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Abstract
The paper dealswith existence, localization andmultiplicity of radial positive solutions
in the annulus or the ball, for the Neumann problem involving a general φ-Laplace
operator. Our results apply in particular to the classical Laplacian and to the mean cur-
vature operators in the Euclidean andMinkowski spaces. Numerical experiments with
the MATLAB object-oriented package Chebfun are performed to obtain numerical
solutions for some concrete equations.
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1 Introduction

In this paper we are concerning with the existence and localization of radial positive
solutions for the Neumann boundary value problem in the annulus or in the ball

{−div (ψ (|∇u|)∇u) + εu = f (|x | , u) in �

∂νu = 0 on ∂�,
(1.1)

where ε > 0, ψ : (−a, a) → R+ is such that the function

φ : (−a, a) → (−b, b) , φ (s) = sψ (s) (0 < a, b ≤ +∞)
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is an increasing homeomorphism, f : [R0, R] × R+ → R+ is continuous and � =
{x ∈ R

n : R0 < |x | < R}, n ≥ 2.Here 0 ≤ R0 < R < +∞ and ν is the the exterior
unit normal vector to the boundary of �.

Problems of type (1.1) arise from mathematical modeling of real processes. Thus,
equations involving the p-Laplacian come from fluid mechanics in porous media [2],
equations with a singular homeomorphism arise from the relativistic mechanics [1],
and equations involving a bounded homeomorphism intervene in capillarity problems
[11].

Looking for radial solutions of (1.1), that is, functions of the form u(x) = v(r)
with r = |x | , problem (1.1) reduces to the boundary value problem

{− (
rn−1φ

(
v′))′ + εrn−1v = rn−1 f (r , v) in (R0, R)

v′ (R0) = v′(R) = 0.
(1.2)

Note that in the case of the ball, when R0 = 0, the equality v′(R) = 0 stands for
the Neumann condition ∂νu = 0 on the sphere, while the additional assumption
v′ (0) = 0 is required as a consequence of the regularity of the radially symmetric
solutions u.

There are many contributions to radial solutions for boundary value problems in
the annulus and in the ball. For instance, in papers [4, 5, 12, 14] and [19] there is
considered the case of equations and systems with the classical Laplacian, the papers
[6, 8] and [13] deal with the p-Laplacian, and in [3, 7] and [16] it is considered the case
of the φ-Laplacian, in particular, that of the mean curvature operators in the Euclidean
and Minkowski spaces. The methods that are used are of the most spilled: fixed
point principles, topological degree, upper and lower solution techniques, variational
methods and shooting method. Although the problem of radial solutions returns to
ordinary differential equations, the presence of a singularity at the origin makes the
studymore difficult. The analysis is evenmore difficult with theNeumann problemdue
mainly to the absence of an explicit expression of the solution operator (the integral
type inverse of the differential operator).

In this paper, to our knowledge, the first consecrated to the localization of radial
solutions for the Neumann problem involving a general φ -Laplace operator, we use
the homotopy technique - already applied in [15] and [16] for the Dirichlet problem -
to obtain the existence of solutions v such that

β < min
[R0,R]

v, max
[R0,R]

v < α,

for two given numbers 0 < β < α.

From a physical point of view, assuming that function v stands for the state of a
process and f is the external source, such a localization is imposed by two require-
ments: first, from the necessity to find the state-depending source f (r , v) (feedback
law) in order to guarantee that the state v remains bounded between two given bounds
and secondly, the state-depending source f being given, to find the bounds of its
corresponding state v.
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Mathematically, such a localization immediately gives multiple solutions in the
case of oscillating functions f (r , s) . Additionally, we show that the solutions v are
decreasing on [R0, R] provided that f (r , s) has suitable monotonicity properties in
r and s. Also, a certain behavior of the decreasing solution is emphasized in terms
of a Harnack type inequality which is established by a variable change meant to
eliminate the first-order term of the differential operator. Our results apply in particular
to homeomorphisms with a physical significance as mentioned above, such as

φ : R → R, φ (s) = |s|p−2 s for p > 1 (here a = b = +∞),

involved by the classical p-Laplacian, and to the bounded and singular homeomor-
phisms

φ : R → (−b, b) , φ (s) = bs√
1 + s2

(here a = +∞, b < +∞)

and

φ : (−a, a) → R, φ (s) = s√
a2 − s2

(here a < +∞, b = +∞),

as in the mean curvature operators in the Euclidean and Minkowski spaces.

