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Abstract
In this paper, we investigate a system of two differential equations of fractional order
for the fear effect in prey-predator interactions, in which the density of predators
controls the mortality pace of the prey population. The non-integer order differen-
tial equation is interpreted in terms of the Caputo derivative, and the development
of the non-integer order scheme is described in terms of the influence of memory
on population increase. The primary goal of existing research is to explore how the
changing aspects of the current scheme are impacted by various types of parame-
ters, including time delay, fear effect, and fractional order. The solutions’ positivity,
existence-uniqueness, and boundedness are established with precise mathematical
conclusions. The requirements necessary for the local asymptotic stability of different
equilibrium points and the global stability of coexistence equilibrium are established.
Hopf bifurcation occurs in the system at various delay times. The model’s fractional-
order derivatives enhance the model behaviours and provide stability findings for the
solutions. We have observed that fractional order plays an important role in popula-
tion dynamics. Also, Hopf bifurcation for the proposed system have been observed for
certain values of order of derivatives. Thus, the stability conditions of the equilibrium
points may be changed by changing the order of the derivatives without changing other
parametric values. Finally, a numerical simulation is run to verify our conclusions.

Keywords Bazykin’s · Predator–prey model · Caputo fractional derivative · Time
delay · Fear effect · Stability · Hop bifurcation

1 Introduction

Nonlinear dynamics established in numerous species that associate across different
period frames is an emerging field of exploration in light of its enormous significance
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on the long-term existence of many species. Mathematical modelling is an efficient
technique for investigating to project the continuous existence of distinct species
based on the known ecological relations between the individuals of the species at
different trophic levels. To gain a greater insight into the changing aspects of the
prey-predator scheme, a lot of research have been initiated [1–4]. In an effort to
improve the traditional Lotka-Volterra scheme, investigators have recently included
various types of biological factors, such as Allee effects, sickness, a predator’s alter-
nate food source, and fear mechanisms. This has resulted in rich dynamics of the
system. Although direct killing has a negligible impact on prey population changing
aspects, it is envisaged that predators would have an impact on the prey population
[5–7].

Recent research, however, asserts that in addition to directly killing prey, predators
also instill fear in their victims, which has a considerable negative influence on the
prey population’s rate of reproduction [8–13]. When the behaviour and physiology
of some prey species are altered by predator fear, it is more severe in comparison to
simple killing [5]. Wang et al. developed a predator–prey scheme in [9] that involved
the dread effect and highlighted how stabilising the system could be accomplished by
increasing the cost of fear. However, the focus of all of this study has been on how
fear influences the prey population’s pace of reproduction. However, other studies
revealed that the existence of predators affected both the prey population’s birth and
mortality rates [14, 15]. Recently, Mukherjee [16] has concentrated on this problem in
his study. By adding intraspecific competition for the predator and accounting for the
cost of anxiety on the death amount of the prey population, he improved the scheme
of Wang et al. [9]. He found that the system oscillates when intraspecific value rivalry
is low and the degree of dread is low (on both reproduction and the mortality amount
of the prey population), but that the system can be stabilised when intraspecific value
competition is high.

The pace of change of the present state relies not only on the current state but also
on the state of a particular instant or period of time in the past, owing to the complexity
and variety of biological systems. Researchers have proposed differential equations
with time delay to describe and investigate the time-delay system. This attribute of
the systems is known as time delay. In particular, a great deal of research has been
done on the dynamics of predator–prey (PP) systems with delays. Numerous schol-
ars have examined the effects of previous states of biological systems on current and
future conditions. Incorporating time delay into biological models to reflect resource
regeneration time, maturation time, response time, capture time, feeding time, and
gestation period has been studied by a number of researchers [17–19]. Biological
systems with temporal delays, on the other hand, exhibit more intricate and varied
dynamic behaviours. Delays may lead to instability, periodic solutions (Hopf bifur-
cation), chaos, and a variety of oscillations [20, 21]. However, the majority of such
models have either been utilised to research integer-order equations including delays
or have not.

Apart from the standard derivative, fractional calculus has gained significant atten-
tion in recent years due to its significant memory effect. The derivative of fractional
order for every function is dependent upon both its present and its past states. The
exploration of incorporating integer-order models into fractional-order derivatives
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has emerged as a prominent subject within the field of dynamical systems. Because
fractional-order derivatives include nonlocal and weakly singular kernels, qualita-
tive investigations of fractional-order systems are much more complex than those
of integer-order systems. In the context of biological modelling, it has been shown
that fractional-order derivatives provide a more accurate representation compared to
integer-order derivatives, mostly owing to the incorporation of memory effects. Hence
this mathematical tool could be inferred ‘far’ from ‘realism’. But there are various
physical phenomena have ‘intrinsic’ fractional order interpretation and so fractional
order calculus is useful in order to explain these phenomena. Fractional order dif-
ferential equations accumulate the entire information of the function due to its long
memory process. Fractional calculus has been employed to formulate problems in a
wide range of disciplines, including finance, biology, medicine, economics, and engi-
neering [22–25]. There are various types to describe the fractional-order derivative;
the one most frequently used is the Caputo-type derivative [26]. The non-integer order
system has been the area of numerous investigates in recent years [27–30, 40, 41]. A
fractional-order system’s response to harvesting was studied by Javidi and Nyamoradi
[20]. Also, there are very few models [45–49] have been studied where toxic environ-
ment is discussed in fractional order framework. However, no comparable work has
beenmade in non-integer order systems,where the dreadof the predator causes a preda-
tor density-dependent death rate [42–44]. Therefore, in this study, we incorporate the
non-integer order and the delay components in the reaction kinetics model that adheres
to the Bazykin’s formalism [31]. The Rosenzweig–MacArthur system is enhanced by
Bazykin’s prey-predator scheme, which also involves a density-dependent mortality
pace for the predators. Our current study’s main objective is to look at the cost of
dread and the effect of populace growth depending on memory length on complex
dynamic behaviour. We also provide detailed simulation findings for the purpose of
identifying the influence of fear and memory length on the movement of local and
global bifurcation limit values.

