the Brockett’s control
system [5] that takes the form

ẋ1 = u1, ẋ2 = u2, ẋ3 = x2u1 − x1u2. (35)

This example has a physical meaning; it describes the motion of the unicycle where x1
denotes the orientation together with the coordinate (x2, x3) of the midpoint between
the back wheels. The control u1 is the derive command and u2 is the steering control
[28, 29]. It is known that system (35) is globally controllable but does not satisfy the
Brockett necessary condition [5] (and therefore cannot be asymptotically stabilized
by means of stationary feedback laws). In the early 1980’s, Sontag and Sussmann [30]
have proved that controllable nonlinear scalar system can be locally (resp. globally)
asymptotically stabilized by means of time-varying static feedback laws, and Samson
[28] has proved that (35) is globally stabilized bymeans of time-varying static feedback
laws. It would be interesting to note that the literature is rich in papers and books on
time-varying systems; see for example but not limited to [6, 8, 10, 11, 26, 27, 31] and
references therein .

In [16, 22], we have construct Hölder stabilizing feedback laws making the closed-
loop system two-partially polynomially stable in the following sense (x2, x3) is
polynomially stable and x1 converges to a value which depends on initial conditions.
This problem of partial asymptotic stabilizability has been extensively studied in the
following list of articles [14–17, 20, 22, 23] and references therein.

The partial stability for time-varying system is studied in the literature [13, 32–34]
but nothing was said about the partial stability in logarithmic sense. Hence, before to
present the logarithmic stabilizing feedback laws for the system (35), we define the
partial-logarithmic stability. Let the dynamical systems in finite dimension be in the
following form

ẋ1 = X1(t, x1, x2), ẋ2 = X2(t, x1, x2), (36)

where X = (X1, X2) is a continuous vector field which defined on [0, +∞) ×R
p ×

R
n−p, x := (x1, x2) ∈ R

p × R
n−p and p is an integer such that 0 < p � n. We

assume that (0, x2) is a partial equilibrium point of (36) which means

X1(t, 0, x2) = 0 and X2(t, 0, x2) = 0 ∀x2 ∈ R
n−p ∀ t � 0,

and x(0) := (x1(0), x2(0)) is the initial condition.

Definition 3 The system (36) is said to be p− partially polynomially logarithmically
stable if the following properties are satisfied.

• The origin (0, 0) of the system (36) is Lyapunov stable, i. e. ∀ε > 0, ∃η > 0 :
(||(x1(0), x2(0))|| < η) ⇒ (||(x1(t), x2(t))|| < ε ∀t � 0).
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• There exist positive numbers α, β, and M(x(0)) such that if

(∃ r > 0 : ||(x1(0), x2(0))|| � r) ⇒
{ ||x1(t)|| � M(x(0))

tα lnβ(t)
, ∀ t � t0 > 0.

lim
t→+∞ x2(t) = a,

where a(x(0)) is a constant vector depending on initial conditions.

For example, the control system in R
2 × R : ẋ = u3, ẏ(t) = |u| is not completely

stabilizable nor by time-varying and/or time varying feedback law because the state
t �→ y(t) is increasing. Then, if we choose y(0) > 0 we get y(t) � y(0) > 0 and
therefore the equilibrium point (0, 0) is not attractive. For this reason, the stabilization
is treated in partial sense bymeans of smooth time-varying feedback law u(t, x).From

the analysis of Example 1, we can take u(t, x) = −x
2p+1
3 f

1
3 (t) where f is such that∫ t

0 f (s)ds = lnβ(1 + t), and (2p + 1) ∈ 3Q+
odd and β > 1.

From Example 1, we have |x(t)| �+∞ c

ln
β
2p (t)

, then |u(t, x)| =

β |x(t)|2p+1 lnβ−1(1+t)
1+t �+∞ c

t lnα(t) where α = β
2p + 1 > 1, and c > 0. Hence,

by Bertrand’s criterion, clearly
∫ +∞
1

c
t lnα(t)dt < ∞, and therefore the velocity ẏ ∈

L1([0, +∞)) which means the convergence of the state t �→ y(t) to constant value
a(x(0), y(0)) not necessarily zero.

The next result deals with sufficient condition for the p− partial stability in
polynomial-logarithmic sense.

