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Abstract
In this article, a classical predator–prey systemwith linear cross-diffusion andHolling-
II type functional response and subject to homogeneous Neuamnn boundary condition
is considered. The spatially homogeneous Hopf bifurcation curve and Turing bifur-
cation curve of the constant coexistence equilibrium are established with the help of
the linearized analysis. When the bifurcation parameters are restricted to the Turing
instability region and near the Turing bifurcation curve, the associated amplitude equa-
tions of the original system near the constant coexistence equilibrium are obtained by
means of multiple-scale time perturbation analysis. According to the obtained ampli-
tude equations, the stability and classification of spatiotemporal patterns of the original
system near the constant coexistence equilibrium are determined. It is shown that the
cross-diffusion in the classical predator–prey system plays an important role in forma-
tion of spatiotemporal patterns. Also, the theoretical results are verified numerically.
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1 Introduction

It is well known that patterns in the nature are ubiquitous and they constitute the col-
orful world we live. Understanding the formation of patterns is great significant to the
research of biological invasion and epidemic diffusion. In his seminal work [23], Tur-
ing explained successfully the changes of some animal surface patterns by means of a
reaction–diffusion system coupled by two parabolic partial differential equations with
homogeneous Neumann boundary conditions. Turing’s findings revealed that different
random diffusions of two substances may lead to that a stable spatially uniform steady
state loses its stability and then arises the spatially nonuniform patterns. This is called
as Turing instability (or diffusion-driven instability). Since Turing’s pioneering work,
Turing instability or Turing bifurcation for various reaction–diffusion ecosystems has
attracted great interest of lots of researchers [4, 6, 8, 10, 11, 13, 15, 16, 21, 22, 25, 27,
28, 30–32].

In the realworld, the interactions among species are various and the one of predator–
prey type between two species is of great importance. Assume that there exist only
predator and prey species in the same habitat and in the absence of predator species, the
growth rate of prey species follows the Logistic growth law and the functional response
of predator to prey is ofHolling-II type. Then the normalized growthdynamics between
two species can be described by the following reaction–diffusion system [20, 29]

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = d11�u + u

(
1 − u

c

) − muv
1+u , x ∈ �, t > 0,

∂v
∂t = d22�v − θv + muv

1+u , x ∈ �, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t > 0,

(1.1)

where � ⊂ RN (N ≥ 1) is a bounded domain with a smooth boundary ∂� and nnn is
the outside unit normal vector on ∂�; the Laplace operator � implies that the spatial
diffusion of prey and predator species are random and free; the variables u(x, t) and
v(x, t) represent respectively the population densities of prey and predator species
at space location x ∈ � and time t > 0; d11, d22 > 0 are separately the diffusion
coefficients of prey and predator species; c > 0 is the maximum environment carrying
capacity of prey species; θ > 0 is the natural death rate of the predator species in the
absence of prey species; m > 0 is the maximum capture rate of the predator to prey
and the function u/(1 + u) is the functional response function of predator species to
prey species. The homogenous Neumann boundary condition imposed in (1.1) is to
guarantee that system (1.1) is self-contained.

Under the assumption that the distribution in space of prey and predator species
is homogeneous, namely, in the case when there is no the effect on spatial diffusion,
model (1.1) can take the corresponding ordinary differential equation (ODE) model

{
du
dt = u

(
1 − u

c

) − muv
1+u ,

dv
dt = −θv + muv

1+u .
(1.2)

It is easy to reveal that when the condition
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(H) c,m > 0 and 0 < θ < cm
c+1

holds, system (1.2) has the unique positive equilibrium E∗ = (u∗, v∗), where

u∗ = θ

m − θ
, v∗ = cm − (c + 1)θ

c(m − θ)2
. (1.3)

The asymptotical stability of the unique positive equilibrium E∗ of ODE system (1.2)
has been investigated extensively by several authors and the following main result has
been obtained [7, 12]:

Theorem 1.1 Assume that the condition (H) holds.

(i) If (c − 1)/2 < u∗ < c, then the unique positive equilibrium E∗ of (1.2) is
globally asymptotically stable;

(ii) If c > 1 and 0 < u∗ < (c − 1)/2, then the unique positive equilibrium E∗ of
(1.2) is unstable and (1.2) has a globally asymptotically stable periodic orbit
surrounding E∗;

(iii) When c > 1, u∗ = (c − 1)/2 is the subcritical Hopf bifurcation value of system
(1.2) at E∗.

On the other hand, dynamics of reaction–diffusion system (1.1) has been also inves-
tigated deeply by several researchers [20, 29]. For example, under the condition (H),
Yi et al. [29] analyzed in detail the spatiotemporal dynamics of (1.1) near the constant
coexistence equilibrium E∗ including Hopf bifurcation and steady state bifurcation.
Peng and Shi [20] further gave some results regarding equilibrium of (1.1) and they
obtained that when m is sufficiently large, system (1.1) has no nonconstant positive
equilibrium.Meanwhile, it has been found that spatial diffusion in (1.1) does not affect
the stability of the constant coexistence equilibrium E∗. Therefore, Turing instability
and Turing bifurcation of (1.1) at the constant coexistence equilibrium are impossible
and the associated Hopf bifurcation and spatially heterogeneous steady-state solution
bifurcation of (1.1) at E∗ occur only in the instability regime of the ODE system
(1.2). For the dynamics of system (1.1) with delay, see [5, 26]. Also, one can refer to
references [1–3, 9] for Hopf bifurcation and steady state bifurcation of the constant
coexistence equilibrium in some reaction–diffusion epidemic models.