The article is organised as follows. In Sect. 2, the model’s mathematical formu-
lation and a few preliminary issues are covered. In Sect. 3, the model’s existence,
uniqueness and boundedness are obtainable. In Sect. 4, stability analysis of all possi-
ble equilibrium points is studied. The model’s bifurcation criteria and global stability
were also covered. Numerical simulations are run in Sect. 5 to substantiate the model’s
theoretical findings. In Sect. 6, conclusions are provided.

2 Model’s Mathematical Formulation

The relationship betweenprey andpredator is regulatedusing a set of couplednonlinear
ordinary differential equations in the traditional Rosenzweig–MacArthur scheme [32]:

dg

dt ′
� ρg − ag2 − l1 g h

l2 + b g
,

dh

dt ′
� c l1 g h

l2 + b g
− l3 h ,

(1)
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with g(0), h(0) ≥ 0 being non-negative. The population amounts of prey and preda-
tors at an instant of time t ′ are denoted by g

(
t ′
)
and h

(
t ′
)
correspondingly. The system

(1)’s parameters are all positive quantities. The specific amount of increase and level
of intraspecific rivalry within the prey population are ρ and a correspondingly. It is
expected that the increasing prey population will adhere to the logistic law of increas-
ing and exist in the nonappearance of a predator population. l1 denotes the level at
which predators attack individual prey, l2 is the one-half of saturation amount and b is
a deformation parameter for the saturating functional response [31]. It uses an equiv-
alent parameterization for the saturating functional response as that given in [31]. The
conversion rate and the predator’s intrinsic mortality rate are c and l3 respectively.

Bazykin [33, 34] modifies the model (1) to account for competition within species
among predators. Although minimal population densities were maintained in each of
the prey and predator populations, the existence of intra-specific rivalry within the
predators may avoid excessive amplitude fluctuation. The Bazykin’s model, which
incorporates the fear factor f (k, h) � 1

1+kh , and l4 density dependent mortality
amount in predator growth, is provided by

dg

dt ′
� ρg

1 + kh
− ag2 − l1 g h

l2 + b g
≡ f1(g, h),

dh

dt ′
� c l1 g h

l2 + b g
− l3 h − l4 h

2 ≡ f2(g, h).

(2)

The model (2) is now extended to a Caputo fractional order derivative with delay,
and it then transforms into

C
t0D

β
t g � ρg

1 + kh
− ag2 − l1 g h(t − τ)

l2 + b g
,

C
t0D

β
t h � c l1 g h(t − τ)

l2 + b g
− l3 h − l4 h

2,

(3)

Webriefly explore the non-dimensionalized formulation of the non-integer differen-
tial equation systembefore continuing, employing the same parameters transformation
as t ′ � l3t, g � l2x1, h � cl2x2 in (3) we find

Dβ x1 � r0x1

(
1

1 + Kx2
− x1

K0

)
− K1 x1 x2(t − τ)

1 + b x1
,

Dβx2 � K1 x1 x2(t − τ)

1 + b x1
− x2 − K f x

2
2 ,

(4)

where r0 � ρ/l3, K0 � ρ/al2, K1 � l1c/l3, K f � cl2l4/l3. Without any loss of
generality, we refer to t as dimensionless time.We substitute Dβ as a Caputo derivative
for Ct0D

β
t with t0 � 0 inmathematical notation tomake it easier to read. The scheme (4)

with initial settings x1(0) and x2(t) � ϕ(t) > 0(t ∈ [−τ , 0]), where ϕ(t) is a smooth
function. We will explore the influence of the time delay on the changing aspects of
the scheme (4).
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Before moving on to the stability and bifurcation findings from the scheme (4), we
begin with certain lemmas associated to non-integer derivatives that will be beneficial
in proving the essential conclusions of this subsection.

2.1 Preliminaries

Definition 1 ([35]). The Caputo fractional derivative with order β > 0 of a function
f ∈ Cn([t0, ∞+), R) is defined as:

C
t0D

β
t f (t) � 1

�(n−β)

t∫

t0

f (n)(ν)

(t−ν)β−n+1 dν, where n ∈ Z+ such that n − 1 < β < n.

In particular, for 0 < β ≤ 1 :Ct0D
β
t f (t) � 1

�(1−β)

t∫

t0

f ′ (ν)

(t−ν)β
dν.

Definition 2 ([35]). Let β > 0, n − 1 < β < n ∈ N. Assume f k(t), k �
0, 1 , ..., n − 1 are continuous functions on [t0, ∞), f n(t) occurs with exponential
order and C

t0D
β
t f (t) is piecewise continuous on [t0, ∞). Then.

