
Qualitative Theory of Dynamical Systems (2024) 23:171
https://doi.org/10.1007/s12346-024-01038-4

Breather Transitions and Their Mechanisms of a
(2+1)-Dimensional Sine-Gordon Equation and a Modified
Boussinesq Equation in Nonlinear Dynamics

Qian Gao1 · Shou-Fu Tian1 · Ji-Chuan Liu1 · Yan-Qiang Wu1

Received: 22 January 2024 / Accepted: 6 April 2024 / Published online: 24 April 2024
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
Studying the transformationmechanismsof soliton solutions of somehigh-dimensional
equations can aid in comprehending the physical phenomena of the relevant nonlin-
ear wave interactions. Therefore, the transitions and mechanisms of nonlinear waves
in the (2+1)-dimensional sine-Gordon and (2+1)-dimensional modified Boussinesq
equations are investigated for the first time by means of characteristic line and phase
shift analysis, and the dynamic behavior of various nonlinear transformed waves is
analyzed. Firstly, we derive the N-soliton solution by applying the Hirota bilinear
method, from which the breather solution is constructed by changing the parame-
ters into a complex form in pairs. In addition, via the characteristic-line analysis, we
present the mechanism for the transformation of the breather solution, which is com-
posed of the nonlinear superposition of a solitary wave and periodic wave. When the
characteristic lines of the two parts are parallel, we find that various transformed non-
linear wave structures can be obtained, such as M-type solitons, oscillating M-type
solitons, multi-peak solitons, quasi-sine waves and so on. Finally, we demonstrate that
the geometric properties of the characteristic lines vary with time essentially result-
ing in the time-varying properties of nonlinear waves, which have never been found
in (1+1)-dimensional systems. Overall, the study of breath-wave transitions in the
(2+1)-dimensional sine-Gordon equation and the modified Boussinesq equation pro-
vides valuable insights into the bahavior of nonlinear systems and wave propagation.
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1 Introduction

Soliton theory was developed in the 1840s, and has become an important means to
study nonlinear science [1]. Soliton is a quasi-particle that is morphologically stable
and excited by a nonlinear field with non-dispersive energy. Soliton possesses all the
properties of particles, including energy, momentum, and mass, and so on. They also
adhere to all the laws of nature [2, 3]. It can describe some physical phenomena,
and is widely used to explain water wave propagation in rivers and oceans, signal
transmission in optical fiber communication, and some special phenomena in the field
of plasma physics [4–6]. Some eloquent developments in nonlinear physics have been
made [7–9]. The discovery of soliton phenomena can be traced back to 1844, when
British scientist Scott Russell [10] accidentally discovered a strange phenomenon of
waterwaveswhilewalking in the river. Since then, the concept of solitonwaves entered
everyone’s vision. Subsequently, in 1895,Korteweg andVries introduced the signature
KdV equation for isolated waves [11], and since then, the existence of solitary waves
has beenwidely recognizedby the academic community. In 1965,Zabusky andKruskal
used numerical methods to study the interaction process of solitary waves in plasma,
and confirmed that the waveforms do not change after the interaction of solitary waves,
and were named soliton [12]. The development of soliton is of great significance to
mathematics and other scientific fields [13–17]. At present, soliton theory seems to
have shown its vigorous vitality, and has become a new science, and its research will
undoubtedly promote the development of modern mathematical physics and applied
engineering [18–22].

There are many famous methods to derive the soliton solution of the nonlinear
equation, such as inverse scattering method [23], Bäckloud transformation method
[24], Lie group method [25], Darboux transformation method [26] and Hirota bilinear
method [27]. In addition, there are various methods to derive soliton solutions of the
nonlinear equation [28]. The Hirota bilinear method applied in this paper is proposed
by Hirota in 1971 [29]. It is a powerful tool to construct analytical solutions [30–32].
Moreover, somenewworks find new properties of PDEs by using bilinear method [33–
35]. We apply the bilinear method in this work, which has the advantages of simplicity
and directness. It does not require that the nonlinear partial differential equations under
study have Lax pairs, i.e., regardless of the existence of Lax pairs in equations, the
equations can be solved directly by transforming them into bilinear type by means of
bilinear transformations.

In addition, solitonswith different structures have also been studied, such as the dark
solitons [36], anti-dark solitons [37], W-type solitons [38] as well as multi-solitons
[39, 40]. The concept of rogue wave [41] was proposed by the British writer Darp,
which is a peak value structure with limitations in space and time, and it is also known
as the wave of “coming without shadow, going without trace”. Breathers are nonlinear
waves that are periodic in both time and space, and can be divided into Akhmediev
breathers [42] and Kuznetsov-Ma breathers [43]. Akhmediev breathers are periodic
and completely localized in the direction of evolution, while Kuznetsov-Ma breathers
are periodic and localized in the direction of evolution. Many mathematical models
can describe these nonlinear waves, such as the Korteweg-de Vries (KdV) equation
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[11] and the nonlinear Schrödinger (NLS) equation [44], as well as their various
deformations.

The breather is a local wave that exhibits periodic oscillation behavior in a cer-
tain direction [45]. Recent studies have shown that breather solutions exist for many
nonlinear equations, including sine-Gordon equation [46], Kudryashov-Sinelshchikov
equation [47], (4+1)-dimensional Fokas equation [48], Korteweg-de Vries (KdV)
equation [49]. Lump is derived from breather degradation (period is infinite), that
is, a limiting structure of breather [50]. Under certain conditions, breathers and rogue
waves can be converted into other types of nonlinear waves, referred as the state
transformation of waves [51, 52].

In nonlinear systems, higher-order effects and coupling effects have significant
effects on the state transformation of nonlinear waves. In this case, the breather can
be seen as a single pulse composed of a nonlinear superposition of a solitary wave
component and a periodic wave component with their own velocities Vs and Vp.
In general, the velocity difference between the two components is not zero, that is,
Vs �= Vp. Conversely, if Vs = Vp, the breather can be transformed into other non-
linear waves, such as antidark solitons (ηs �= 0, ηp = 0), M-type or W-type solitons
(ηs ≈ ηp), multi-peak solitons (ηs < ηp), periodic wave (ηs = 0, ηp �= 0), where
ηs, ηp represents the wave number of the solitary wave component and the periodic
wave component, respectively. Moreover, in recent years, some rich nonlinear wave
structures have been discovered in the plane wave background in the higher-order
nonlinear equations. [53] proved that the breathers in the higher-order NLS equation
can be converted into non-pulsed solitons. The conservation between rogue waves and
W-type solitons in the Hirota equation has been discovered, which is influenced by
higher-order effects [54]. Breather-to-soliton transitions, nonlinear wave interactions,
and modulational instability have been found in a higher-order generalized nonlinear
Schrödinger equation [55]. In addition, the (2+1)-dimensional KdV equation and the
state transition between lump wave and breather have been studied in [56].