It should be pointed out that the diffusive system (1.1) can predict more accurately
the development of some species than the associated ODE system. However, in mod-
elling (1.1) it is assumed that the diffusion of prey and predator species depends only
upon gradients of the concentration of species but not on the spatial distribution of any
other species [17]. Therefore, system (1.1) incorporates only the diffusion terms �u
and �v. In practice, in addition to the self-diffusion in the interior of species, there
should also exist cross-diffusion effect among different species [14, 24]. As a result,
reaction–diffusion systems with cross-diffusion effect can more practically describe
the interactions between different species. Following the idea in [24], the flux of a
species should be also induced by a gradient of the other species and according to the
Fickian interpretation of the diffusion process, the cross-diffusion term of predator
to prey species should take the form d12v and the one of prey to predator species
should take the form d21u, where d12, d21 ≥ 0 are respectively referred to as the
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cross-diffusion coefficients of predator to prey and prey to predator. Based on these
considerations and model (1.1), a more reasonable predator–prey system should be
described by the following reaction–diffusion system with the linear cross-diffusion

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = d11�u + d12�v + u(1 − u

c ) − muv
1+u , x ∈ �, t > 0,

∂v
∂t = d21�u + d22�v − θv + muv

1+u , x ∈ �, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂�, t > 0.

(1.4)

If we restrict the spatial domain � to the planar rectangle domain �L = (0, Lx ) ×
(0, Ly) with Lx , Ly > 0, then model (1.4) can be read as the following form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t = d11

(
∂2u
∂x2

+ ∂2u
∂ y2

)
+ d12

(
∂2v
∂x2

+ ∂2v
∂ y2

)
+ u(1 − u

c ) − muv
1+u , (x, y) ∈ �L , t > 0,

∂v
∂t = d21

(
∂2u
∂x2

+ ∂2u
∂ y2

)
+ d22

(
∂2v
∂x2

+ ∂2v
∂ y2

)
− θv + muv

1+u , (x, y) ∈ �L , t > 0,

∂u
∂n = ∂v

∂n = 0, (x, y) ∈ ∂�L , t > 0.

(1.5)

Recently, Wang and Peng [25] investigated numerically the spatiotemporal dynamics
of the unique constant coexistence equilibrium E∗ of system (1.5) and they found that
the linear cross-diffusion effect in (1.5) can induce more complicated spatiotemporal
dynamics such as Turing instability and Turing patterns. Since the work in [25] is
only numerical but not analytical, the classification and stability of Turing patterns
of (1.5) near the unique constant coexistence equilibrium E∗ cannot be determined.
However, it is more important and interesting to analyze theoretically the classification
and stability of Turing patterns of reaction–diffusion systems. Based on these reasons,
the main aim of this paper is to explore in detail the classification and stability of
Turing patterns of (1.5) near the unique constant coexistence equilibrium E∗.

The layout of this paper is organized as follows. In Sect. 2, we determine the spa-
tially homogeneous Hopf bifurcation curve and Turing bifurcation curve of system
(1.5) at the unique constant coexistence equilibrium E∗. In Sect. 3, through multiple-
scale time analysis and successive approximations, the amplitude equations of system
(1.5) near the unique constant coexistence equilibrium E∗ are obtained. In Sect. 4, the
existence and stability for different types of patterns arising near the Turing thresh-
old are discussed in detail with the help of the amplitude equations obtained in the
previous section. Some numerical simulations are carried out in Sect. 5 to verify the
obtained theoretical predictions. Finally, some important conclusions are included also
in Sect. 6.

2 Spatially Homogeneous Hopf and Turing Bifurcation Curves

In this section, we obtain the spatial homogeneous Hopf curve and Turing bifurcation
curve of the unique constant coexistence equilibrium E∗ of system (1.5) and determine
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the parameter range in which system (1.5) possesses Turing patterns near the constant
coexistence equilibrium E∗.

It is easy to see that under the condition (H), system (1.5) has the unique constant
coexistence equilibrium E∗ = (u∗, v∗), where u∗ and v∗ are given by (1.3). The
Jacobian matrix of system (1.5) at E∗ is

J :=
(
a11(θ) a12(θ)

a21(θ) a22(θ)

)

=
(

θ[(c−1)m−(c+1)θ]
cm(m−θ)

−θ

cm−(c+1)θ
cm 0

)

.

Let

U :=
(
u − u∗
v − v∗

)

and D :=
(
d11 d12
d21 d22

)

.

Then the linearized form of system (1.5) at E∗ can be written as

{
∂U
∂t = D

(
∂2

∂x2
+ ∂2

∂ y2

)
U + JU , (x, y) ∈ �L ,

∂U
∂n = 0, (x, y) ∈ ∂�L .

(2.1)

It follows from [17, 26] that all the eigenvalues of the eigenvalue problem

{(
∂2

∂x2
+ ∂2

∂ y2

)
u + μu = 0, (x, y) ∈ �L ,

∂u
∂n = 0, (x, y) ∈ ∂�L

are nonnegative and hence they can be written into k2 such that they are usually said
to be the wavenumbers. For a certain wavenumber k2 and 0 < θ < cm

c+1 , define Tk(θ)

and Dk(θ) by

Tk(θ) = a11(θ) + a22(θ) − (d11 + d22)k
2,

Dk(θ) = a11(θ)a22(θ) − a12(θ)a21(θ) − [a11(θ)d22 + a22(θ)d11 − a12(θ)d21
−a21(θ)d12]k2 + (d11d22 − d12d21)k

4.