L
{
C
t0D

β
t f (t)

}
� sβF(s) −

n−1∑

k�0
sβ−k−1 f (k)(t0), and F(s) � L{ f (t)}.

Lemma 1 ([36]). Consider the following n− dimensional fractional order systemwith
delay: Let C

t0D
β
t x(t) � fi (x1(t), ..., xn(t); τ) , i � 1, 2, ..., n, where 0 < β < 1

and the time delay τ ≥ 0. The above system undergoes a Hopf bifurcation at the
equilibrium x∗ � (

x∗
1 , ..., x

∗
n

)
when τ � τ ∗ if the following conditions are satisfied:

i. All the eigenvalues λi (i � 1 , ... , n) of the coefficient matrix A of the linearised
system of above with τ � 0 satisfy |arg(λi )| >

βπ
2 .

ii. The characteristic equation of the linearised system of above has a pair of purely
imaginary roots ± iω0 when τ � τ ∗.

iii. (iii) Re
[
ds(τ )
dτ

]

(τ�τ∗ , ω�ω0)

� 0,where Re [.] denotes the real part of the complex

number.

3 Existence, Uniqueness and Boundedness

We investigate if a solution to the initial value scheme (4) exists and is unique.

Dβ x1(t) � r0x1(t)

(
1

1 + K x2(t)
− x1(t)

K0

)
− K1 x1(t) x2(t − τ)

1 + b x1(t)
,

Dβx2(t) � K1 x1(t) x2(t − τ)

1 + b x1(t)
− x2(t) − K f x

2
2 (t), t ∈ [t0, t0 + E],

(x1(t), x2(t)) � μ(t) :� (μ1(t), μ2(t)), t ∈ [t0 − τ , t0],

(5)

where 0 < β ≤ 1, t0 ≥ 0, τ > 0, E > 0, and the initial value function μ(t) ∈
C
(
[t0 − τ , t0], R2

)
.
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Let.
�(t) � (x1(t), x2(t)), q(�(t)) � (q1(�(t)), q2(�(t))),
where

q1(�(t)) � r0x1(t)

(
1

1 + K x2(t)
− x1(t)

K0

)
− K1 x1(t) x2(t − τ)

1 + b x1(t)

q2(�(t)) � K1 x1(t) x2(t − τ)

1 + b x1(t)
− x2(t) − K f x

2
2 (t),

(6)

For � � (x1, x2) ∈ R
2, take the norm ‖�‖ � |x1| + |x2|. Take σ �

C
(
[t0 − τ , t0 + E], R2

)
, and define the norm ‖�‖σ � maxt∈[t0−τ , t0+E]‖�(t)‖ for

�(t) � (x1(t), x2(t)) ∈ σ .
Set

U �
{
X ∈ σ : �(t)

� μ(t) for t ∈ [t0 − τ , t0] , and max
t∈[t0, t0+E]

‖�(t) − μ(t0)‖ ≤ R

}
(R > 0).

Clearly, for any �(t) ∈ U , we have ‖�‖σ ≤ M :�
max{maxt∈[t0−τ , t0]‖μ(t)‖, ‖μ(t0)‖ + R}.

Therefore, for any �(t) � (x1(t), x2(t)), � � (x1(t), x2(t)) ∈ U , t ∈
[t0, t0 + E], we have

∥∥q(�(t)) − q
(
�(t)

)∥∥ � ∣∣q1(�(t)) − q1
(
�(t)

)∣∣ +
∣∣q2(�(t)) − q2

(
�(t)

)∣∣,

≤
(

r0
(1 + KM)

+
2Mr0
K0

)
|x1(t) − x1(t)|

+

(
1 + 2MK f +

r0KM

(1 + KM)2

)
|(x2(t) − x2(t))|

+
2K1M

(1 + b M)
|(x2(t − τ) − x2(t − τ))|,

≤ L
(∥∥�(t) − �(t)

∥∥ +
∥∥�(t − τ) − �(t − τ)

∥∥), (7)

where L :� max
{(

r0
(1+KM)

+ 2Mr0
K0

)
,
(
1 + 2MK f +

r0KM
(1+KM)2

)
, 2K1M

(1+b M)

}
.

Similarly, for any �(t) ∈ U , t ∈ [t0, t0 + E], we have

‖q(�(t))‖ � |q1(�(t))| + |q2(�(t))|
�
∣
∣∣
∣r0x1(t)

(
1

1 + K x2(t)
− x1(t)

K0

)
− K1 x1(t) x2(t − τ)

1 + b x1(t)

∣
∣∣
∣

+

∣∣
∣
∣
K1 x1(t) x2(t − τ)

1 + b x1(t)
− x2(t) − K f x

2
2 (t)

∣∣
∣
∣,

≤
(

r0
1 + KM

+
r0M

K0
+
2K1|x2(t − τ)|

1 + bM

)
|x1(t)| +

(
1 + K f M

)|x2(t)|,
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≤
(

r0
1 + KM

+
r0M

K0
+

2K1M

1 + bM

)
|x1(t)| +

(
1 + K f M

)|x2(t)|, ≤ L‖�(t)‖ (8)

Then, system (5) can be replaced into the corresponding Volterra equation of type
two on applying the non-integer integral operator:

�(t) � μ(t0) +
1

�(β)

t∫

t0

(t − ν)β−1q(�(ν)) dν, t ∈ [t0, t0 + E],

�(t) � μ(t) � (μ1(t), μ2(t)), t ∈ [t0 − τ , t0].