In view of previous studies, the transformation mechanism for the (2+1)-
dimensional sine-Gordon equation and (2+1)-dimensional modified Boussinesq
equation has not yet been studied. Motivated by these, we investigate nonlinear wave
state transitions for the (2+1)-dimensional sine-Gordon equation [57] and the (2+1)-
dimensional modified Boussinesq equation [59].

The (2+1)-dimensional sine-Gordon equation is given as follows:

uxx + uyy − utt = sin u. (1.1)

Equation (1.1) is the classical wave equation with a nonlinear sine source term. The
sine-Gordon partial differential equations can be used to simulate the dynamic mecha-
nismof basemotion duringDNA transcription and remaking. The equations arewidely
used in research because of their adaptability, nonlinearity and increasing dispersion
accuracy. [58] derived localized dynamical behavior in the (2+1)-dimensional sine-
Gordon equation. [60] studied new kink-shaped solutions and periodic wave solutions
for the (2+1)-dimensional sine-Gordon equation. New class of running-wave solutions
of the (2+1)-dimensional sine-Gordon equation have also been given in [61].
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Here we take

u = 2i ln

(
f ∗

f

)
, (1.2)

where f is any complex function, ∗ denotes the complex conjugate, and i = √−1
Then we get the bilinear form of the (2+1)-dimensional sine-Gordon equation:

(D2
x + D2

y − D2
t )( f · f ) = 1

2
( f 2 − ( f ∗)2), (1.3)

where Dx , Dy and Dt are bilinear operators. They are defined by

Dm
t Dn

x Dp
y ( f · g) = (∂t − ∂t ′)

m(∂x − ∂x ′)n(∂y − ∂y′)p

[ f (t, x, y)g(t ′, x ′, y′)]|t ′=t,x ′=x,y′=y . (1.4)

The (2+1)-dimensional modified Boussinesq equation is given as follow:

utt − uxx − uyy − 3
(
u2

)
xx

− uxxxx = 0. (1.5)

The standardBoussinesq equation is often used to describe the propagation and change
of nonlinear shallow water waves, including shallow water deformation, reflection,
diffraction, refraction, wave breaking and dissipation, wave current interaction, and
tidal current phenomenon caused by waves [62, 63]. Solutions and conservation laws
of a (2+1)-dimensional Boussinesq equation have been given [64]. The decomposition
method for solving (2+1)-dimensional Boussinesq equation have also been studied in
[65]. [66] researched on lump solution of (2+1)-dimensional Boussinesq equation.
This paper is evolved from the generalized (2+1)-dimensional Boussinesq equation,
which is shown as follows:

utt + αuxx − uyy + β
(
u2

)
xx

+ γ uxxxx = 0.

When α = −1, β = −3, γ = −1, it is the (2+1)-dimensional modified Boussinesq
equation.

In order to obtain the bilinear form of equation (1.5), first we let

u = 2(ln f )xx . (1.6)

Substituting Eq. (1.6) into Eq. (1.5) , we get:

(D2
t − D2

x − D2
y − D4

x )( f · f ) = 0. (1.7)

The main purpose of this work is to study the state transition of nonlinear waves and
various properties of transformed waves via nonlinear superposition, characteristic
lines and phase shift analysis of the (2+1)-dimensional sine-Gordon equation and the
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Table 1 Various types of
transformed waves and
corresponding wave parameters

Transformed nonlinear waves Wave parameters (a1, b1)

Quasi-anti-dark soliton a1 = 3, b1 = 1

M-type soliton a1 = 1, b1 = 1

Oscillating M-type soliton a1 = 1, b1 = 2

Multi-peak soliton a1 = 1, b1 = 5

Quasi-sine wave a1 = 0.001, b1 = 1

Quasi-periodic anti-dark soliton a1 = 0.001, b1 = 3

(2+1)-dimensional modified Boussinesq equation. Thus, following problems need to
be further considered:

• What is the nonlinear superposition mechanism of the breathers of these two
equations?

• Do state transition conditions exist for breathers?
• How does time change affect nonlinear waves?

In addition, compared with previous studies, we also have some innovations, which
are as follows:

• According to the Hirota method, we derive the breather solutions and some con-
version waves of the two equations for the first time.

• We also present a certain nonlinear superposition mechanism of some breathers.
The breathers and transformed waves are the nonlinear superpositions of soli-
tary and periodic waves. Those results help us understand some structures of the
transformed solutions.

• The characteristic lines of the transformed waves are parallel, and the distance
between them is a function of the time t . As the time changes, the geometry of the
characteristic lines also changes, thus having the evolution of the other transformed
waves. It is helpful for finding various types of solutions with position and range
requirements.

1.1 Main Results

Theorem 1.1 The transformed wave solution ũ2 of the breather for the (2+1)-
dimensional sine-Gordon equation can be expressed as:

ũ2 = 2i ln(
(2

√
λ2 cosh(θ1 + ln

√
λ2) + λ3 cos	1)

∗

2
√

λ2 cosh θ1 + ln
√

λ2 + λ3 cos	1
), (1.8)

where parameters a1, b1 are arbitrary constant, θ1, λ2, λ3,	 are defined in Eq. (2.23).
The relationship between various types of transformedwaves and parameters is shown
in Table 1.

Remark 1 The constants a1, b1 in Eq. (2.23) control the locality and oscillation of the
transformed wave respectively. The larger the value of a1(b1), the stronger locality
(oscillation) the wave is.
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Table 2 Various types of
transformed waves and
corresponding wave parameters

Transformed nonlinear waves Wave parameters (a1, b1)

Quasi-anti-dark soliton a1 = 2, b1 = 2

Oscillating M-type soliton a1 = 1, b1 = 2

Multi-peak soliton a1 = 0.5, b1 = 2

Quasi-sine-wave a1 = 0.5, b1 = 5

Quasi-periodic anti-dark soliton a1 = 0.01, b1 = 1.24

Remark 2 Equation (1.8) is composed of hyperbolic and trigonometric functions, so
the transformed waves are nonlinear superpositions of solitary and periodic waves.