2 Solution Properties and the Solution Operator

By a solution of (1.2) we mean a function v ∈ C1 [R0, R] such that v′ ∈ (−a, a) and
rn−1φ

(
v′) is differentiable and satisfies (1.2).

We look for solutions which are nonnegative on [R0, R] .

2.1 The Solution Operator

According to Corollary 2.4 in [3] we have that for each h ∈ C [R0, R] there is at least
one solution to the problem

{
L (v) (r) := − (

rn−1φ
(
v′))′ + εrn−1v = rn−1h (r) in (R0, R)

v′ (R0) = v′(R) = 0.
(2.1)

The next lemma gives a characterization of the solutions.

Lemma 2.1 A function v is a solution of (2.1) if and only if v ∈ C [R0, R] and the
following two conditions hold:

v (r) = v (R0) +
∫ r

R0

φ−1
(
s1−n

∫ R

s
τ n−1 (h − εv) dτ

)
ds (r ∈ [R0, R]);

(2.2)∫ R

R0

τ n−1 (h − εv) dτ = 0. (2.3)
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Proof Let v be a solution of (2.1). Then integrating from r to R by taking into account
that v′ (R) = 0 gives

rn−1φ
(
v′) =

∫ R

r
τ n−1 (h − εv) dτ.

which immediately implies (2.2). Next (2.3) is obtained by integration in (2.1) on
[R0, R] and using v′ (R0) = v′(R) = 0.

Conversely, if v satisfies (2.2) and (2.3), then clearly v ∈ C1 (R0, R) and by direct
computation using (2.3),

v′ (r) = φ−1
(
r1−n

∫ R

r
τ n−1 (h − εv) dτ

)

= −φ−1
(
r1−n

∫ r

R0

τ n−1 (h − εv) dτ

)
, (2.4)

whence v′ (R) = v′ (R0) = 0. Moreover,

φ
(
v′) = r1−n

∫ R

r
τ n−1 (h − εv) dτ, (2.5)

which shows that φ
(
v′) is differentiable and yields

−
(
rn−1φ

(
v′))′ = rn−1 (h − εv) in (R0, R) .

Thus, v is a solution of (2.1). 
�
The following lemmas show that for every h, the solution is unique and the cor-

responding solution operator S : C [R0, R] → C [R0, R] attaching to each h the
corresponding solution v is isotone and sends nonnegative functions into nonnegative
functions.

Lemma 2.2 Let h1, h2 ∈ C [R0, R] , h1 ≤ h2 on [R0, R] , and let v1, v2 ∈ C1 [R0, R]
be such that for i = 1, 2, one has v′

i (R0) = v′
i (R) = 0 and

L (vi ) (r) = rn−1hi (r) for r ∈ (R0, R) .

Then v1 ≤ v2 in [R0, R] .

Proof Assume the contrary. Let I = (α, β) be a maximal subinterval of (R0, R) on
which v2 − v1 is strictly negative. On I we then have

−
(
rn−1 (

φ
(
v′
2

) − φ
(
v′
1

)))′ = rn−1 (h2 − h1) − εrn−1 (v2 − v1) > 0.
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Hence the function

� (r) := rn−1 (
φ

(
v′
2 (r)

) − φ
(
v′
1 (r)

))

is strictly decreasing on I .
Assume β = R. Since v′

i (R) = 0 for both i = 1, 2, we must have φ
(
v′
2 (r)

) −
φ

(
v′
1 (r)

)
> 0, whence v′

2 (r) − v′
1 (r) > 0 for r ∈ I . This shows that the function

v2−v1 is strictly increasing on I . This together with its negativity implies that v2−v1
is negative on thewhole interval [R0, R).Hence α = R0 and consequently� is strictly
decreasing on [R0, R] , which is impossible since its values at R0 and R are equal to
zero. Thus β < R and v2 (β) − v1 (β) = 0.

Assume α = R0. Since v′
i (R0) = 0 for both i = 1, 2, we have φ

(
v′
2 (r)

) −
φ

(
v′
1 (r)

)
< 0, whence v′

2 (r) − v′
1 (r) < 0 for r ∈ I . But this is impossible

in virtue of v2 (β) − v1 (β) = 0 and the negativity of v2 − v1 on I . Therefore
R0 < α < β < R and v2 (α) − v1 (α) = 0, v2 (β) − v1 (β) = 0. Let r0 ∈ (α, β)

be such that v2 (r0) − v1 (r0) = minr∈[α,β] (v2 (r) − v1 (r)) . Then � (r0) = 0 and
since � is decreasing we must have � (r) > 0 on (α, r0) and � (r) < 0 on (r0, β) .