Define the operator χ : U → U , such that

χ �(t) :� μ(t0) +
1

�(β)

t∫

t0

(t − ν)β−1q(�(ν)) dν, t ∈ [t0, t0 + E],

χ �(t) :� μ(t) � (μ1(t), μ2(t)), t ∈ [t0 − τ , t0].

(9)

Hence χ possesses only a fixed point inU suggests that the scheme (5) has a unique
solution.

From (7) and (9), if any �(t) � (x1(t), x2(t)), �(t) � (x1(t), x2(t)) ∈ U , t ∈
[t0, t0 + E], we have.

∥∥χ �(t) − χ �(t)
∥∥ ≤ 1

�(β)

t∫

t0

(t − ν)β−1
∥∥q(�(ν)) − q

(
�(ν)

)∥∥ dν,

≤ 1

�(β)

t∫

t0

(t − ν)β−1(∥∥�(ν) − �(ν)
∥∥ +

∥∥�(ν − τ) − �(ν − τ)
∥∥) dν,

≤ 1

�(β)

t∫

t0

(t − ν)β−1

⎛

⎜
⎝ max

ν∈[t0, t0+E]
∥∥�(ν) − �(ν)

∥∥ + max

⎧
⎪⎨

⎪⎩

max
ν∈[t0−τ , t0]

∥
∥�(ν) − �(ν)

∥
∥,

max
ν∈[t0, t0+E]

∥
∥�(ν) − �(ν)

∥
∥

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠ dν,

≤ 2L

�(β)

t∫

t0

(t − ν)β−1
(

max
ν∈[t0, t0+E]

∥∥�(ν) − �(ν)
∥∥
)
dν,

≤ 2LEβ

�(β + 1)

∥∥� − �
∥∥

σ
.

Hence, we possess
∥∥χ �(.) − χ �(.)

∥∥
σ

≤ 2LEβ

�(β+1)

∥∥� − �
∥∥

σ
, indicating as χ is a

contraction operator when E <
(

�(β+1)
2L

)1/β
.

For any �(t) ∈ U , t ∈ [t0, t0 + E], by (8) and (9), we have

‖χ(�(t) − μ(t0))‖ ≤ 1

�(β)

t∫

t0

(t − ν)β−1‖q(�(ν))‖ dν,
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≤ L

�(β)

t∫

t0

(t − ν)β−1‖�(ν)‖ dν,

≤ LEβ

�(β + 1)
max

ν∈[t0, t0+E]
‖�(ν)‖,

≤ LEβM

�(β + 1)
. (10)

If E ≤
(

�(β+1)R
LM

)1/β
, hence it ensues from (10) that

max
ν∈[t0, t0+E]

‖χ(�(t) − μ(t0))‖ ≤ R, this indicates χ(�(t)) ∈ U , at all �(t) ∈ U .

According to the Banach contraction rule, χ possesses only a fixed point in U if

E < min

{(
�(β+1)R

LM

)1/β
,
(

�(β+1)
2L

)1/β}
. The subsequent theorem can be drawn from

the study stated above.

Theorem 1 If E < min

{(
�(β+1)R

LM

)1/β
,
(

�(β+1)
2L

)1/β}
, then the initial value problem

(5) possesses a unique solution.

4 Stability Analysis and Hopf Bifurcation

The equilibria of scheme (4) are the points of intersections at which Dβ x1 � 0 and
Dβ x2 � 0. Thus, scheme (4) has three equilibrium points namely, trivial equilibrium
point E0 � (0, 0), axial equilibrium point E1 � (x1, 0) where x1 � K0 and interior
equilibrium point E∗ � (

x∗
1 , x∗

2

)
, where it is the positive solution of

r0x1

(
1

1 + Kx2
− x1

K0

)
− K1 x1 x2

1 + b x1
� 0,

K1 x1 x2(t − τ)

1 + b x1
− x2 − K f x

2
2 � 0.

It is important to note that the expression for x∗
1 and x

∗
2 are therefore too complex to

compute analytically, so we clearly derived these points numerically for the parameter
values we were considering.

The scheme (4) must be linearized around the relevant equilibrium point before
applying Lemma 1 to verify the stability of possible equilibria. The variational matrix
[47] for the scheme (4) is provided by

J �
( r0

1+Kx2
− 2r0x1

K0
− K1x2

(1+bx1)2
− r0Kx1

(1+Kx2)2
− K1x1

1+bx1
e−λτ

K1x2
(1+bx1)2

K1x1
1+bx1

e−λτ − 1 − 2K f x2

)

, (11)

At E0, the variational matrix is given by J (E0) �
(
r0 0
0 −1

)
.
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The characteristic equation of above matrix is
(
λβ − r0

)(
λβ + 1

) � 0 and this
possess a positive root λβ � r0 for β ∈ (0, 1]. Hence the trivial equilibrium is
unstable i.e., a saddle point.

Theorem 2 Suppose in Lemma 1, condition (i) holds for system (4) then the aux-
iliary equilibrium point E1 � (x1, 0) is asymptotically stable for τ � 0 if
b(1 + r0) > K1 &(1 + bK0) > K0K1, then the auxiliary equilibrium point is asymp-
totically stable for τ ∈ [

0, τ ∗) and system (4) undergoes a Hopf bifurcation at the
auxiliary equilibrium while τ � τ ∗. Then the following transversality condition holds
Re
[ dλ
dτ

]∣∣
(φ�φ0, τ�τ∗) 
� 0 (condition (iii) of Lemma 1).