Then the characteristic equation of the linear system (2.1) has the form

λ2 − Tk(θ)λ + Dk(θ) = 0. (2.2)

If Eq. (2.2) with k = 0 has a pair of purely imaginary roots and the associated
transversality condition holds, then system (1.5) has a spatially homogeneous Hopf
bifurcation at the coexistence equilibrium E∗. When c > 1, let

θH := (c − 1)m

c + 1
. (2.3)
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Then one can see that when c > 1,

T0(θH ) = a11(θH ) + a22(θH ) = a11(θH ) = 0

and

D0(θH ) = a11(θH )a22(θH ) − a12(θH )a21(θH ) = −a12(θH )a21(θH )

= θH [cm − (c + 1)θH ]
cm

= θH

c
> 0.

In addition, when c > 1 and k2 > 0,

Tk(θH ) = −(d11 + d22)k
2 < 0.

Therefore, we can obtain that when c > 1, the spatially homogeneousHopf bifurcation
curve of (1.5) at E∗ is

θ = θH . (2.4)

Now we deduce the Turing bifurcation curve of (1.5) at E∗. To achieve this end,
we need that the unique positive equilibrium E∗ of the ODE system (1.2) is stable,
that is,

{
T0(θ) = a11(θ) + a22(θ) = θ[(c−1)m−(c+1)θ]

cm(m−θ)
< 0,

D0(θ = a11(θ)a22(θ) − a12(θ)a21(θ) = θ[cm−(c+1)θ]
cm > 0.

(2.5)

In fact, we can see easily that (2.5) holds when c > 1 and

θH < θ <
cm

c + 1
. (2.6)

Under the condition (2.6), if for some k > 0, (2.2) has a root λk such that

�(λk) = 0, �(λk) = 0,

then (1.5) has a Turing bifurcation at E∗. It follows from [22] that under (2.6), if

d11d22 −d12d21 > 0, the wave number k2 takes the critical value k2T =
√

a11a22−a12a21
d11d22−d12d21

and

a11d22 + a22d11 − a12d21 − a21d12 − 2
√

(d11d22 − d12d21)(a11a22 − a12a21) = 0,

then system (1.5) has Turing bifurcation at E∗. Therefore, when (2.6) holds and
d11d22 − d12d21 > 0, the Turing bifurcation curve of (1.5) at E∗ is given by

d22
θ [(c−1)m−(c+1)θ ]

cm(m−θ)
+ d21θ − d12

cm−(c+1)θ
cm − 2

√

(d11d22 − d12d21)
θ [cm−(c+1)θ ]

cm = 0.

(2.7)
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In addition, if (2.6) holds and d11d22 − d12d21 > 0, then the constant coexistence
equilibrium E∗ of system (1.5) is Turing unstable when

d22
θ [(c−1)m−(c+1)θ ]

cm(m−θ)
+ d21θ − d12

cm−(c+1)θ
cm − 2

√

(d11d22 − d12d21)
θ [cm−(c+1)θ ]

cm > 0,

and hence the Turing patterns exist. However, when

d22
θ [(c−1)m−(c+1)θ ]

cm(m−θ)
+ d21θ − d12

cm−(c+1)θ
cm − 2

√

(d11d22 − d12d21)
θ [cm−(c+1)θ ]

cm < 0,

the constant coexistence equilibrium E∗ of system (1.5) is locally asymptotically
stable.

Summarize the above analysis, we have the following result.

Theorem 2.1 Suppose that c > 1 the condition (2.6) holds, d11d22 − d12d21 > 0 and
θ = θT (m) is defined by Eq. (2.7). Then the constant coexistence equilibrium E∗ of
system (1.5) is locally asymptotically stable when θ > max {θH , θT (m)}, is Turing
unstable as θH < θ < θT (m) and system (1.5) can undergo a Turing bifurcation
at E∗ when θ crosses through decreasingly θT from up to down. In addition, the
constant coexistence equilibrium E∗ of system (1.5) is always unstable when c > 1
and 0 < θ < θH , see Figs.1 and 2.

Remark 2.2 Under the conditions (2.6) and d11d22 − d12d21 > 0. If d12 = d21 = 0,
then we can see that the left hand side of (2.7) becomes

d22
θ[(c−1)m−(c+1)θ]

cm(m−θ)
− 2

√

d11d22
θ[cm−(c+1)θ]

cm < 0.

This implies that for all k2 ∈ [0,+∞), all the roots of (2.2) have negative real
parts and therefore the constant coexistence equilibrium E∗ of system (1.5) is locally
asymptotically stable. Thus, the Turing pattern cannot appear in (1.5) and this shows

Fig. 1 Spatially homogeneous
Hopf bifurcation and Turing
bifurcation curves in m-θ plane
of (1.5) at the constant
coexistence equilibrium E∗
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Fig. 2 Graph to relation between
Re(λ) of the characteristic
Eq. (2.2) and the wavenumber k2

when m and di j (i, j = 1, 2) are
fixed and θ varies

as well that the cross-diffusion plays an important role in the Turing pattern formation
of (1.5).

Remark 2.3 If c > 1, 0 < θ < θH and θT (m) is defined by the Eq. (2.7), then
system (1.5) can bifurcate the spatially heterogeneous steady states from the constant
coexistence equilibrium E∗ when θ passes through θT (m) from up to down.

3 Amplitude Equations

This section is mainly devoted to obtaining the amplitude equations of system (1.5) at
the constant coexistence equilibrium E∗ when 0 < θT − θ 	 1 by using multi-scale
time analysis.