Remark 3 β1(θ1 + ln
√

λ2 = 0) and β2(	1 = 0) are the characteristic lines of the
transformed waves. The two characteristic lines are parallel, and the distance between
them is a function of the time t . As the time changes, the geometry of the characteristic
lines also changes, thus having the evolution of the other transformed waves.

Theorem 1.2 The transformed wave solution ũ2 of the (2+1)-dimensional modified
Boussinesq equation can be expressed as:

ũ2 = 2[ln(2√λ2 cosh(θ1 + ln
√

λ2)) + λ1 cos	1]xx
= 8a21λ2 − 2b21λ

2
1 + 4(a21 − b21)λ1

√
λ2 cosh(θ2 + ln

√
λ2) cos(	2)

(2
√

λ2 cosh(θ2 + ln λ2) + λ1 cos(	2))2

+ 8a1b1λ1
√

λ2 sinh(θ2 + ln
√

λ2) sin(	2)

(2
√

λ2 cosh(θ2 + ln
√

λ2) + λ1 cos(	2))2
,

(1.9)

where parameters a1, b1 are arbitrary constant, θ1, λ1, λ2 are defined in Eq. (3.14).
The relationship between various types of transformedwaves and parameters is shown
in Table 2.

Remark 4 a1 is always smaller than b1, periodicity of transformed waves is stronger
when a1 is much smaller than b1.

Remark 5 Equation (1.9) is composed of hyperbolic and trigonometric functions, so
the transformed waves are nonlinear superpositions of solitary and periodic waves.

Remark 6 β1(θ1 + ln
√

λ2 = 0) and β2(	1 = 0) are the characteristic lines of the
transformedwave.At the point the two characteristic lines are parallel, and the distance
between these characteristic lines is a function of the time t . As the time changes, the
geometry of the characteristic lines also changes, thus having the evolution of the other
transformed waves.

1.2 Plan of Proof

In this paper, the state transformation of nonlinear equations is studied. In order to
study this problem,wemust first obtain the soliton solution of the equation, the breather
solution. So the structure of this paper is as follows:
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In Sect. 2, we derive single soliton solution and double soliton solution of the (2+1)-
dimensional sine-Gordon equation, and we prove Theorem 1.1 in subsection 2.2 and
2.3 of this chapter.

In Sect. 3, N-soliton solution and breather solution of the (2+1) dimensional modi-
fied Boussinesq equation are derived. Then the state transition problem of the equation
is studied by the characteristic line analysis, Theorem 1.2 is proved here.

In Sect. 4, we summarize the previous work.
In Sect. 5, we say the future recommendations.

2 Breather Transition and Its Mechanism of (2+1)-Dimensional
Sine-Gordon Equation

The (2+1)-dimensional sine-Gordon equation is given in the previous section. In this
chapter, we mainly learn about the characteristic line of its solution.

2.1 Soliton Solution of (2+1)-Dimensional Sine-Gordon Equation

Let f be expanded in series according to the parameter ε as:

f = 1 + f (1)ε + f (2)ε2 + · · · + f (n)εn + · · · · · · (2.1)

Then we substitute Eq. (2.1) into Eq. (1.2), and collect the coefficients of the same
degree ε to obtain the following equation:

ε : f (1)
xx + f (1)

yy − f (1)
t t = 1

2
( f (1) − ( f (1))∗), (2.2)

ε2 : 2( f (2)
xx + f (2)

yy − f (2)
t t ) + (D2

x + D2
y − D2

t )( f
(1) · f (1))

= 1

2
(( f (1))2 − (( f (1))∗)2) + f (2) − ( f (2))∗, (2.3)

ε3 : ( f (3)
xx + f (3)

yy − f (3)
t t ) + (D2

x + D2
y − D2

t )( f
(1) · f (2))

= 1

2
( f (3) − ( f (3))∗ + f (1) f (2) − ( f (1))∗( f (2))∗).

· · · · · · (2.4)

2.1.1 Single Soliton Solution

Since f is any complex function here, let’s set

f (1) = eξ1 · e iπ
2 , ξ1 = k1x + l1y + w1t + γ1, (2.5)

where k1, l1, w1, γ1 are all real numbers, substituting Eq. (2.5) into Eq. (2.2), we get

k21 + l21 − w2
1 = 1. (2.6)
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Fig. 1 Structure of Single Soliton Solutions as t changes. a t = −7. b t = 0. c t = 7. Parameters

k1 = 3, l1 = 5, γ1 = 0, w1 =
√
k21 + l21 − 1 = √

33

Then we substitute the Eq. (2.5) into (2.3),

f (2)
xx + f (2)

yy − f (2)
t t = 1

2
( f (2) − ( f (2))∗). (2.7)

The same as Eq. (2.1), so let f (2) = 0, we get

f (3)
xx + f (3)

yy − f (3)
t t = 1

2
( f (3) − ( f (3))∗). (2.8)

Here we take f (3) = 0, in turn, we can get f (4) = f (5) = · · · = 0. So if we set ε = 1,
then

f1 = 1 + f (1) = 1 + eξ1 · e iπ
2 . (2.9)

By substituting the above equation into Eq. (1.5), we obtain the single soliton solution
of this equation.

u1 = 2i ln
f ∗
1

f1
= 2i ln

1 − ieξ1

1 + ieξ1
= 4 arctan(eξ1). (2.10)

Thus, we can get the three-dimensional diagram of its soliton solution at time t =
−7, 0, 7.

2.1.2 Double Soliton Solution

In order to find a double soliton solution to the equation, let’s set

f (1) = (eξ1 + eξ2) · e iπ
2 , ξ j = k j x + l j y + w j t + γ j , j = 1, 2, k2j + l2j − w2

j = 1.