Proof At E1, the variational matrix can be obtained.

J (E1) �
(
r0 − 2r0x1

K0
−r0Kx1 − K1x1

1+bx1
e−λτ

0 K1x1
1+bx1

e−λτ − 1

)

(12)

The latent equation is λ2β + Tλβ + D � 0,
where T � −r0 +

2r0x1
K0

− K1x1
1+bx1

e−λτ + 1 , D � r0K1x1(K0−2x1)
K0(1+bx1)

e−λτ + 2r0x1
K0

− r0.

λ2β +

(
−r0 +

2r0x1
K0

− K1x1
1 + bx1

e−λτ + 1

)
λβ +

r0K1x1(K0 − 2x1)

K0(1 + bx1)
e−λτ +

2r0x1
K0

− r0 � 0,

λ2β + C1λ
β + C2 − e−λτ

(
C3λ

β + C4

)
� 0

(13)

where C1 � 1 − r0 +
2r0x1
K0

, C2 � 2r0x1
K0

− r0, C3 � K1x1
1+bx1

, C4 � − r0K1x1(K0−2x1)
K0(1+bx1)

.
When τ � 0,

λ2β + (C1 − C3)λ
β + C2 − C4 � 0. (14)

Equation (14) makes it clear that for C1 − C3 > 0 i.e., b(1 + r0) > K1 and
C2 − C4 > 0 i.e., (1 + bK0) > K0K1. Hence the auxiliary equilibrium point E1 is
asymptotically stable for b(1 + r0) > K1 and (1 + bK0) > K0K1 with τ � 0 satisfy
|arg(λi )| >

βπ
2 .

We assume that the solution λ � iϕ to Eq. (13) must be true if τ > 0,

(iϕ)2β + C1(iϕ)β + C2 − e−iϕτ
(
C3(iϕ)β + C4

) � 0,

−ϕ2β + iC1ϕ
β + C2 − (cosϕτ − i sin ϕτ)

(
iC3ϕ

β + C4
) � 0.

We can obtain the following equations on separating the real and imaginary parts,

C3ϕ
β sin ϕτ + C4 cosϕτ � C2 − ϕ2β, (15)

−C3ϕ
β cosϕτ + C4 sin ϕτ � C1ϕ

β. (16)
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Solving (15) and (16), we get

ϕ4β +
(
C2
1 − 2C2 − C2

3

)
ϕ2β +

(
C2
2 − C2

4

)
� 0. (17)

If
(
C2
1 − 2C2 − C2

3

)
> 0 and (C2 − C4) > 0 then there is no positive real ϕ

satisfying (17). But, if C2 −C4 < 0 i.e.,(1 + bK0) < K0K1 then (17) has one positive
root byϕ0, and the characteristicEq. (13)with couple of roots are completely imaginary
± iϕ0. Assuming λ(τ) � ϑ(τ) + iφ(τ) is the eigen value of (18) such that ϑ(τ ∗) � 0
and ξ(τ ∗) � φ0. From (15) and (16), we have.

τ ∗ � 1
φ0

arccos

[
C2C4−(C4+C1C3)φ

2β
0

C2
4+C

2
3φ

2β
0

]
+ 2 jβπ

φ
β
0

, and from (17)

ϕ
2β
0 � 1

2

(
C2
3 + 2C2 − C2

1

)
+
1

2

√(
C2
3 + 2C2 − C2

1

)− 4
(
C2
2 − C2

4

)
< 0.

To complete the stability criterion of the delayed system we have to verify the
following transversality condition. Let the characteristic Eq. (13) can be written as

γ1(λ) + γ2(λ)e−λτ � 0. (18)

Differentiating (18) with respect to τ ,we get

[
γ ′
1(λ) + γ ′

2(λ)e−λτ − τγ2(λ)e−λτ
]dλ

dτ
� λγ2(λ)e−λτ ,

from above we have
dλ

dτ
� P(λ)

Q(λ)
� P(λ)Q(λ)

|Q(λ)|2 ,

(19)

where P(λ) � λγ2(λ)e−λτ , Q(λ) � γ ′
1(λ) + γ ′

2(λ)e−λτ − τγ2(λ)e−λτ , P(iφ0) �
P1 + i P2 and Q(iφ0) � Q1 + i Q2.

Taking the real part both sides from (19)

Re

[
dλ

dτ

]∣∣
∣∣
(φ�φ0, τ�τ∗)

� P1Q1 + P2Q2

Q2
1 + Q2

2

, (20)

where P1 � φ0
(
γ Im
2 cosφ0τ − γ Re

2 sin φ0τ
)
, P2 � φ0

(−γ Re
2 cosφ0τ − γ Im

2 sin φ0τ
)
,

Q1 � γ ′Re
1 −γ ′Re

2 cosφ0τ +τγ Re
2 cosφ0τ +τγ Im

2 sin φ0τ , Q2 � γ ′Im
1 +γ ′Re

2 sin φ0τ −
τγ Re

2 sin φ0τ + τγ Im
2 cosφ0τ .