Proposition 8 Let us consider the system (36). Let us assume that there exists a C1−
candidate Lyapunov function V : [0, +∞) × R

p × R
n−p → [0, +∞) satisfying.

(1) ∃ k1, k2 ∈ K such that for every x = (x1, x2) ∈ R
p × R

n−p,

k1(||x1||) � V (t, x) � k2(||x ||), (37)

(2) there exists a measurable function ϕ : [0, +∞) → (0, +∞) such that∫ t

0
ϕ(s)ds � (1+t)α lnβ(1+t) for some positive constantsα andβ > 1 such that

the time derivative of V along (36) satisfies for every x = (x1, x2) ∈ R
p×R

n−p,

V̇ � −cϕ(t) k1+γ
2 (||x ||), where c, γ > 0,

(3) there exists η > 0 such that ( ||(x1(0), x2(0))|| < η) ⇒∫ +∞
0 ||X2(t, x1, x2)||dt < +∞.

Then, system (36) is p− partially polynomially-logarithmically stable.

Proof Conditions (1) and (2) imply that 0 ∈ R
p × R

n−p is Lyapunov stable for the
system (36) (see for instance [29]).
By combining conditions (1) and (2), we obtain the existence of function ϕ satisfying
the integral constraint and constants c, γ > 0 such that along (36) we have

V̇ � −cϕ(t)V 1+γ ,
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which, together with Theorem 2, implies that for t is large enough

V (t, x) � c

t
α
γ ln

β
γ (t)

.

From the right-hand side of (37), we conclude that x1 = 0 ∈ R
p is polynomially-

logarithmically stable.
Convergence of the part x2 comes from the condition (3) of the Proposition. ��
In the next, we will concentrate our effort on the construction of new time-varying
feedback laws u1(t, x) and u2(t, x) such that in closed-loop the partial state (x2, x3)
is polynomially-logarithmically stable and x1 converges to a value not necessarily
zero.

For this, taking the change of variables [29]: z1 = x1, z2 = x2, z3 = x3 − x1x2,
then we get the system

ż1 = u1, ż2 = u2, ż3 = z2 u1. (38)

Proposition 9 Let ϕ be C1− nonnegative function satisfying the constraint

∫ t

0
ϕ(s)ds = (1 + t)α lnβ(1 + t), where α > 0, and β > 1. (39)

Let k and p be two odd rational numbers such that (0 < p < α
4 ) or (0 < p <

β
4 ).

Then, the Brockett’s system (38) is two-partially polynomially-logarithmically sta-
ble more precisely, (z2, z3) = (0, 0) is PL stable and z1 converges under the following
time-varying feedback laws

u1(t, z) = z3

u2(t, z) = −ϕ(t)z2k3 − ϕ′(t)z2p3 + 2p ϕ(t)z2z
2p
3 − ϕ(t)

(
z2 + ϕ(t)z2p3

)1+ 2p
k

Proof Taking the candidate Lyapunov function

V (t, z) = 1

2k
z2k3 + 1

2

(
z2 + ϕ(t)z2p3

)2
,

and we calculate its time derivative along the closed-loop system (38), we get

V̇ = −ϕ(t)z2(k+p)
3 − ϕ(t)

(
z2 + ϕ(t)z2p3

)2+ 2p
k . (40)

A straightforward computation, leads to

V̇ � −cϕ(t)V 1+ 2p
k . (41)
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From Theorem 2, we conclude that V (t, z(t)) satisfies, for t is large enough, the
estimate

V (t, z(t)) � 1(
V

− 2p
k

0 + 2p
k tα lnβ(t)

) k
2p

. (42)

this means that, in closed-loop, (z2, z3) = (0, 0) is polynomially-logarithmically
stable. To study the convergence of the state z1, we study the comportment of the map
t �→ |z3(t)| in large time.

By construction of V , we have |z3(t)| � (2kV )
1
2k . So, for t is large enough we get

V (t, z) � c

t
αk
2p ln

βk
2p (t)

.

Then

|z3(t)| � c

t
α
4p ln

β
4p (t)

.