Consequently, the function v2−v1 should be increasing on (α, r0), which is impossible
since v2 (α) − v1 (α) = 0 and v2 (r0) − v1 (r0) < 0.

Therefore, v1 ≤ v2 on [R0, R] as desired. 
�
Lemma 2.3 For each h ∈ C [R0, R] , problem (2.1) has a unique solution and the
solution operator S is isotone and sends nonnegative functions into nonnegative func-
tions. In addition, S (h) = h/ε for every constant h.

Proof Let v1, v2 solve (2.1) for the same function h. Applying the previous lemma
to h1 = h2 = h gives v1 ≤ v2 and v2 ≤ v1. Thus v1 = v2 proving the uniqueness.
The monotonicity and positivity of S are direct consequences of the previous lemma.
Finally the fact that S (h) = h/ε for any constant function h follows directly from
(2.1). 
�
Lemma 2.4 If a function h ∈ C [R0, R] is decreasing in [R0, R] , then the correspond-
ing solution S (h) is decreasing in [R0, R] too.

Proof Assume otherwise. Then there is a maximal subinterval [α, β] of [R0, R] on
which v := S (h) is strictly increasing. If α is interior, i.e., α > R0, then clearly
v′ (α) = 0. Otherwise α = R0 and v′ (α) = 0 due to the Neumann condition.
Similarly, v′ (β) = 0. The function h − εv being decreasing on [α, β] , one has
that r1−n

(
rn−1φ

(
v′))′

is increasing on (α, β) . Hence there are only two possibil-

ities: either (a)
(
rn−1φ

(
v′))′ ≥ 0 on (α, β) , or (b) there is γ ∈ (α, β] such that(

rn−1φ
(
v′))′

< 0 in (α, γ ) and
(
rn−1φ

(
v′))′ ≥ 0 in (γ, β) .

In case (a), the monotonicity of r1−n
(
rn−1φ

(
v′))′

on (α, β) implies that(
rn−1φ

(
v′))′

is increasing on (α, β) , which implies the convexity on (α, β) of the
function rn−1φ

(
v′) . Since this function vanishes at α and β (like v′), we must have

rn−1φ
(
v′) ≤ 0 in (α, β) . But this gives v′ ≤ 0 in (α, β) , which contradicts our

assumption on v.



107 Page 6 of 20 R. Precup, C-I. Gheorghiu

Assume case (b). Then the function rn−1φ
(
v′) is decreasing on (α, γ ) . Since its

value at α is zero, we have rn−1φ
(
v′) ≤ 0 in (α, γ ) ,whence v′ ≤ 0 in (α, γ ) , again

a contradiction. 
�
Lemma 2.5 The solution operator S is completely continuous from C [R0, R] to
C [R0, R] .

Proof (a) S (M) is relatively compact for every bounded set M ⊂ C [R0, R] . Indeed,
if C > 0 is such that |h|∞ = maxr∈[R0,R] |h (r)| ≤ C for all h ∈ M, then
from −C ≤ h ≤ C one has S (−C) ≤ S (h) ≤ S (C) . Hence |S (h)|∞ ≤
max {|S (C)|∞ , |S (−C)|∞} . Thus S (M) is bounded in C [R0, R] . Now from
(2.4) we see that the derivatives of the functions v from S (M) are uniformly
bounded, that is S (M) is equicontinuous. Therefore S (M) is relatively compact
in C [R0, R] .

(b) S is continuous. Let hk ∈ C [R0, R] be convergent to some h and let vk = S (hk) .

We need to prove that vk → S (h) .According to Lemma 2.5 there is a convergent
subsequence of (vk) . Let v be its limit. Passing to the limit in (2.2) and (2.3)
written for hk and vk, we find that S (h) = v. As a result the whole sequence (vk)

converges to S (h) . 
�

2.2 A Harnack Type Inequality

In this section we assume that the homeomorphism φ satisfies the following condition:

(Hφ) φ is C1,

sφ′ (s) ≤ φ (s) and φ′ (s) ≥ σ > 0 for all s ∈ (−a, 0], (2.6)

for some σ > 0.