Assume that 0 < θT − θ 	 1 and let û = u − u∗, v̂ = v − v∗. Still denote û and
v̂ by u and v. Then system (1.5) is transformed into the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t = d11

(
∂2

∂x2
+ ∂2

∂ y2

)
u + d12

(
∂2

∂x2
+ ∂2

∂ y2

)
v

+(u + u∗)(1 − u+u∗
c ) − m(u+u∗)(v+v∗)

1+u+u∗ , (x, y) ∈ �L , t > 0,
∂v
∂t = d21

(
∂2

∂x2
+ ∂2

∂ y2

)
u + d22

(
∂2

∂x2
+ ∂2

∂ y2

)
v

−θ(v + v∗) + m(u+u∗)(v+v∗)
1+u+u∗ , (x, y) ∈ �L , t > 0,

∂u
∂n = ∂v

∂n = 0, (x, y) ∈ ∂�L , t > 0.

(3.1)

It is easy to see that the constant coexistence equilibrium E∗ of system (1.5) corre-
sponds to zero solution of system (3.1).

Define the real-valued Sobolev space X by

X =
{

u ∈ H2(�L)

∣
∣
∣
∣
∂u

∂n
= 0, (x, y) ∈ ∂�L

}
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and

{
f (u, v) = (u + u∗)(1 − u+u∗

c ) − m(u+u∗)(v+v∗)
1+u+u∗ ,

g(u, v) = −θ(v + v∗) + m(u+u∗)(v+v∗)
1+u+u∗ .

Then system (3.1) can be further expressed in view of Taylor expansion of f (u, v)

and g(u, v) at (0, 0) as

∂U

∂t
= L(θ)U + N (θ;U ,U ), (3.2)

where U = (u, v)T ∈ X2, the linear operator L(θ) : X2 → [L2(�)]2 is defined by

L(θ) =
⎛

⎝
a11(θ) + d11

(
∂2

∂x2
+ ∂2

∂ y2

)
a12(θ) + d12

(
∂2

∂x2
+ ∂2

∂ y2

)

a21(θ) + d21
(

∂2

∂x2
+ ∂2

∂ y2

)
a22(θ) + d22

(
∂2

∂x2
+ ∂2

∂ y2

)

⎞

⎠

with

a11(θ) = θ [(c − 1)m − (c + 1)θ ]
cm(m − θ)

, a12(θ) = −θ, a21(θ) = cm − (c + 1)θ

cm
,

a22(θ) = 0,

and the nonlinear mapping N (θ; ·, ·) : X2 × X2 → [L2(�)]2 is given by

N (θ;U ,U )

=
(

fuu (θ)
2 u2 + fuv(θ)uv + fvv(θ)

2 v2 + fuuu (θ)
3! u3 + fuuv(θ)

2 u2v + fuvv(θ)
2 uv2 + fvvv(θ)

3! v3

guu (θ)
2 u2 + guv(θ)uv + gvv(θ)

2 v2 + guuu (θ)
3! u3 + guuv(θ)

2 u2v + guvv(θ)
2 uv2 + gvvv(θ)

3! v3

)

,

(3.3)

here

fuu(θ) = 2(c − 1)m2 − 2(2c + 1)mθ + 2(c + 1)θ2

cm2 , fuv(θ) = − (m − θ)2

m
,

fvv(θ) = 0,

fuuu(θ) = −6(m − θ)2[c(m − θ) − θ ]
cm3 , fuuv(θ) = 2(m − θ)3

m2 , fuvv(θ) = 0,

fvvv(θ) = 0,

guu(θ) = −2(m − θ)[c(m − θ) − θ ]
cm2 , guv(θ) = (m − θ)2

m
, gvv(θ) = 0,
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guuu(θ) = 6(m − θ)2[c(m − θ) − θ ]
cm3 , guuv(θ) = −2(m − θ)3

m2 , guvv(θ) = 0,

gvvv(θ) = 0.

Since the calculation is only limited to the case when 0 < θT − θ 	 1, it follows
that θ can be expressed as

θ − θT = εθ1 + ε2θ2 + O(ε3), (3.4)

where ε is a very small positive number. Making use of the expansion (3.4),U can be
expanded as the following power series

U =
(
u
v

)

= ε

(
u1
v1

)

+ ε2
(
u2
v2

)

+ ε3
(
u3
v3

)

+ O(ε4). (3.5)

Thus the nonlinear mapping N (θ;U ,U ) defined by (3.3) has the form

N (θ;U ,U ) = ε2N2(θT ) + ε3[N31(θT ) + θ1N32(θT )] + O(ε4), (3.6)

where

N2(θT ) =
⎛

⎝

f ∗
uu
2 u21 + f ∗

uvu1v1 + f ∗
vv

2 v21

g∗
uu
2 u21 + g∗

uvu1v1 + g∗
vv

2 v21

⎞

⎠ ,

N31(θT )

=
⎛

⎝
f ∗
uuu1u2 + f ∗

uv(u1v2 + u2v1) + f ∗
vvv1v2 + f ∗

uuu
3! u31 + f ∗

uuv

2 u21v1 + f ∗
uvv

2 u1v21 + f ∗
vvv

3! v31

g∗
uuu1u2 + g∗

uv(u1v2 + u2v1) + g∗
vvv1v2 + g∗

uuu
3! u31 + g∗

uuv

2 u21v1 + g∗
uvv

2 u1v21 + g∗
vvv

3! v31

⎞

⎠ ,

as well as

N32(θT ) =
⎛

⎝

f ∗
uuθ

2 u2 + f ∗
uvθuv + f ∗

vvθ

2 v2

g∗
uuθ

2 u2 + g∗
uvθuv + g∗

vvθ

2 v2

⎞

⎠ ,

here all the partial derivatives with the superscript stars represent the values of the
corresponding partial derivatives when θ = θT . Set

a′
11(θT ) = (c − 1)m2 − 2(c + 1)mθT + (c + 1)θ2T

cm(m − θT )2
, a′

12(θT ) = −1,

a′
21(θT ) = −c + 1

cm
, a′

22(θT ) = 0
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and

a′′
11(θT ) = −2m

c(m − θT )3
.