Clearly for (α > 4p) or (α = 4p and β > 4p), the Bertrand’s integral∫ +∞

e

dt

t
α
4p (ln t)

β
4p

converges and therefore the state z1 converges since we can write

the solution z1 with the integral representation as follows z1(t) = z1(e)+ ∫ t
e z3(s)ds;

and limt→+∞
∫ t
e z3(s)ds = ∫ +∞

e z3(s)ds < ∞. ��

5 Links Between Controllability and Logarithmic Stabilizability

In that follows,we ask if controllability of the linearized system around the equilibrium
point leads to the local polynomial-logarithmic stabilizability of the system? The links
between the controllability of the linearized system and the local stabilizability by
means of static state feedback laws is solved by Kalman theory, see for example, [8,
35] and several extensions to the local finite-time stabilizability was given in [3, 7, 18,
25] and references therein. In this section, it seems an attractive idea to study the links
between the controllability of the linearized system and the logarithmic stabilizability.
For this, we consider the C1− control system ẋ = f (x, u), f (0, 0) = 0. Let be
A = ∂ f

∂x (0, 0) ∈ Mn(R) and B = ∂ f
∂u (0, 0) ∈ Mnm(R), and we take the expansion

around the equilibrium point (0, 0).

ẋ = Ax + Bu + h(x, u)where lim||(x, u)||→0

h(x, u)

||(x, u)|| = 0. (43)

Then, we have the following result.
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Theorem 5 If the linear system ẋ = Ax + Bu is controllable, then the nonlinear
control system (43) is locally polynomially-logarithmically stabilizable.

The proof of Theorem 5 is not difficult because we use the Brunovsky transformation
to write the system ẋ = Ax + Bu in the form of collection of m-chain of integrators;
and then the task is reduced to stabilize chain by chain. The detailed proof is similar to
the case of double integrator which is extended to n− integrators by the backstepping
techniques (see the analysis of Example 3).

Now, we deal with some cases when not requiring Brunovsky decomposition, for
this, we consider the control system ẋ = f (x, u), f (0, 0) = 0 with the expansion
(43).

Let be r > 1 odd rational, and we denote by xr := (xr1, x
r
2, ..., x

r
n)

′ ∈ R
n . Let

be K a m.n matrix such that A + BK is Hurwitz. Then there exists a real symmetric
positive definite matrix P satisfying the Lyapunov equation [26, 29]

P(A + BK ) + (A + BK )′P = −I , (44)

where I is the identity matrix. Hence, we have the following result.

Proposition 10 Let be r ∈ (1, +∞) an odd rational. Assume that there exists a matrix
C ∈ Mm,n such that the product BC is symmetric positive definite, then system (43)
is locally polynomially-logarithmically stable by the time-varying feedback law given
by

u(t, x) = Kx − ϕ(t)C xr ,

where ϕ is nonnegative continuous function such that
∫ t

0
ϕ(s)ds = (1 + t)α lnβ(1 +

t), wi th α > 0, and β > 1.

Proof Under the above consideration, the linear approximation in closed loopbecomes

ẋ = Ax + Bu(x)
= (A + BK )x − α ϕ(t) B C xr .

(45)

Since A + BK is Hurwitz, then the system ẋ = (A + BK )x is asymptotically stable.
Moreover, the auxiliary system

ẋ = −α ϕ(t) B C xr , (46)

is polynomially-logarithmically stable. Indeed, let V be the candidate Lyapunov
function defined by

V = 1

2
〈Px, x〉.
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From (44), the time derivative of V with respect to (46) can be estimated as follows

V̇ = −α ϕ(t) 〈B C xr , x〉
� −α λmin(BC)ϕ(t)〈xr , x〉, (47)

where λmin(BC) denotes the minimum of the eigenvalues of matrix BC . Note that
λmin(BC) > 0. Hence, by simple calculation, we get

〈xr , x〉 =
(
(x21 )

r+1
2 + (x22 )

r+1
2 + ... + (x2n−1)

r+1
2 + (x2n )

r+1
2

)

�
(
x21 + x22 + ... + x2n−1 + x2n

) r+1
2

� (2V )
r+1
2 .

(48)

Thus, we combine (47) and (48) we obtain

V̇ � −α λmin(BC)2
r+1
2 ϕ(t) V

r+1
2

� −c ϕ(t) V
r+1
2 ,

where c := α λmin(BC)2
r+1
2 > 0, and

r + 1

2
> 1(�⇒ r + 1

2
= μ + 1, μ > 0).