From (20), if
P1Q1+P2Q2

Q2
1+Q

2
2


� 0 then transversality condition holds. Hence the Lemma

1 is proved for auxiliary equilibrium point.

Theorem 3 Suppose in Lemma 1, condition (i) holds for system (4) then the coex-
istence equilibrium point E∗ � (

x∗
1 , x∗

2

)
is asymptotically stable for τ � 0 if

r0(1 + bx1)2 > bK0K1x2, then the coexistence equilibrium point is asymptotically
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stable for τ ∈ [
0, τ ∗) and system (4) undergoes a Hopf bifurcation at the coexis-

tence equilibrium while τ � τ ∗. Then the following transversality condition holds
Re
[ dλ
dτ

]∣∣
(ξ�ξ0, τ�τ∗) 
� 0 (condition (iii) of Lemma 1).

Proof The variational matrix of the scheme (4) at a positive equilibrium point E∗ is
given by.

J
(
E∗) �

(− r0x1
K0

+ K1bx1x2
(1+bx1)2

− Kr0x1
(1+Kx2)2

− K1x1
1+bx1

e−λτ

K1x2
(1+bx1)2

K1x1
1+bx1

(
e−λτ − 1

)− K f x2

)

,

The characteristic equation is given by

λ2β −
[
− r0x1

K0
+

K1bx1x2
(1 + bx1)2

+
K1x1
1 + bx1

e−λτ − K1x1
1 + bx1

− K f x2

]
λβ

+

⎡

⎢
⎢⎢
⎣

(

− r0K1x21
K0(1 + bx1)

+
K 2
1 x1x2

(1 + bx1)2

)

e−λτ +
r0K1x21

K0(1 + bx1)
+
r0K f

K0
x1x2 − bK 2

1

(1 + bx1)3
x21 x2

− bK f K1

(1 + bx1)2
x1x

2
2 +

KK1r0
(1 + bx1)2(1 + Kx2)2

x1x2

⎤

⎥
⎥⎥
⎦

� 0,

λ2β + C1λ
β + C2 + e−λτ

(
C3λ

β + C4
) � 0,

(21)

where C1 �
[
r0x1
K0

− K1bx1x2
(1+bx1)2

+ K1x1
1+bx1

+ K f x2
]
, C2 � r0K1x21

K0(1+bx1)
+

r0K f
K0

x1x2 −
bK f K1

(1+bx1)2
x1x22 +

KK1r0
(1+bx1)2(1+Kx2)2

x1x2, C3 � − K1x1
1+bx1

, C4 � K 2
1 x1x2

(1+bx1)2
− r0K1x21

K0(1+bx1)
.

when τ � 0,

λ2β + (C1 + C3)λ
β + (C2 + C4) � 0. (22)

where C1 + C3 � r0x1
K0

− K1bx1x2
(1+bx1)2

+ K f x2, C2 + C4 � r0K f
K0

x1x2 − bK f K1

(1+bx1)2
x1x22 +

KK1r0
(1+bx1)2(1+Kx2)2

x1x2 +
K 2
1

(1+bx1)2
x1x2.

(C1 + C3) > 0 and (C2 + C4) > 0 when r0(1 + bx1)2 > bK0K1x2, then there
exists couple of roots which are real and nonpositive. Thus, for τ � 0 the equilibrium
E∗ is asymptotically stable. When τ > 0, we assume that the solution of Eq. (21)
λ � iξ must satisfy.

−ξ2β + C2 + C1iξ
β + (cos ξτ − i sin ξτ)

(
C3iξ

β + C4
) � 0

ξ2β − C2 � C3ξ
β sin ξτ + C4 cos ξτ + C1iξ

β + i
(
C3ξ

β cos ξτ − C4 sin ξτ
)
.

On separating real and imaginary components, we get the following:

C3ξ
β sin ξτ + C4 cos ξτ � ξ2β − C2, (23)

C3ξ
β cos ξτ − C4 sin ξτ � −C1ξ

β. (24)
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We can obtain the following equation on squaring and adding of Eqs. (23) and (24)

ξ4β +
(
C2
1 − 2C2 − C2

3

)
ξ2β +

(
C2
2 − C2

4

)
� 0. (25)

We can immediately establish that
(
C2
1 − 2C2 − C2

3

)
> 0 and if (C2 − C4) > 0

then there is no positive real ξ satisfying (25). As a result, (21)’s roots of are non-
positive. On the other hand, if (C2 − C4) < 0 therefore (25) only has the one positive
root denoted with ξ0, and the latent Eq. (21) has two completely imaginary roots
± iξ0. Assuming λ(τ) � ϑ(τ) + iξ(τ ) is the eigenvalue of (21) such that ϑ(τ ∗) �
0 and ξ(τ ∗) � ξ0. From (23) and (24), we have τ ∗ � 1

ξ0
arccos

[
(C4+C1C3)ξ

2β
0 −C2C4

C2
4+C

2
3 ξ

2β
0

]
+

2 jβπ

ξ
β
0

, and from (25)

ξ
2β
0 � 1

2

(
C2
3 + 2C2 − C2

1

)
+
1

2

√(
C2
3 + 2C2 − C2

1

)2 − 4
(
C2
2 − C2

4

)
< 0. (26)

To complete the stability criterion of the delayed system we have to verify the
following transversality condition. Let the characteristic Eq. (21) can be written as
γ1(λ) + γ2(λ)e−λτ � 0.