Define the second order matrices M1 and M2 by

M1 =
(
a′
11(θT ) a′

12(θT )

a′
21(θT ) a′

22(θT )

)

, M2 =
(
a

′′
11(θT ) 0

0 0

)

.

Then the linear operator L(θ) can be approximately decomposed into the following
form:

L(θ) = LT + (θ − θT )M1 + (θ − θT )2M2 + O((θ − θT )3), (3.7)

where

LT =
⎛

⎝
a11(θT ) + d11

(
∂2

∂x2
+ ∂2

∂ y2

)
a12(θT ) + d12

(
∂2

∂x2
+ ∂2

∂ y2

)

a21(θT ) + d21
(

∂2

∂x2
+ ∂2

∂ y2

)
a22(θT ) + d22

(
∂2

∂x2
+ ∂2

∂ y2

)

⎞

⎠ .

Now we let

∂

∂t
= ε

∂

∂T1
+ ε2

∂

∂T2
+ O(ε3). (3.8)

Substitute the decomposition formulas (3.4)–(3.8) into (3.2), and compare the coeffi-
cients of different orders of ε, it is obtained that

LT

(
u1
v1

)

= 0, (3.9)

LT

(
u2
v2

)

= ∂

∂T1

(
u1
v1

)

− θ1M1

(
u1
v1

)

− N2(θT ), (3.10)

and

LT

(
u3
v3

)

= ∂

∂T1

(
u2
v2

)

+ ∂

∂T2

(
u1
v1

)

− θ1M1

(
u2
v2

)

− θ21M2

(
u1
v1

)

− θ2M1

(
u1
v1

)

− N31(θT ) − θ1N32(θT ).

(3.11)

Define respectively � and 	 by and
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� = −a12(θT ) − k2T d12
a11(θT ) − k2T d11

= −a22(θT ) − k2T d22
a21(θT ) − k2T d21

and

	 = −a11(θT ) − k2T d11
a21(θT ) − k2T d21

= −a12(θT ) − k2T d12
a22(θT ) − k2T d22

.

Then the general solution of the linear homogeneous Eq. (3.9) can be expressed as the
form

(
u1
v1

)

=
(

�

1

)(
3∑

j=1
Wjeikkk j ·rrr +

3∑

j=1
W je−ikkk j ·rrr

)

, (3.12)

where Wj are the amplitudes corresponding to the modes of eikkk j ·rrr ( j = 1, 2, 3). Here
kkk j ( j = 1, 2, 3) are called as wave vectors such that |kkk j | = kT and kkk1 + kkk2 + kkk3 = 000,
see [18, 32].

According to the Fredholm solvability condition [19], Eq. (3.10) has a nontriv-
ial solution if the vector function at the right end of Eq. (3.10) is orthogonal to the
eigenfunction of operator L+

T corresponding to zero eigenvalue, where

L+
T =

⎛

⎝
a11(θT ) + d11

(
∂2

∂x2
+ ∂2

∂ y2

)
a21(θT ) + d21

(
∂2

∂x2
+ ∂2

∂ y2

)

a12(θT ) + d12
(

∂2

∂x2
+ ∂2

∂ y2

)
a22(θT ) + d22

(
∂2

∂x2
+ ∂2

∂ y2

)

⎞

⎠ .

Notice that the zero eigenvector of L+
T is

(
1
	

)(
3∑

j=1
Wjeikkk jrrr +

3∑

j=1
W je−ikkk jrrr

)

. (3.13)

Let
(
Fu
Fv

)

= ∂

∂T1

(
u1
v1

)

− θ1M1

(
u1
v1

)

− N2(θT ).

Then when (Fu, Fv)
T and (3.13) are orthogonal, we have

(1, 	)

(
F j
u

F j
v

)

= 0, j = 1, 2, 3, (3.14)

where F j
u and F j

v are the coefficients of eikkk j ·rrr ( j = 1, 2, 3) in Fu and Fv . Denote

H∗
1 = �a′

11(θT ) + a′
12(θT ) + 	(�a′

21(θT ) + a′
22)(θT ), (3.15)
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and

H2(θ) = 2[h1(θ) + 	h2(θ)], (3.16)

where

h1(θ) = fuu(θ)

2
�2 + fuv(θ)� + fvv(θ)

2
,

and

h2(θ) = guu(θ)

2
�2 + guv(θ)� + gvv(θ)

2
.

Then from (3.14) we can get the equations about amplitudes Wj are

(� + 	)
∂W1

∂T1
= θ1H

∗
1 W1 + H∗

2 W 2W 3

(� + 	)
∂W2

∂T1
= θ1H

∗
1 W2 + H∗

2 W 1W 3

(� + 	)
∂W3

∂T1
= θ1H

∗
1 W3 + H∗

2 W 1W 2,

(3.17)

where H∗
2 denotes the value of H2 at θ = θT .