(2.11)
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Fig. 2 Structure of Double Soliton Solutions as t changes. a t = −1. b t = 0. c t = 1. Parameters

k1 = 3, l1 = 5, k2 = 2, l2 = 2, γ1 = γ2 = 0, w1 =
√
k21 + l21 − 1 = √

33, w2 =
√
k22 + l22 − 1 = √

7

By plugging in Eq. (2.3) and setting f (2) = eξ1+ξ2+A12 · eiπ , among them the first
index of the last item for soliton interactions, so we can get

eA12 = (k1 − k2)2 + (l1 − l2)2 − (w1 − w2)
2

(k1 + k2)2 + (l1 + l2)2 − (w1 + w2)2
,

then

f2 = 1 + f (1) + f (2) = 1 + (eξ1 + eξ2) · e iπ
2 + eξ1+ξ2+A12 · eiπ . (2.12)

By substituting the above equation into (1.2), we derive the double soliton solution of
the equation

u2 = 2i ln

(
f ∗

f

)
= 4 arctan

(
eξ1 + eξ2

1 − eξ1+ξ2+A12

)
. (2.13)

Weusemathematical software again to drawa three-dimensional diagramof the double
soliton solution at time t = −1, 0, 1 as shown in Fig. 2.

2.2 The Breather Solution and Characteristic Line Analysis of (2+1)-Dimensional
Sine-Gordon Equation

In order to obtain the breather solution of the (2+1)-dimensional sine-Gordon equation,
we pluralize the wave number of the double soliton solution u2, i.e., Eq. (2.13). Let’s
set

k1 = k∗
2 = a1 + ib1, l1 = l∗2 = p1 + iq1, γ1 = γ ∗

2 = ln
λ1

2
+ δ1 + η1, (2.14)

where a1, b1, p1, q1, λ1, δ1, η1 are real numbers, we plug in (2.12)

f2 = 1 + e
iπ
2 (eθ1+i	1+ln λ1

2 + eθ1−i	1+ln λ1
2 ) + e2θ1+2 ln λ1

2 +A12+iπ

= 1 + λ1e
θ1+ iπ

2 cos(	1) + λ21H

4
e2θ1+iπ ,

(2.15)
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where

θ1 = a1x + p1y + √
ρ cos

α1

2
t + δ1,

	1 = b1x + q1y + √
ρ sin

α1

2
t + η1,

H = eA12 = (k1 − k2)2 + (l1 − l2)2 − (w1 − w2)
2

(k1 + k2)2 + (l1 + l2)2 − (w1 + w2)2

= −4b21−4q21 −((a1+ib1)2+(p1+iq1)2−(a1−ib1)2 − (p1 − iq1)2)2

4b21+4q21 −((a1+ib1)2+(p1+iq1)2 − 2+(a1 − ib1)2 + (p1 − iq1)2)2
,

ρ cosα1 = a21 + p21 − b21 − q21 − 1,

ρ sin α1 = 2a1b1 + 2p1q1, (2.16)

then we take

λ2 = λ21H

4
eiπ , λ3 = λ1e

iπ
2 .

In order to better reflect the characteristics of breather, we will be on both sides of Eq.
(2.15) at the same time divided by eθ1 , the resulting

f2
eθ1

= e−θ1 + λ3 cos(	1) + λ2e
θ1

= 2
√

λ2

√
λ2eθ1 + eθ1√

λ2

2
+ λ3 cos(	1)

= 2
√

λ2 cosh(θ1 + ln
√

λ2) + λ3 cos(	1).

Thus,

f2 ∼ 2
√

λ2 cosh(θ1 + ln
√

λ2) + λ3 cos(	1). (2.17)

Therefore, we get its breather solution by substituting Eq. (2.17) into (1.5), i.e.,

u2 = 2i ln

(
f ∗

f

)
= 2i ln

(
(2

√
λ2 cosh(θ1 + ln

√
λ2) + λ3 cos	1)

∗

2
√

λ2 cosh θ1 + ln
√

λ2 + λ3 cos	1

)
.

(2.18)

If f2 is converted to Eq. (2.17), It can be seen that the breather solution u2 is localized
and periodic, where the hyperbolic function (cosh, sinh) determines its localiza-
tion and the hyperbolic function (cos, sin) determines its periodicity. Therefore, the
breather structure can be considered as a family of solitary wave and periodic wave
components. In order to better understand the wave state of the breather, we need to
analyze the characteristic lines of the solitary wave and the periodic wave. According
to the derivation process, we get two characteristic lines β1(θ1 + ln

√
λ2 = 0) and
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(a) (b) (c)

Fig. 3 a Spatial structure of the breather solution at t = 0. b The contour figure of a. L1 and L2 represent
the characteristic lines. c The characteristic lines of a in the (x, y)-plane at t = 0 and t = 1. Parameters a1 =
0.1, b1 = 2, p1 = 1, q1 = 1, λ1 = 2, δ1 = 0, η1 = 0. L1 = 0.1x + y + 0.5230469914t − 1.723950496,
L2 = 2x + y + 2.294248931t .

β2(	1 = 0) of the breather. Notice that the solitary wave component is traveling at√
ρ cos α1

2
a1

velocity on the x-axis, and
√

ρ cos α1
2

p1
on the y-axis. The propagation velocity

of the periodic wave in the x-axis is
√

ρ cos α1
2

b1
, and the propagation velocity in the

y-axis is
√

ρ cos α1
2

q1
.

Figure 3 is the three-dimensional diagram of breather at t = 0, the contour diagram
and the characteristic diagram at t = 0, 1.

From Fig. 3, we can see that the angle between the two characteristic lines does
not change with time. So we cannot help but ask under what conditions are the two
feature lines parallel? What happens to its wave state in this case? This is what we are
going to study next in the equation breather state transition problem.

2.3 State Transition of Breather in (2+1)-Dimensional Sine-Gordon Equation

Through the previous analysis, we know that the two characteristic lines of the breather
are:

β1 : a1x + p1y + √
ρ cos

α1

2
t + δ1 + ln

√
λ2 = 0, (2.19)

β2 : b1x + q1y + √
ρ cos

α1

2
t + η1 = 0. (2.20)

Then the condition that the two characteristic lines are parallel is:

∣∣∣∣a1 p1
b1 q1

∣∣∣∣ = 0.

Then we get a relation: a1q1 − b1 p1 = 0, further we can know

b1
a1

= q1
p1

= l, (2.21)
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where l is a constant, thenwe can analyze how the breather changes under the condition
of parallel characteristic lines according to this relation, that is, how its wave state
changes.