Since thematrix A+BK is Hurwitz, thenω0 := inf {Re(λ) : λ ∈ sp(A + BK )} <

0. We compute the time derivative of V along the closed loop system (45), we get

V̇ � ω0 V − c ϕ(t)Vμ+1 � −c ϕ(t) Vμ+1.

With the assumption on ϕ we conclude, by Theorem 2, that (45) is polynomially-
logarithmically stable. Now, we have

lim||x ||→0

h(x, u(t, x))

||(x, u(t, x))|| = lim||(x, u(t, x))||→0

h(x, u(t, x))

||(x, u(t, x))|| =0.

This means that system (43) is locally polynomially-logarithmically stable. ��

5.1 Time-Varying Logarithmic Stabilizing Feedbacks for Linear Control System

In this part, we present another point of view of the construction of time-varying
stabilizing feedbacks for linear control system of the form

ẋ = Ax + Bu, (49)

without recourse to Brunovsky decomposition and backstepping techniques for
cascade structures, and without restriction as the above case.

Proposition 11 Consider system (49), and assume that:

(1) there exists a time-varying matrix K (t) such that A + BK is Hurwitz,
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(2) there exists a bounded, symmetric, continuously differentiable and positive definite
matrix P such that

Ṗ(t) + P(t)(A + BK (t)) + (A + BK (t))′P(t) � −φ(t)Q (50)

where:

• the matrix Q is continuous symmetric, positive definite such that there exists
c > 0 and Q(t) � c In, ∀ t � 0.

• The function φ : [0, +∞) → (0, +∞) is continuous function such that

∫ t

0
φ(s)ds � ln(lnβ(1 + t + ε)), where 0 < ε < e − 1 and β > 0. (51)

Then the feedback u(t, x) = K (t)x stabilizes logarithmically the linear system.

Proof Taking the candidate Lyapunov function V of the form [26]

V (t, x) = 〈x, P(t)x〉,

due to properties of P(t) that is bounded and positive definite, then, there exist
nonnegative constants c1 and c2 such that

c1||x ||2 � V (t, x) � c2||x ||2. (52)

We calculate the time derivative of V along the closed-loop system ẋ = (A+BK (t))x
we get

V̇ = 〈x, (Ṗ(t) + P(t)(A + BK (t)) + (A + BK (t))′P(t))x〉
� −φ(t)〈x, Q x〉
� −cφ(t)||x ||2, (53)

combining (52) and (53) we get

V̇ � − c

c2
φ(t)V ,

which togetherwith Theorem3 implies that the closed-loop system ẋ = (A+BK (t))x
is globally logarithmically stable. ��

Example. Consider the controllable system in R2 × R

ẋ = y, ẏ = u, (54)

where A =
(
0 1
0 0

)
, and B =

(
0
1

)
. Let K (t) be the matrix defined by K (t) =(

k1(t) k2(t)
)
,
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such that A + BK (t) =
(

0 1
k1(t) k2(t)

)
is Hurwitz which means in this case

ki (t) < 0 for i = 1, 2. The coefficients ki (t) will be defined later in functions of the
excitation function φ and the coefficients of the matrix P.

Choosing P(t) = a(t)M where t �→ a(t) is C1 such that 0 < m2 � a(t) � m1
and ȧ(t) < 0 which will be selected. The matrix M is symmetric positive definite and

given by M =
(
2 1
1 2

)
, and taking Q(t) = 2I2 for every t � 0.

In this case, after calculations, the assumption (50) becomes

⎛
⎝ 2ȧ + 2k1a ȧ + a(2 + k2 + 2k1)

ȧ + a(2k1 + 2 + k2) 2ȧ + 2(1 + 2k2)a

⎞
⎠ � −2φ(t)I2

�⎧⎨
⎩
2ȧ(t) + 2ak1 � −2φ(t)
ȧ + a(2 + k2 + 2k1) � 0
2ȧ + 2k1a � −2φ(t).

(55)

By comparison principal [26], we keep only with the equality, and we get the system

⎧⎨
⎩
2ȧ(t) + 2ak1 = −2φ(t)
ȧ + a(2 + k2 + 2k1) = 0
2ȧ + 2k1a = −2φ(t).