In the next, we need to solve Eq. (3.10). To ensure the convergence of Wj ( j =
1, 2, 3) in (3.17), the higher order terms like e2ik j ·r and ei(ki−k j )·r should be considered
in u2 and v2. Let

(
A0
B0

)

=
⎛

⎝
−2 a22(θT )h1−a12(θT )h2

a11(θT )a22(θT )−a12(θT )a21(θT )

−2 a11(θT )h2−a21(θT )h1
a11(θT )a22(θT )−a12(θT )a21(θT )

⎞

⎠

(
A1
B1

)

=
⎛

⎜
⎝

− (a22(θT )−4d22k2T )h1−(a12(θT )−4d12k2T )h2
(a11(θT )−4d11k2T )(a22(θT )−4d22k2T )−(a12(θT )−4d12k2T )(a21(θT )−4d21k2T )

− (a11(θT )−4d11k2T )h2−(a21(θT )−4d21k2T )h1
(a11(θT )−4d11k2T )(a22(θT )−4d22k2T )−(a12(θT )−4d12k2T )(a21(θT )−4d21k2T )

⎞

⎟
⎠

(
A2
B2

)

=
⎛

⎜
⎝

−2
(a22(θT )−3d22k2T )h1−(a12(θT )−3d12k2T )h2

(a11(θT )−3d11k2T )(a22(θT )−3d22k2T )−(a12(θT )−3d12k2T )(a21(θT )−3d21k2T )

−2
(a11(θT )−3d11k2T )h1−(a21(θT )−3d21k2T )h2

(a11(θT )−3d11k2T )(a22(θT )−3d22k2T )−(a12(θT )−3d12k2T )(a21(θT )−3d21k2T )

⎞

⎟
⎠ .
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Then the solution of Eq. (3.10) is given by

(
u2
v2

)

=
(
U0
V0

)

+
3∑

j=1

(
Uj

Vj

)

eikkk j ·rrr +
3∑

j=1

(
Uj j

Vj j

)

e2ikkk j ·rrr

+
3∑

i, j=1
i< j

(
Ui j

Vi j

)

ei(kkki−kkk j )·rrr + c.c.,

(3.18)

in which

(
U0
V0

)

=
(
A∗
0

B∗
0

)

(| W 2
1 | + | W 2

2 | + | W 2
3 |), Uj = �Vj ,

and

(
Uj j

Vj j

)

=
(
A∗
1

B∗
1

)

W 2
j ,

(
Ui j

Vi j

)

=
(
A∗
2

B∗
2

)

WiW j ,

here A∗
i and B

∗
i ( j = 0, 1, 2) denote the values of Ai and Bi ( j = 0, 1, 2)when θ = θT .

Set

(
F̃u
F̃v

)

= ∂

∂T1

(
u2
v2

)

+ ∂

∂T2

(
u1
v1

)

− θ1M1

(
u2
v2

)

− θ21M2

(
u1
v1

)

− θ2M1

(
u1
v1

)

− N31(θT ) − θ1N32(θT ),

(3.19)

and F̃ j
u and F̃ j

v denote separately the coefficients of eikkk j ·rrr ( j = 1, 2, 3) in F̃u and F̃v .
Then, the orthogonality of (F̃u, F̃v)

T and (3.13) gives

(1, 	)

(
F̃ j
u

F̃ j
v

)

= 0, j = 1, 2, 3.

Let

H∗
3 = �a′

11(θT ) + a′
12(θT ) + 	(�a′

21(θT ) + a′
22(θT )), H∗

4 = 2(h∗
3 + 	h∗

4),

where

h∗
3 = f ∗

uuθ

2
�2 + f ∗

uvθ� + f ∗
vvθ

2
, h∗

4 = g∗
uuθ

2
�2 + g∗

uvθ� + g∗
vvθ

2
.
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Furthermore, define G1(θ) and G2(θ) by

G1(θ) = (A0 + A1)[ fuu(θ)� + fuv(θ)] + (B0 + B1)[ fuv(θ)� + fvv(θ)]
+ fuuu(θ)

2
�3 + 3 fuuv(θ)

2
�2 + 3 fuvv(θ)

2
� + fvvv(θ)

2
+ 	[(A0 + A1)[guu(θ)� + guv(θ)] + (B0 + B1)[guv(θ)� + gvv(θ)]
+ guuu(θ)

2
�3 + 3guuv(θ)

2
�2 + 3guvv(θ)

2
� + gvvv(θ)

2
,

(3.20)

and

G2(θ) = (A0 + A2)[ fuu(θ)� + fuv(θ)] + (B0 + B2)[ fuv(θ)� + fvv(θ)]
+ fuuu(θ)�3 + 3 fuuv(θ)�2 + 3 fuvv(θ)� + fvvv(θ)

+ 	[(A0 + A2)[guu(θ)� + guv(θ)] + (B0 + B2)[guv(θ)� + gvv(θ)]
+ guuu(θ)�3 + 3guuv(θ)�2 + 3guvv(θ)� + gvvv(θ).