From (2.21), we can get b1 = la1, q1 = lp1. Then we obtain the breather solutions
in the new form,

f2 ∼ 2
√

λ2 cosh(θ1 + ln
√

λ2) + λ3 cos(	1), (2.22)

where

θ1 = a1x + p1y + √
ρ cos

α1

2
t + δ1,

	1 = la1x + lp1y + √
ρ sin

α1

2
t + η1,

H = eA12 = (k1 − k2)2 + (l1 − l2)2 − (w1 − w2)
2

(k1 + k2)2 + (l1 + l2)2 − (w1 + w2)2

= −4b21 − 4q21 − ((a1 + ib1)2 + (p1 + iq1)2 − (a1 − ib1)2 − (p1 − iq1)2)2

4b21 + 4q21 − ((a1 + ib1)2 + (p1 + iq1)2 − 2 + (a1 − ib1)2 + (p1 − iq1)2)2

= −4(la1)2−4(lp1)2−((a1+ila1)2+(p1+ilq1)2−(a1−ila1)2−(p1−ilp1)2)2

4(la1)2+4(lp1)2−((a1+ila1)2+(p1+ilp1)2−2+(a1−ila1)2+(p1−ilp1)2)2
,

λ2 = λ21H

4
eiπ , λ3 = λ1e

iπ
2 . (2.23)

By substituting in (1.5), we get

ũ2 = 2i ln
f ∗
2

f2
= 2i ln

(
(2

√
λ2 cosh(θ1 + ln

√
λ2) + λ3 cos(	1))

∗

2
√

λ2 cosh(θ1 + ln
√

λ2) + λ3 cos(	1)

)
.

(2.24)

From the perspective of form alone, Eq. (2.24) and (2.18) have no difference, but they
are different in essence. The solitary wave and periodic wave of Eq. (2.24) solution
are superimposed in the same direction, and the characteristic direction is the same,
that is to say

θ2 = κ1	2 + κ2. (2.25)

Sowe use the characteristic line expression to define the characteristic direction angle,

ϕ = arctan

(
p1
a1

)
,

where ϕ is the positive angle between the characteristic line and the y-axis, which
needs to be distinguished from the general definition.

Since f is a complex function, so
f ∗
2
f can be written in exponential form, then

ln(
f ∗
2
f ) can be converted, then we have to consider the conditions required in the
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Fig. 4 Spatial structure of the transformed nonlinear wave solution at t = 0. a Quasi-anti-dark soliton.
Parameters l = 1

3 , a1 = 3, b1 = 1, p1 = 3, q1 = 1. b M-type soliton. Parameters l = 1, a1 = 1, b1 =
1, p1 = 1, q1 = 1. c Oscillating M-type soliton. Parameters l = 2, a1 = 1, b1 = 2, p1 = 1, q1 = 2
d Multi-peak soliton. l = 5, a1 = 1, b1 = 5, p1 = 1, q1 = 5. e Quasi-sine-wave. Parameters l =
1000, a1 = 0.001, b1 = 1, p1 = 0.001, q1 = 1. f Quasi-periodic anti-dark soliton. Parameters l =
3000, a1 = 0.001, b1 = 3, p1 = 0.001, q1 = 3, l = b1

a1
. Other parameters λ1 = 2, δ1 = 0, η1 = 0

function f , according to Eq. (2.22) we can know that λ2 �= 0, then H �= 0. According
to equation (2.21), the breather can be converted into other waves under the condition
that the characteristic lines are parallel. Then we get three-dimensional maps of the
other nonlinear waves by using mathematical software.

Figure 4 is based on the change of wave-number ratio l. In Fig. 4, it can be found
that when l = 1

3 , the breather transforms into a quasi-anti-dark soliton with only one
extreme line and is symmetric about the characteristic direction. When l = 1, the
breather transforms into an M-type soliton with three extreme lines, one crest and two
troughs. When l = 2, the breather again becomes an oscillating M-type soliton. When
l = 5, the breather is transformed intomulti-peak soliton, l = 1000, is transformed into
quasi-sine wave, and l = 3000, is transformed into quasi-periodic anti-dark soliton.
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In this case, there is almost no localization in other directions, and the localization of
waves is almost only shown in the characteristic direction. It can be seen that with the
increase of the parameter l, the transformation of the breather into other waves follows
the following rules: quasi-anti-dark soliton → M-type soliton → oscillating M-type
soliton → multi-peak soliton → quasi-sine wave → quasi-periodic anti-dark soliton.

From Fig. 4, we find that parameter condition a1 > b1 represents waves with
strongly solitary states andweakly periodic states,whilea1 < b1 representswaveswith
weakly solitary states and strongly periodic states. Sowhena1 increase, nonlinearwave
solitons sexual enhancement, b1 increases, the nonlinear wave periodic enhancement.
We can verify this conclusion with images.

Since the above results are obtained by fixing the time t = 0, what effect does the
time change have on the transformed waves? Next, we continue to study the effect of
time change on the transformed waves.

We can get from the previous work that the characteristic line of the transformed
waves are:

β3 : a1x + p1y + √
ρ cos

α1

2
t + δ1 + ln

√
λ2 = 0, (2.26)

β4 : la1x + lp1y + √
ρ cos

α1

2
t + η1 = 0. (2.27)

The direction of the two characteristic lines is the same, but the velocity is different.
For its solitary wave component, its velocity on the x-axis and y-axis are respectively:

V1,x =
√

ρ cos α1
2

a1
,

V1,y =
√

ρ cos α1
2

p1
.

For the periodic wave component, its velocity on the x-axis and y-axis are:

V2,x =
√

ρ cos α1
2

la1
,

V2,y =
√

ρ cos α1
2

lp1
.

So the two characteristic line with change with the change of time, set the distance of
two characteristic line is d1, we have

d1 = |(
√

ρ sin α1
2

l − √
ρ cos α1

2 )t + η1
l − δ1 − ln

√
λ2|√

a21 + p21

.

It can be seen that with the change of time, the distance between the two characteristic
lines also changes, and the shape of the transformed waves also changes.