Following the same procedure as in (Theorem 2), we obtain

Re

[
dλ

dτ

]∣∣∣
∣
(ξ�ξ0, τ�τ∗)

� P1Q1 + P2Q2

Q2
1 + Q2

2

, (27)

where P1 � ξ0
(
γ Re
2 sin ξ0τ − γ Im

2 cos ξ0τ
)
, P2 � ξ0

(
γ Re
2 cos ξ0τ + γ Im

2 sin ξ0τ
)
,

Q1 � γ ′Re
1 + γ ′Re

2 cos ξ0τ − τγ Re
2 cos ξ0τ − τγ Im

2 sin ξ0τ , Q2 � γ ′Im
1 − γ ′Re

2 sin ξ0τ +

τγ Re
2 sin ξ0τ − τγ Im

2 cos ξ0τ . From (27), if
P1Q1+P2Q2

Q2
1+Q

2
2


� 0 then the transversality

condition holds.
Hence the Lemma 1 is proved for the coexistence equilibrium point.

5 Global Stability Analysis

Here, we expand on the investigation to examine the criteria for global stability [37,
38] for the non-integer order delay differential scheme. In order to investigate the
global stability of the equilibrium points in scheme (4), we linearize the system into
form

Dβ x1(t) � m1x1(t) + m2x2(t) + m3x2(t − τ),

Dβ x2(t) � n1x1(t) + n2x2(t) + n3x2(t − τ),
(28)

where,
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m1 � r0
1+K x∗

2
− 2r0x∗

1
K0

− K1x∗
2

1+bx∗
1
+

K1b x∗
1 x

∗
2

(1+bx∗
1)

2 , m2 � − r0K x∗
1

(1+K x∗
2)

2 , m3 � − K1x∗
1

1+bx∗
1
,

n1 � K1x∗
2

1+bx∗
1

− K1b x∗
1 x

∗
2

(1+bx∗
1)

2 , n2 � −(1 + 2K f x∗
2

)
, n3 � K1x∗

1
1+bx∗

1
.

If the equilibrium point of the linear non-integer differential equation is not zero,
we can move it to the origin. Put x1(t) � x1(t) − x∗

1 , x2(t) � x2(t) − x∗
2 , then the

Eq. (28) becomes

Dβ x1(t) � m1x1(t) + m2x2(t) + m3x2(t − τ),

Dβ x2(t) � n1x1(t) + n2x2(t) + n3x2(t − τ).
(29)

We apply the Laplace transform [39] on both sides of (29) to examine the stability
of model (4). Finally, we have

sβ X1(s) − sβ−1ϕ1(0) � m1X1(s) + m2X2(s) + m3e
−sτ

⎛

⎝X2(s) +

0∫

−τ

e−sτ ϕ1(t) dt

⎞

⎠,

sβ X2(s) − sβ−1ϕ2(0) � n1X1(s) + n2X2(s) + n3e
−sτ

⎛

⎝X2(s) +

0∫

−τ

e−sτ ϕ2(t) dt

⎞

⎠,

(
sβ − m1

)
X1(s) − (

m2 + m3e
−sτ )X2(s) � sβ−1ϕ1(0) + m3e

−sτ

0∫

−τ

e−sτ ϕ1(t) dt,

−n1X1(s) +
(
sβ − n2 − n3e

−sτ ) X2(s) � sβ−1ϕ2(0) + n3e
−sτ

0∫

−τ

e−sτ ϕ2(t) dt .

(30)

Here, it should be stated that the initial values x1(t) � ϕ1(t) and x2(t) � ϕ2(t)
with t ∈ [−τ , 0]. Also X1(s) and X2(s) are Laplace transform of x1(t) and x2(t)
with X1(s) � L(x1(t)) and X2(s) � L(x2(t)). The system (30) can be rewritten as
follows.

�(s)

(
X1(s)
X2(s)

)
�
(
p1(s)
p2(s)

)
. (31)

In which.

�(s) �
(
sβ − m1 −m2 − m3e−sτ

−n1 sβ − n2 − n3e−sτ

)
and.

p1(s) � sβ−1ϕ1(0) + m3e−sτ

0∫

−τ

e−sτ ϕ1(t) dt ,

p2(s) � sβ−1ϕ2(0) + n3e−sτ

0∫

−τ

e−sτ ϕ2(t) dt .
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�(s) gives as the model (4)’s latent matrix with its polynomial |�(s)|. The distri-
bution of the characteristic roots of the latent polynomial consequently establishes the
stability of scheme (4). In which mean that if all of the roots of the latent equation are
negative, the previously mentioned non-integer order prey predator’s equilibrium is
Lyapunov globally asymptotically stable if the equilibrium exists [37]. The result of
multiplying two sides of (31) with s is

�(s)

(
s X1(s)
s X2(s)

)
�
(
s p1(s)
s p2(s)

)
. (32)

Since every root of the transcendental equation |�(s)| � 0 must be on the open
left complex plane, i.e., Re(s) < 0, then we consider (28) in Re(s) ≥ 0. Within this
limited area, system (32) possess only solution (s X1(s), s X2(s)), so that

lim
s→0,Re(s)≥0

s Xi (s) � 0, i � 1, 2.