(3.21)

Then putting (3.12) and (3.18) into (3.11), we can obtain the equations about ampli-
tudes Vj and Wj are as follows:

(� + 	)

(
∂V1
∂T1

+ ∂W1

∂T2

)

=H∗
1 (θ1V1 + θ2W1) + H∗

2 (V 2W 3 + V 3W 2 + θ21 H
∗
3 W1

+ [G∗
1 | W1 |2 +G∗

2(| W2 |2 + | W3 |2)]W1 + θ1H
∗
4 W 2W 3

(� + 	)

(
∂V2
∂T1

+ ∂W2

∂T2

)

=H∗
1 (θ1V2 + θ2W2) + H∗

2 (V 3W 1 + V 1W 3 + θ21 H
∗
3 W2

+ [G∗
1 | W2 |2 +G∗

2(| W1 |2 + | W3 |2)]W2 + θ1H
∗
4 W 1W 3

(� + 	)

(
∂V3
∂T1

+ ∂W3

∂T2

)

=H∗
1 (θ1V3 + θ2W3) + H∗

2 (V 1W 2 + V 2W 1 + θ21 H
∗
3 W3

+ [G∗
1 | W3 |2 +G∗

2(| W1 |2 + | W2 |2)]W3 + θ1H
∗
4 W 1W 2,

(3.22)

where G∗
1 = G1(θT ) and G∗

2 = G2(θT ).
Now in system (3.1) let

(
u
v

)

=
3∑

j=1

(
A j

B j

) (
3∑

j=1
Wjeikkk j ·rrr +

3∑

j=1
W je−ikkk j ·rrr

)

+ · · · .

Then it follows from [18, 30] that A j = �Bj ( j = 1, 2, 3) and the amplitudes A j can
be expanded as

A j = εWj + ε2Vj + O(ε3), j = 1, 2, 3.
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According to the decomposition (3.8), the partial derivative of amplitudes A j ( j =
1, 2, 3) with respect to time t has the form

∂A j

∂t
= ε2

∂Wj

∂T1
+ ε3

∂Wj

∂T2
+ ε3

∂Vj

∂T1
+ O(ε4).

Let H(θ) be given by

H(θ) = �(a11(θ) − a11(θT )) + a12(θ) − a12(θT )

+ 	[�(a21(θ) − a21(θT )) + a22(θ) − a22(θT )]

and

μ = H(θ)

� + 	
, h = H2(θ)

� + 	
, g1 = − G1(θ)

� + 	
, g2 = − G2(θ)

� + 	
,

where H2(θ), G1(θ) and G2(θ) are given respectively by (3.16) and (3.21). It follows
from (3.17) and (3.22) that the amplitude equations of model (1.4) near (u∗, v∗) are

∂A1

∂t
= μA1 + hA2A3 − [g1|A1|2 + g2(|A2|2 + |A3|2)]A1,

∂A2

∂t
= μA2 + hA1A3 − [g1|A2|2 + g2(|A1|2 + |A3|2)]A2,

∂A3

∂t
= μA3 + hA1A2 − [g1|A3|2 + g2(|A1|2 + |A2|2)]A3.

(3.23)

4 Classification and Stability of Turing Patterns

In the present section, we discuss the existence and stability of Turing patterns arising
near the Turing threshold in system (1.5) through the amplitude equations obtained
in the previous section. A stable Turing pattern corresponds to a stable steady state
solution of Eq. (3.23). Since each amplitude in (3.23) can be expressed into the function
of a mode ρi = |Ai | and a phase angle ϕi , one can know that A j can be written into
A j = ρ j eiϕ j ( j = 1, 2, 3). Putting A j = ρ j eiϕ j ( j = 1, 2, 3) into Eq. (3.23) and
separating the real and the imaginary parts, we have the following equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ϕ
∂t = −h

ρ2
1ρ2

2+ρ2
1ρ2

3+ρ2
2ρ2

3
ρ1ρ2ρ3

sin ϕ,

∂ρ1
∂t = μρ1 + hρ2ρ3 cosϕ − g1ρ3

1 − g2(ρ2
2 + ρ2

3 )ρ1,

∂ρ2
∂t = μρ2 + hρ1ρ3 cosϕ − g1ρ3

2 − g2(ρ2
1 + ρ2

3 )ρ2,

∂ρ3
∂t = μρ3 + hρ1ρ2 cosϕ − g1ρ3

3 − g2(ρ2
1 + ρ2

2 )ρ3,

(4.1)

where ϕ = ϕ1 + ϕ2 + ϕ3. According to [18, 19], we know that system (4.1) has the
following four kinds of stationary solutions when g1, g2 > 0.
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(1) The stationary state

ρ1 = ρ2 = ρ3 = 0

is stable if μ < 0 � μ2 and unstable for μ > μ2.
(2) The stripe pattern solution

S : ρ1 =
√

μ

g1
, ρ2 = ρ3 = 0

exists when μ > 0. The stripe solution (
√

μ
g1

, 0, 0) is stable for

μ >
h2g1

(g2 − g1)2
� μ3

and unstable for 0 < μ < μ3.
(3) The hexagon pattern solutions

H0 : ρ1 = ρ2 = ρ3 = | h | +√
h2 + 4(g1 + 2g2)μ

2(g1 + 2g2)
,

Hπ : ρ1 = ρ2 = ρ3 = | h | −√
h2 + 4(g1 + 2g2)μ

2(g1 + 2g2)
,

exist when

μ >
−h2

4(g1 + 2g2)
� μ1.

The solution H0 is stable only for

μ <
h2(2g1 + g2)

(g2 − g1)2
� μ4,

while Hπ is always unstable.
(4) The mixed state

ρ1 = | h |
g2 − g1

, ρ2 = ρ3 =
√

μ − g1ρ2
1

g1 + g2
,

exists when g2 > g1, μ > g1ρ2
1 and it is always unstable.