The following is an analysis of the different transformed waves. The first is the
quasi-anti-dark soliton at different times, whose three-dimensional maps are drawn
by Maple software.
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Fig. 5 Structure of the quasi-anti-dark soliton as t changes. a t = −1. b t = 0. c t = 1. Parameters
l = 1

3 , a1 = 3, b1 = 1, p1 = 3, q1 = 1, λ1 = 2, δ1 = 0, η1 = 0

Fig. 6 Structure of M-type soliton as t changes. a t = −1. b t = 0. c t = 1. Parameters l = 1, a1 =
1, b1 = 1, p1 = 1, q1 = 1, λ1 = 2, δ1 = 0, η1 = 0

As shown in Fig. 5, the time change does not have much effect on quasi-anti-dark
soliton.

Next is a three-dimensional diagram of M-type soliton at different times.
It is found from the Fig. 6 that time change has a great influence on M-type soliton.

3 Breather Transition and Its Mechanism of the (2+1)-Dimensional
Modified Boussinesq Equation

This chapter we continue to study the N-soiton solution of the (2+1)-dimensional
modified Boussinesq equation by using the Hirota bilinear method, and construct the
breather solution by wave number pluralization, and study the state transition of the
equation.

The (2+1)-dimensional modified Boussinesq equation to be studied in this chapter
is given in the previous section.

3.1 Soliton Solution of the (2+1)-Dimensional Modified Boussinesq Equation

Based on the Hirota bilinear method, we get the N-soliton solution of Eq. (1.5):

uN = 2(ln fN )xx , fN =
∑

μ=0,1

exp

⎛
⎝ N∑

j=1

μ jξ j +
N∑

1≤ j<l

μ jμl A jl

⎞
⎠ , (3.1)
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Fig. 7 Structure of Single Soliton Solutions as t changes. a t = −2. b t = 0. c t = 2. Parameters

k1 = 1, p1 = 1, w1 =
√
1 + k21 + p21 = √

3, γ1 = 0

where

eA jl = − (k jw j − klwl)
2 − (k j − kl)2 − (k j p j − kl pl)2 − (k j − kl)4

(k jw j + klwl)2 − (k j + kl)2 − (k j p j + kl pl)2 − (k j + kl)4
,

ξi = ki (x + pi y + wi t) + γi , w
2
i = 1 + k2i + p2i , i = 1, 2.

3.1.1 Single Soliton Solution

When N = 1, we can get the single soliton solution of this equation:

u1 = 2(ln f1)xx = 2(ln(1 + eξ1))xx = k21
2

(
sech

ξ1

2

)2

. (3.2)

By using mathematical software, we can get the three-dimensional diagram of its
soliton solution at time t = −2, 0, 2 as shown in Fig. 7.

3.1.2 Double Soliton Solution

f2 is represented as follows:

f2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 , (3.3)

where eA12 = − (k1w1−k2w2)
2−(k1−k2)2−(k1 p1−k2 p2)2−(k1−k2)4

(k1w1+k2w2)2−(k1+k2)2−(k1 p1+k2 p2)2−(k1+k2)4
. So, we get the double

soliton solution of the equation

u2 = 2(ln f2)xx = 2(ln(1 + eξ1 + eξ2 + eξ1+ξ2+A12))xx . (3.4)

Weusemathematical software again to drawa three-dimensional diagramof the double
soliton solution at time t = −1, 0, 1. As shown in Fig. 8.
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Fig. 8 Structure of Double Soliton Solutions as t changes. a t = −1. b t = 0. c t = 1. Parameters k1 =
6, p1 = 1, k2 = 4, p2 = 4, γ1 = γ2 = 0, w1 =

√
k21 + p + 1 = √

38, w2 =
√
k22 + p22 + 1 = √

33

3.2 The Breather Solution and Characteristic Line Analysis of the
(2+1)-Dimensional Modified Boussinesq Equation

We use the double soliton solution in Sect. 2 of this chapter to pluralize the wave
number of Eq. (3.4). Let

k1 = k∗
2 = a1 + ib1, p1 = p∗

2 = c1 + id1, γ1 = γ ∗
2 = ln

λ1

2
+ δ1 + iη1, (3.5)

where a1, b1, c1, d1, λ1, δ1, η1 are real numbers, we plug in (3.3),

f2 = 1 + eθ1+i	1+ln λ1
2 + eθ1−i	1+ln λ1

2 + e2θ1+2 ln λ1
2 +A12

= 1 + λ1e
θ1 cos(	1) + λ21H

4
e2θ1 ,

(3.6)

where

θ1 = a1x + (a1c1 − b1d1)y + √
ρ(a1 cos

α1

2
− b1 sin

α1

2
)t + δ1,

	1 = b1x + (a1d1 + b1c1)y + √
ρ(a1 sin

α1

2
+ b1 cos

α1

2
)t + η1,

H =eA12 =− (k1w1−k2w2)
2−(k1 − k2)2 − (k1 p1 − k2 p2)2 − (k1 − k2)4

(k1w1 + k2w2)2 − (k1 + k2)2 − (k1 p1 + k2 p2)2 − (k1 + k2)4
,

ρ cosα1 = a21 + c21 − b21 − d21 + 1,

ρ sin α1 = 2a1b1 + 2c1d1.

(3.7)

Let’s set

λ2 = λ21H

4
.
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In order to better reflect the characteristics of the breather, we will be on both sides of
Eq. (3.6) at the same time divided by eθ1 , the resulting is

f2
eθ1

= e−θ1 + λ1 cos(	1) + λ2e
θ1

= 2
√

λ2

√
λ2eθ1 + eθ1√

λ2

2
+ λ1 cos(	1)

= 2
√

λ2 cosh(θ1 + ln
√

λ2) + λ1 cos(	1),

thus,

f2 ∼ 2
√

λ2 cosh(θ1 + ln
√

λ2) + λ1 cos(	1). (3.8)

Then we get its breather solution by substituting the equation (3.8) into (1.6).

u2 = 2(ln f2)xx = 2[ln 2√λ2 cosh(θ1 + ln
√

λ2) + λ1 cos	1]xx

= 8a21λ2 − 2b21λ
2
1 + 4(a21 − b21)λ1

√
λ2 cosh(θ1 + ln

√
λ2) cos(	1)

2
√

λ2 cosh(θ1 + ln
√

λ2) + λ1 cos(	1))2

+ 8a1b1λ1
√

λ2 sinh(θ1 + ln
√

λ2) sin	1

(2
√

λ2 cosh(θ1 + ln
√

λ2) + λ1 cos(	1))2
.