For example, such homeomorphisms are those involved by the classical Laplacian
and the mean curvature operator in the Minkowski space.

Let R1 ∈ (R0, R) be a fixed number and v ∈ W 2,∞ (R0, R) ∩ C1 [R0, R] be
nonnegative on [R0, R] , decreasing on [R1, R] , with v′ (R) = 0 and

L (v) = −
(
rn−1φ

(
v′))′ + εrn−1v ≥ 0 a.e. in (R0, R) . (2.7)

We make the change of variable t = η (r) , where

η (r) =
⎧⎨
⎩
ln R

r for n = 2

r2−n−R2−n

n−2 for n ≥ 3

by witch the interval (R0, R] of r becomes [0, t1) for t, where t1 = ln (R/R0) for

n = 2 and t1 =
(
R2−n
0 − R2−n

)
/ (n − 2) for n ≥ 3. Note that t1 = +∞ if R0 = 0.
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Also, R1 becomes t0 := η (R1) . Clearly 0 < t0 < t1. Then, letting w (t) = v (r) and
using

v′ (r) = −r1−nw′ (t) ,

v′′ (r) = r2(1−n)w′′ (t) + (n − 1) r−nw′ (t) = r2(1−n)w′′ (t) − (n − 1) r−1v′ (r)

and

−
(
rn−1φ

(
v′))′ = −rn−1φ′ (v′) v′′ − (n − 1) rn−2φ

(
v′) ,

we rewrite (2.7) as

−rn−1φ′ (v′) {
r2(1−n)w′′ (t) − (n − 1) r−1v′ (r)

}
− (n − 1) rn−2φ

(
v′) + εrn−1w ≥ 0,

or equivalently

−r1−nφ′ (v′) w′′ (t) + (n − 1) rn−2 {
v′φ′ (v′) − φ

(
v′)} + εrn−1w ≥ 0.

Since v′ ≤ 0 on [R1, R] , in virtue of (2.6), one has v′φ′ (v′)−φ
(
v′) ≤ 0. It follows

that

−r1−nφ′ (v′)w′′ (t) + εrn−1w (t) ≥ 0 for a.e. t ∈ (0, t0].

Hence

−w′′ (t) + ε
r2(n−1)

φ′ (v′)
w (t) ≥ 0 for a.e. t ∈ (0, t0].

Since w ≥ 0, r ≤ R and φ′ (v′) ≥ σ, we deduce that

− w′′ (t) + εR2(n−1)

σ
w (t) ≥ 0 for a.e. t ∈ (0, t0]. (2.8)

Notice that in virtue of v′ (r) = −r1−nw′ (t) , w is increasing on [0, t0] and since
v′ (R) = 0, one has w′ (0) = 0.

Now if we first integrate in (2.8) from 0 to t (t ≤ t0) obtaining

w′ (t) ≤ εR2(n−1)

σ

∫ t

0
w (s) ds ≤ εR2(n−1)

σ
w (t0) t for t ≤ t0,

and again from 0 to t0, we find that

w (t0) − w (0) ≤ εR2(n−1)

2σ
t20w (t0) .
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Hence

w (0) ≥
(
1 − εR2(n−1)

2σ
t20

)
w (t0) .

Letting

γ := 1 − εR2(n−1)

2σ
t20 ,

assuming that γ > 0 (which happens for small enough ε) and recalling that w (0) =
mint∈[0,t0] w (t) , w (t0) = maxt∈[0,t0] w (t) , we have

min
t∈[0,t0]

w (t) ≥ γ max
t∈[0,t0]

w (t) .

Coming back to function v, we have the Harnack inequality

v (R) = min
r∈[R1,R]

v (r) ≥ γ max
r∈[R1,R] v (r) = γ v (R1) .

Notice that in the case R0 > 0, we may take R1 = R0 and so t0 = ψ (R1) is finite
and the above reasoning remains true yielding to the better inequality

v (R) = min
r∈[R0,R]

v (r) ≥ γ max
r∈[R0,R] v (r) = γ v (R0) .

Thus we have the following result.