(56)

From the first and third equations of (56) we have k1(t) = 1+ 2k2(t). In this case, we
get

⎧⎨
⎩
ȧ(t) + ak1 = −φ(t)
ȧ + (4 + 5k2)a = 0
ȧ + (1 + 2k2)a = −φ(t).

(57)

From the second equation of (57), the function a satisfies ȧ + (4 + 5k2)a = 0 which
means

a(t) = a(0)e
−

∫ t

0
(4 + 5k2(s))ds

.

Since k2(t) < 0 ∀ t � 0, then

a(t) � a(0)e−4t , ∀ t � 0.

In this case, we can select the function a(t) by taking, for example,

a(t) = e−4t + 1, ∀ t � 0.

Clearly e−4t + 1 � 2 e−4t , with 1 � a(t) � 2 and ȧ(t) < 0.
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Moreover, we have

k2(t) = φ(t)

3a(t)
− 1 = φ(t)

3(e−4t + 1)
− 1, k1(t) = 2φ(t)

3a(t)
− 1 = 2φ(t)

3(e−4t + 1)
− 1.

Since

φ(t) = β

(1 + t + ε) ln(1 + t + ε)
wi th 0 < ε < e − 1, and β > 0,

which is clearly a decreasing function over [0, +∞). Hence, it is easy to see that, for
ε = 1 and 0 < β < 2 ln 2,wehave k2(t) < 0 ∀ t � 0 and therefore k1(t) < 0 ∀ t � 0.

Hence the feedback

u(t, (x, y)) =
(

2φ(t)

3(e−4t + 1)
− 1

)
x +

(
φ(t)

3(e−4t + 1)
− 1

)
y,

wi th φ(t) = ln 2

(2 + t) ln(2 + t)
,

stabilizes in logarithmically sense the closed-loop system (54).

Remark 4 1. For the scalar system ẋ = u which is globally controllable. The time-
varying stabilizing feedback law u(t, x) = −φ(t)x stabilizes logarithmically
ẋ = u (i.e. K (t) = −φ(t), ∀ t � 0). Indeed, for this case, we have A = 0, B = 1.

The scalars P(t) and Q(t) are defined as follows P(t) = 1

2
and Q(t) = 1 ∀ t � 0.

Clearly, these parameters solve (50).
2. We can replace conditions (50) and (51) by the following:

• There exist t0 > 0, a symmetric, continuously differentiable and positive
definite matrix P such that c2 I � P(t) � c1 I for every t � t0

Ṗ(t) + P(t)(A + BK (t)) + (A + BK (t))′P(t) � −ϕ(t)Q, ∀ t � t0.

• The matrix Q is continuous symmetric and positive definite matrix such that
Q(t) � c I , ∀ t � t0, and φ : [t0, +∞) → (0, +∞) continuous function
such that

∫ t

t0
φ(s)ds = ln

(
lnβ

(
t

t0

))
, β > 0,

and the feedback u(t, x) = K (t)x stabilizes logarithmically the linear system.

6 Conclusion

In control theory, one of the main issues is whether the solutions of closed-loop
dynamic system converge to the equilibrium point. Of course, if yes, one may won-
der how the solutions approach? In this context, this paper proposed some practical
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key ideas, solving partially this problem by developing the polynomial-logarithmic
stability.

Therefore, in this framework, some new sufficient conditions guaranteeing the
polynomial

logarithmic stability are presented. These conditions are expressed in terms of Lya-
punov function excited by temporary functions satisfying an integral constraint, and
these conditions reflect the way in which trajectories of dynamical systems converge
towards equilibrium. Several toy models of control systems are given for which time-
varying feedback laws are constructed and lead to this polynomial-logarithmic stability
for the closed-loop systems. The advantage of these feedbacks that they are more reg-
ular, even, are in class C∞([0, +∞) × R

n), for β � 2 is an integer, and resolve
nonlinear situations where linear feedbacks cannot work. Finally, we have proved that
the controllability of the linearized system implies the logarithmic stabilizability by
time-varying linear feedback law.

In the future work, two problems can be investigated: the first one is the robustness
of this polynomial-logarithmic stability with respect to an unknown perturbation, and
the second concerns the converse Lyapunov theorem for this polynomial-logarithmic
stability.
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