(3.9)

As a result of f2 > 0, and 2 cosh(θ1 + ln
√

λ2)+λ1 cos(	1)) has the minimum value

of 2
√

λ2 − |λ1|, so when λ2 >
λ21
4 , i.e.H > 1, there is a non-singular solution to Eq.

(3.9).
If f2 is converted to Eq. (3.8), it can be seen that the breather solution u2 is local

and periodic, in which the hyperbolic function (cosh, sinh) determines its locality, and
the hyperbolic function (cos, sin) determines its periodicity. This kind of breather is
a combination of the two components of solitary wave and periodic wave. In order to
better understand the wave state of the breather, we need to analyze the characteristic
lines of the solitary wave component and the periodic wave component. According
to the derivation process, we get two characteristic lines β1(θ1 + ln

√
λ2 = 0) and

β2(	1 = 0) of the breather.
We can see from the characteristic lines that the propagation velocity of the solitary

wave in the x-axis is
√

ρ(a1 cos
α1
2 −b1 sin

α1
2 )

a1
and in the y-axis is

√
ρ(a1 cos

α1
2 −b1 sin

α1
2 )

a1c1−b1d1
. the

periodic wave component is traveling at
a1 sin

α1
2 +b1 cos

α1
2

b1
velocity on the x-axis, and

a1 sin
α1
2 +b1 cos

α1
2

a1d1+b1c1
on the y-axis. Observing the expression of the characteristic lines, we

can see that the angle (or parallel) between the two characteristic lines does not change
with time, from a physical point of view, which shows that the shape and amplitude
of the breather do not change with time, only the phase changes with time.

Figure 9 is the three-dimensional diagram of breather at t = 0,the contour diagram
and the characteristic diagram at t = 0, 1.
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(a) (b) (c)

Fig. 9 a Spatial structure of the breather solution at t = 0. b The contour figure of a. L1 and L2 represent
the characteristic lines. c The characteristic lines of a in the (x, y)-plane at t = 0 and t = 1. Parameters a1 =
0.1, b1 = 1, c1 = 1, d1 = 1, λ1 = 2, δ1 = η1 = 0. L1 = 0.1x − 0.9y − 0.9311534897t + 1.931492390,
L2 = x + 1.1y + 1.164034421t

As shown in Fig. 9, under the above parameters, two characteristic lines intersect
and the angle does not change with time, then we will also have a question, under what
conditions will two characteristic lines be parallel? What happens to the breather in
this case? If it changes, will it change in the same way as in the previous chapter? This
is the state transition problem of this nonlinear wave that we want to study.

3.3 State Transition of Breather for (2+1)-Dimensional Modified Boussinesq
Equation

Through the previous analysis, we know that the two characteristic lines of breather
are:

β1 : a1x + (a1c1 − b1d1)y + √
ρ

(
a1 cos

α1

2
− b1 sin

α1

2

)
t + δ1 + ln

√
λ2 = 0,

(3.10)

β2 : b1x + (a1d1 + b1c1)y + √
ρ

(
a1 cos

α1

2
− b1 sin

α1

2

)
t + η1 = 0. (3.11)

Then the condition that the two characteristic lines are parallel is that the following
determinant is zero.

∣∣∣∣a1 a1c1 − b1d1
b1 a1d1 + b1c1

∣∣∣∣ = 0.

Then we get a relation: (a21 − b21)d1 = 0, so when a21 − b21 �= 0, d1 = 0, so at this
time

H =
√

−b21−2ia1b1+a21+c21+1 ·
√

−b21 + 2ia1b1 + a21 + c21 + 1 − a21 + 7b21 − c21 − 1√
−b21−2ia1b1+a21+c21+1 ·

√
−b21 + 2ia1b1 + a21 + c21 + 1 − 7a21 + b21 − c21 − 1

.

(3.12)
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When a1 = 0.5, b1 = 2, c1 = 1,H = 9.77, this satisfies nonsingular conditions,
and in this case the characteristic lines are parallel. All the transformed waves in the
following paper satisfy the non-singular condition.

Next we’ll let d1 = 0 in breather solutions in the equation of a new form:

f2 ∼ 2
√

λ2 cosh(θ1 + ln
√

λ2) + λ1 cos(	2), (3.13)

where

θ2 = a1x + a1c1y + √
ρ(a1 cos

α1

2
− b1 sin

α1

2
)t + δ1,

	2 = b1x + b1c1y + √
ρ(a1 sin

α1

2
+ b1 cos

α1

2
)t + η1,

H =
√

−b21−2ia1b1+a21+c21 + 1 ·
√

−b21+2ia1b1+a21+c21 + 1 − a21 + 7b21 − c21 − 1√
−b21 − 2ia1b1 + a21 + c21 + 1 ·

√
−b21 + 2ia1b1 + a21 + c21 + 1−7a21+ b21−c21 − 1

,

λ2 = λ21H

4
. (3.14)

By substituting in (3.4), we get

ũ2 = 2(ln f2)xx = 2[ln(2√λ2 cosh(θ1 + ln
√

λ2)) + λ1 cos	1]xx
= 8a21λ2 − 2b21λ

2
1 + 4(a21 − b21)λ1

√
λ2 cosh(θ2 + ln

√
λ2) cos(	2)

(2
√

λ2 cosh(θ2 + ln λ2) + λ1 cos(	2))2

+ 8a1b1λ1
√

λ2 sinh(θ2 + ln
√

λ2) sin(	2)

(2
√

λ2 cosh(θ2 + ln
√

λ2) + λ1 cos(	2))2
. (3.15)

From the perspective of form alone, Eqs. (3.15) and (3.9) have no difference, but they
are different in essence. The solitary wave and periodic wave of Eq. (3.15) solution
are superimposed in the same direction, and the characteristic direction is the same,
that is to say,

θ2 = κ1	2 + κ2. (3.16)

Sowe use the characteristic line expression to define the characteristic direction angle,

ϕ = arctan c1,

where ϕ is the positive angle between the characteristic line and the y-axis, which
needs to be distinguished from the general definition.