Theorem 2.6 Assume that condition (Hφ) holds. Then for every number R1 ∈ [R0, R)

with η (R1) < +∞, there exists ε0 = ε0 (R1, σ, R) > 0 such that for every 0 < ε <

ε0, there is a constant γ = γ (R1, σ, R, ε) > 0 such that

v (R) ≥ γ v (R1)

for every v ∈ W 2,∞ (R0, R) ∩ C1 [R0, R] nonnegative on [R0, R] , decreasing on
[R1, R] , with v′ (R) = 0 and L (v) := − (

rn−1φ
(
v′))′ + εrn−1v ≥ 0 a.e. in

(R0, R) .

3 Existence, Localization andMultiplicity

Let K+ be the positive cone of C [R0, R] .
Now it is clear that v is a nonnegative solution of (1.2) if and only if v is a fixed

point of the operator

T : K+ → K+, T = S ◦ N f ,
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where N f (v) = f (·, v (·)) is the Nemytski operator associated to f . According to
the previous lemmas about the solution operator, the operator T is well-defined and
completely continuous.

3.1 Existence and Localization

Now, for any number α > 0, consider the set

Vα := {v ∈ K+ : |v|∞ < α} .

Here |v|∞ = maxr∈[R0,R] |v (r)| . The operator T being completely continuous, the
set T

(
V α

)
is bounded, so there is a number α̃ ≥ α such that T

(
V α

) ⊂ V α̃ . Define
the extended operator T̃ : V α̃ → V α̃ by

T̃ (v) = T

(
min

{
α

|v|∞ , 1

}
v

)
.

The following two lemmas rely on the properties of the fixed point index (see, a.e.,
[9]).

Lemma 3.1 If

T (v) �= λv for v ∈ K+ with |v|∞ = α and λ ≥ 1, (3.1)

then the fixed point index i
(
T̃ , Vα, V α̃

) = 1.

Next, denote |v|0 := minr∈[R0,R] v (r) and for a number β > 0, consider the set

Wβ := {
v ∈ V α̃ : |v|0 < β

}
.

It is clear that Wβ is open in V α̃ .

Lemma 3.2 Assume that for a function h ∈ K+ such that |h|∞ = α, |h|0 > β, one
has

(1 − λ) T (v) + λh �= v for v ∈ K+ with |v|∞ ≤ α, |v|0 = β and λ ∈ [0, 1] .

(3.2)

Then i
(
T̃ ,Wβ, V α̃

) = 0.

Lemma 3.3 Under the assumptions of Lemmas 3.1 and 3.2, the operator T has a fixed
point v in Vα\Wβ, that is problem (1.2) has a solution v which is nonnegative on
[R0, R] , with β < |v|0 and |v|∞ < α.
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Proof One has

1 = i
(
T̃ , Vα, V α̃

) = i
(
T̃ , Vα \ Wβ, V α̃

) + i
(
T̃ , Vα ∩ Wβ, V α̃

)
,

0 = i
(
T̃ ,Wβ, V α̃

) = i
(
T̃ ,Wβ \ V α, V α̃

) + i
(
T̃ , Vα ∩ Wβ, V α̃

)
.

Subtracting gives

i
(
T̃ , Vα \ Wβ, V α̃

) − i
(
T̃ ,Wβ \ V α, V α̃

) = 1. (3.3)

Hence at least one of the numbers i
(
T̃ , Vα\Wβ, V α̃

)
and i

(
T̃ ,Wβ\V α, V α̃

)
is

nonzero. We claim that the last one equals zero. Indeed, otherwise there would exist
v ∈ Wβ\V α with T̃ (v) = v, that is

T

(
α

|v|∞ v

)
= v,

or equivalently T (ω) = λω, where ω = α
|v|∞ v and λ = |v|∞

α
. Since |ω|∞ = α and

λ > 1 we arrived to a contradiction with (3.1). Therefore i
(
T̃ ,Wβ\V α, V α̃

) = 0 and
from (3.3) one has i

(
T̃ , Vα\Wβ, V α̃

) = 1, which implies our conclusion. 
�
We are now ready to state and prove our main existence and localization result.
For any numbers 0 < β < α, denote

mα,β : = min { f (r , s) : r ∈ [R0, R] , s ∈ [β, α]} ,

Mα : = max { f (r , s) : r ∈ [R0, R] , s ∈ [0, α]} .

Theorem 3.4 If for two positive numbers α, β satisfying α > β, the following condi-
tions

(h1) Mα < εα,

(h2) mα,β > εβ

hold, then problem (1.2) has a positive solution v such that

β < |v|0 and |v|∞ < α.