Considering the Laplace transform’s final-value theorem [39]and the assumption
in which every root of the characteristic equation |�(s)| � 0, we get.

lim
t→+∞ x1(t) ≡ lim

s→0,Re(s)≥0
s X1(s) � 0, and

lim
t→+∞ x2(t) ≡ lim

s→0,Re(s)≥0
s X2(s) � 0.

This indicates that the non-integer order prey-predator model’s zero solution is
Lyapunov globally asymptotically stable. As it turns out, we come to the following
conclusion.

Theorem 4 If all the roots of the latent equation |�(s)| � 0 possess non positive
real parts, then the positive equilibrium point

(
x∗
1 , x∗

2

)
of the scheme (4) is Lyapunov

globally asymptotically stable.

6 Numerical Simulations

Weprovide some numerical simulation outcomes in this part to substantiate our analyt-
ical findings. Scheme (4) was solved using the two-step Adams–Bashforth–Moulton
algorithm for the system of two FODE in order to achieve this. We concentrate on the
effects of the parameter’s degree of dread K , time delay τ , and fractional order β of
scheme (4).

Employing the parameter values listed in the figure captions, the solution has been
approximately estimated in eachnumerical run.According to the results of the analysis,
it can be seen that when τ < τ ∗ � 0.315, all paths of the non-integer order scheme (4)
lead to the coexistence equilibrium point E∗(0.6835, 0.8375), which is depicted in
Fig. 1a; however, when τ is raised to a level that exceed τ ∗, the equilibrium becomes
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Fig. 1 Behaviour of the scheme (4) for various values of delay parameter τ � 0.3, 0.45 and 0.8 when
r0 � 1.75, K � 0.113, K0 � 4.42 , K1 � 1.64, b � 0.05, α � 0.98, K f � 0.100242, as shown in
(a–c)

unstable and a stable limit cycle develops around the equilibrium point, as is depicted
in Fig. 1b and c.

Assuming that K � 0.08 at this point, Fig. 2 indicates the solution to scheme
(4) for various amounts of β. We found that scheme (4) is not stable for the integer
order scheme β � 1 and β � 0.98, whereas our suggested system is stable for
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Fig. 2 Phase portrait of thescheme (4) using various amounts of β when r0 � 1.75, K0 � 4.42, K1 �
1.64,b � 0.05, α � 0.98, K f � 0.242, τ � 0.6

β � 0.95, coexistence equilibrium point E∗(0.7627, 0.8463). The model exhibits
an unstable behaviour once the influence of fear is extremely low for integer-order
systems, however stability alters and turn into stable for fractional order-derivative
systems. As a result, it is possible to draw the conclusion that the non-integer order
derivative can stabilize the model.

We’ve produced the diagram in Fig. 3 to analyse how fractional order derivative β

affects each population because β is substantial to the changing aspects of the system.
For various amounts of β, this displays the phase plane of the prey predator as follows.
If β � 0.91 all trajectories get attracted to a stable equilibrium point, and if β � 0.98,
a stable limit cycle develops and is drawn to by all trajectories. The model’s oscillation
behaviour has been observed to be dampened by the fractional derivative (see Figs. 3
and 4).

7 Conclusions

The coexistence of biological processes using fractional-order differential equations
has been studied using numerous kinds of mathematical and analytical techniques.
The nonlocal characteristic of a non-integer order system is dependent on the current
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Fig. 3 Phase portrait of fractional order scheme (4) for various amounts of fractional order effect β �
0.91, 0.98 , τ � 0.8 and remaining parameter values are same as Fig. 1

Fig. 4 Behaviors of the scheme
(4) with different initial
conditions and
β � 0.8 , τ � 0.8 > τ∗,
remaining parameter values are
same as Fig. 1

state as well as all previous states. As a result, the order of differentiation β must be
precisely converted from an integer-order model to a fractional order model because
even a minor change in β can have a significant impact on the outcome. Certain
processes that can’t be modelled by IDEs can be modelled using fractional order
differential equations. FDEs are therefore mostly used in biological schemes because
they are connected to memory-based schemes.

Wedeveloped aFODE-baseddelayedBazykin’s schemewith the additionof the fear
effect in order to analyse the effects of prey and predator population levels through time
and precisely predict the increasing rates of each species at the moment in time. Our
main goal is to look at how fear, time delay, and non-integer order derivatives affect the
changing aspects of the system. Three equilibriumpoints exist in scheme (4), including
the trivial equilibrium point E0,which is at all times a saddle point, the predator-free
equilibrium E1, which is locally stable if b(1 + r0) > K1 and (1 + bK0) > K0K1,
and the interior equilibrium E∗.
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Investigations have been made into the requirements for both local and global
stability of the interior equilibrium. Additionally, theoretical study reveals that non-
integer order and time delay may have an impact on whether a Hopf bifurcation
exists. Numerical simulations are used to substantiate all theoretical results in our
work. It can be observed that the system exhibits several complex phenomena as the
fractional-order derivative β is varied. We found that the integer-order system behaves
in an unstable manner when the amount of fear is low, whereas the fractional-order
derivative behaves in a stable manner. We can draw the conclusion that anon-integer
order derivative can stabilise the system because of the memory effect. The next step
in our research is to examine the impact of memory-based population growth on
extinction probabilities for population models that include interactions with the Allee
effect, as well as the behaviour in the population scheme(s), which will include the
impact of predator-dependent functional response. Also, we aimed to study the optimal
control of harvesting model in the influence of toxic substances under fractional order
frame work in future.
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