In other words, when we fixed c1, under the condition of characteristic line parallel
of the characteristics of nonlinear wave direction does not change, and when H > 1,
the equation has a non-singular solution, then the breather can be converted into various
other types of waves, such as quasi-antidark solitons, M-type solitons, oscillating M-
type solitons, multimodal solitons, quasi-sine waves, and quasi-periodic waves.
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Fig. 10 Spatial structure of the transformed nonlinear wave solution at t = 0. a Quasi-anti-dark soliton.
Parameters l = 2, a1 = 1, b1 = 2 b Oscillating M-type soliton. Parameters l = 2, a1 = 0.5, b1 = 2 c
Multi-peak soliton. l = 10, a1 = 0.5, b1 = 5 d Quasi-sine wave. Parameters l = 124, a1 = 0.01, b1 =
1.24 e Quasi-periodic anti-dark soliton. Parameters l = 300, a1 = 0.01, b1 = 3.l = b1

a1
. Other parameters

c1 = 1, λ1 = 2, δ1 = 0, η1 = 0

Figure 10 is a 3D diagram of the conversion of the breather into other types of
waves under different conditions at t = 0 time.

Same as the analysis in the previous chapter, we can find that the transformedwaves
also change with the change of the wave-number ratio l = b1

a1
. When the wave-number

ratio increases, the transformed waves change as follows: quasi-anti-dark soliton →
oscillatingM-type soliton→multi-peak soliton→ quasi-sine wave→ quasi-periodic
anti-dark soliton.

At the same time we find in the process a1 is always smaller than b1, and when the
a1 is far less than b1, periodicity of the transformed waves is stronger.

Since the above results are obtained by fixing the time t = 0, what effect does the
time change have on the transformed waves? Next, we continue to study the effect of
time change on transformed waves.

We know from the previous work that the characteristic line of the conversion wave
is:

β3 :a1x + a1c1y + √
ρ

(
a1 cos

α1

2
− b1 sin

α1

2

)
t + δ1 + ln

√
λ2 = 0, (3.17)

β4 :b1x + b1c1y + √
ρ

(
a1 sin

α1

2
+ b1 cos

α1

2

)
t + η1 = 0. (3.18)

The direction of the two characteristic lines is the same, but the propagation velocity
is different. For its solitary wave component, its propagation velocity on the x-axis
and y-axis are respectively:

V1,x =
√

ρ(a1 cos
α1
2 − b1 sin

α1
2 )

a1
,
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Fig. 11 Structure of the oscillating M-type soliton as t changes. a t = −2. b t = 0. c t = 4. Parameters
l = 4, a1 = 0.5, b1 = 2, c1 = 1, λ1 = 2, δ1 = 0, η1 = 0

V1,y =
√

ρ(a1 cos
α1
2 − b1 sin

α1
2 )

a1c1
.

For the periodic wave component, its propagation velocity on the x-axis and y-axis
are:

V2,x =
√

ρ(a1 sin
α1
2 + b1 cos

α1
2 )

b1
,

V2,y =
√

ρ(a1 sin
α1
2 + b1 cos

α1
2 )

b1c1
.

So the two characteristic line with change with the change of time, set the distance of
two characteristic line is d2, then

d2 = | a21+b21
a1b1

√
ρ sin α1

2 t + η1
b1

− δ1
a1

− ln
√

λ2
a1

|√
1 + c21

.

It can be seen that with the change of time, the distance between the two characteristic
lines also changes, and the shape of the transformed waves also changes.

The following is an analysis of the different transformed waves. Since we have
analyzed quasi-antidark solitons in the previous chapter, we would hazard a guess
that time change has no effect on it, and we can verify this conclusion by plotting.
So next we study the oscillating M-type solitons, the following is the change of the
transformed wave at different times.

The following Fig. 11 shows the oscillating M-type soliton at t = −2, 0, 4.
Through observation, we can find that the change of time has a certain effect on the

transformed waves such as oscillating M-type soliton.

4 Conclusions

In this paper, bilinear forms of two (2+1)-dimensional equations are studied and their
breather solutions are obtained, and we derive the state transition problem by using
their breather solutions. The results are as follows:
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1. We get the soliton solution and breather solution of the (2+1)-dimensional Sine-
Goedon equation via Hirota bilinear method, and derive the conversion conditions
of the breather into other waves. We also analyze the influence of wave number
ratio on solitary wave and periodic wave, and learn obout the influence of time
change on transformed waves.

2. Similarly, we use the same method to obtain N-soliton solution of the (2+1)-
dimensional modified Boussinesq equation, and then obtain its breather solution
by wave number pluralization. And when the two characteristic lines are parallel,
that is to say, H > 1, the breather can be converted into other types of nonlinear
waves. In addition, we find that the difference in wave-number ratio also affects
the solitary and periodic waves.

3. Through the analysis of the above two equations, we find that both breathers and
transformed waves are formed by the nonlinear superposition of solitary waves
and periodic waves, the difference is the characteristic direction of the solitary
waves and periodic waves, and the conversion conditions of the breather into other
waves of the two equations are different, but the difference in wave number ratio
has an impact on both solitary waves and periodic waves. And the change of time
also has an effect on some transformed waves.

Through the analysis in this paper, we can know that the breathers and other non-
linear waves are formed by the nonlinear superposition of solitary waves and periodic
waves. In addition, we try to investigate the dynamics process of nonlinear transformed
waves over time. And from the perspective of the change of the geometric structure
of the characteristic lines, the principle behind it is analyzed. In the future work, we
will focus on studying the conversion mechanisms of higher-dimensional equations,
including not only the problem of converting the states of the equation breather, but
also the conversion mechanism of the equation lump wave, and so on. This work will
be beneficial for the study of nonlinear physics, fluid dynamics, solitons, and other
related fields.

5 Future Recommendations

The (2+1)-dimensional sine-Gordon equation has significant applications in study-
ing the motion of charged particles in nonlinear fields, field coupling in quantum
field theory, and other related problems. The (2+1)-dimensional modified Boussinesq
equation is a widely applicable tool for describing the propagation of nonlinear waves
in various fields of study, including water wave theory. They are particularly useful
for describing phenomena such as ocean waves, optical waves, and fluctuations in
solid materials. Therefore, in the future we can explore more analytical and numer-
ical solutions of these two equations to deepen our understanding of them. Further
mechanisms of nonlinear wave transitions can also be investigated and attempts can
be made to apply these mechanisms to other nonlinear dynamical systems to explore
their generalisability and application. We can also extend the research results to other
fields, such as biomedical engineering and seismology, to explore the significance and
potential applications of breather conversion in different fields.
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