It is easy to know that under the condition g1, g2 > 0, the critical value μk(k =
1, 2, 3, 4) have the relationship μ1 < μ2 < μ3 < μ4. The curves of S, H0 and
Hπ against μ are demonstrated in Fig. 3 and we can see that when μ1 < μ < μ2,
both the uniform stationary solution and the hexagonal pattern H0 are stable; when
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Fig. 3 Chart of stationary
solutions of system (4.1) in μ-ρ
plane. The solid line shows that
the stationary solution of (4.1) is
stable and the dotted one shows
that it is unstable

Table 1 Range of μ with respect to different values of θ

h g1 g2 μ1 μ2 μ3 μ4 μ range of μ

0.345 −0.2029 0.1846 0.4431 −0.0096 0 0.1139 0.5010 0.0209 μ1 < μ2 < μ < μ3 < μ4

0.36 −0.1157 0.5292 1.1954 −0.0011 0 0.0160 0.0680 0.0168 μ1 < μ2 < μ3 < μ < μ4

0.376 −0.0267 0.7061 1.4660 −0.000049145 0 0.00087428 0.0036 0.0092 μ1 < μ2 < μ3 < μ4 < μ

μ2 < μ < μ3, only the hexagonal pattern H0 is stable; when μ3 < μ < μ4, both the
stripe pattern S and hexagonal pattern H0 are stable; when μ > μ4, only the stripe is
stable. In addition, when μ > μ4, the hexagonal pattern Hπ is always unstable.

5 Numerical Simulations for Pattern Formations

In this section, we shall give some numerical simulations in order to verify the the-
oretical results obtained in Sects. 2 and 3. To carry out our numerical simulations,
initial conditions in system (1.5) is taken as the random ones, Lx = Ly = 200,
and system (1.5) is numerically integrated by using the finite difference approxima-
tion of spatial derivatives and the explicit Euler method of time derivative, in which
the time step is 1/100. Set the parameters in system (1.5) as d11 = 0.5, d12 =
0.5, d21 = 1.45, d22 = 1.5,m = 0.8, c = 2. Then in this case θH = 0.2667 and
θT = 0.3892. Take θ = 0.345, θ = 0.36 and θ = 0.376 respectively. Then the values
for μk(k = 1, 2, 3, 4) and μ are set in the Table 1.

When θ = 0.345, μ is between μ2 and μ3. According to the previous theoretical
analysis, system (1.5) will have a stable spot pattern and the stable H0 hexagon pattern,
see Fig. 4. According to Fig. 4d, except for the yellow spots, the prey population is
mainly distributed in the blue square area. The numerical simulation shows that the
numerical results are consistent with the theoretical ones.

When θ = 0.36, it can be seen that μ ∈ (μ3, μ4) and hence the stripe and H0
hexagon patterns of system (1.5) are stable, see Fig. 5. It is shown that spot patterns
and stripe patterns occur simultaneously and they compete each other. The dynamics
of the model shows the transition from spot patterns to stripe patterns growth, that is,
spot patterns decay and stripe patterns occur.
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Fig. 4 Simulation diagrams of the prey species of system (1.5) with d11 = 0.5, d12 = 0.5, d21 = 1.45,
d22 = 1.5, m = 0.8, c = 2 and θ = 0.345 at different instants. a t = 200, b t = 400, c t = 1000, d
t = 2000

When θ is selected as 0.376, one can find from Table 1 that μ > μ4 and so only
the stripe patterns are stable. The numerical results show that the final pattern is the
stripe pattern, see Fig. 6. It can be found that the labyrinth pattern occupies the entire
spatial area.

6 Conclusions

Although reaction–diffusion systems with self-diffusion can more reasonably predict
the development of some species than the associated ODEmodels, under some partic-
ular situations cross-diffusion among species cannot still be omitted. Consequently, we
regarded a classical two-species predator–prey reaction–diffusion system with the lin-
ear self-diffusion and cross-diffusion and subject to homogeneous Neumann boundary
condition on a planar rectangle domain in this paper.

It has been found in [29] that only random freedom diffusion in the classical
predator–prey system with the Holling-II type functional response and subject to
homogeneous Neumann boundary condition on a bounded domain with a smooth
boundary doesn’t affect the stability of the constant coexistence equilibrium. Whether
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Fig. 5 Simulation diagrams of the prey species of system (1.5) with d11 = 0.5, d12 = 0.5, d21 = 1.45,
d22 = 1.5,m = 0.8, c = 2 and θ = 0.36 at different instants. a t = 200, b t = 600, c t = 1000, d t = 2000

or not the cross-diffusion can bring out more complicated dynamical behaviors in
reaction–diffusion systems is an important and interesting subject. Here, we explored
mainly the effect of cross-diffusion on dynamical behaviors of system in [29] and it
was shown that the occurrence of linear cross-diffusion can arise more complicated
dynamical behaviors such as various Turing patterns.

The effect of linear cross-diffusion on dynamical behaviors of model (1.5) have
been concerned in [25], however, they gave only numerical simulations for the associ-
ated phenomena but not the detailed theoretical analysis. Therefore, the classification
and stability of Turing patterns of system (1.5) near the unique constant coexistence
equilibrium cannot be determined. The main contribution of this paper is that the clas-
sification and stability of Turing patterns of (1.5) near the unique constant coexistence
equilibrium were gave in detail.
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Fig. 6 Simulation diagrams of the prey species of system (1.5) with d11 = 0.5, d12 = 0.5, d21 = 1.45,
d22 = 1.5, m = 0.8, c = 2 and θ = 0.376 at different instants. a t = 400, b t = 1000, c t = 2000, d
t = 4000
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