Proof First, we remark that inequality α > β guarantees the existence of a function
h ∈ K+ such that |h|∞ = α and |h|0 > β as needed in Lemma 3.2. Such a function
is the constant h = α.

Assume that for some v ∈ K+ with |v|∞ = α and some λ ≥ 1, one has T (v) =
λv. Then v ≤ λv = S

(
N f (v)

) ≤ S (Mα) , so α = |v|∞ ≤ |S (Mα)|∞ , which
contradicts (h1). Hence Lemma 3.1 applies.

Assume that for some v ∈ K+ with |v|∞ ≤ α, |v|0 = β and λ ∈ [0, 1] we have
(1 − λ) T (v) + λα = v. Clearly,

T (v) = S
(
N f (v)

) ≥ S
(
mα,β

) = mαβ

ε
,
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hence according to (h2),

|T (v)|0 ≥ mαβ

ε
> β.

Then

β = |v|0 = |(1 − λ) T (v) + λα|0 > β.

Hence Lemma 3.2 also applies. The conclusion now follows from Lemma 3.3. 
�
Remark 3.5 (a) Ifwe assume that for each r ∈ [R0, R] , the function f (r , ·) is increas-

ing on [0, α] , then

mα,β = min { f (r , β) : r ∈ [R0, R]} , Mα = max { f (r , α) : r ∈ [R0, R]} .

(b) If f (r , s) = a (r) g (s) , where a is continuous and positive on [R0, R] and g is
increasing on [0, α] , then

mα,β = mag (β) , Mα = Mag (α) ,

where ma = min[R0,R] a (r) , Ma = max[R0,R] a (r) .

3.2 Decreasing Solutions

Here assume the following monotonicity properties of f :
(H f ) f (·, s) is decreasing in [R0, R] for each s ∈ R+ and f (r , ·) is increasing in

R+ for each r ∈ [R0, R] .

Under this condition, if a nonnegative function v is decreasing on [R0, R] , then the
function N f (v) = f (·, v (·)) is decreasing too. Thus, if we consider the sub-cone
K of K+ defined by

K := {v ∈ K+ : v is decreasing on [R0, R]} ,

then in view of Lemma 2.4, we have T (K ) ⊂ K and we can apply the reasoning
from the proof of Theorem 3.4, working in K instead of K+. In this way, the existence
of a decreasing solution is obtained. Using in addition Theorem 2.6, we obtain the
following result.

Theorem 3.6 Assume that conditions (Hφ) and (H f ) hold and that R1, ε and γ are
as in Sect. 2.2. If for two numbers 0 < β < α one has

(h1′) f (R0, α) < εα;
(h2′) f (R, β) > εβ,
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then problem (1.2) has a decreasing positive solution v such that

β < v (R) , v (R0) < α,

v (R) ≥ γ v (R1) . (3.4)

Remark 3.7 Inequality (3.4) gives us the bound 1/γ, independent on α and β, for
the ratio v (R1) /v (R) between the maximum and the minimum of v on the interval
[R1, R] . Thus, if for such a solution v, v (R1) is large, say v (R1) > k, then its
minimum v (R) is larger than γ k; if its minimum v (R) is small, say v (R) < 1/k,
then v (R1) is smaller than 1/ (γ k) . As noted above, in the case of the annulus, i.e.,
for R0 > 0, one may take R1 = R0 and then 1/γ is a bound for the ratio between the
maximum and the minimum of v on the whole interval [R0, R] .

3.3 Multiple Solutions

We first give a three-solution result.

Theorem 3.8 Under the assumptions of Theorem 3.4, if in addition there exists α0 ∈
(0, β) such that

Mα0 < εα0,

then problem (1.2) has at least three nonnegative solutions solutions v1, v2, v3 such
that

β < |v1|0 , |v1|∞ < α;
|v2|∞ < α0;
|v3|0 < β, |v3|∞ > α0.

Proof Solution v1 is guaranteed by Theorem 3.4. Next from i
(
T̃ , Vα0 , V α̃

) = 1 we
obtain the solution v2. Now, let us remark that V α0 ⊂ Wβ. Indeed, if v ∈ V α0 then|v|∞ ≤ α0 < β and so |v|0 ≤ |v|∞ < β. Hence v ∈ Wβ. This inclusion implies

i
(
T̃ ,Wβ \ V α0 , V α̃

) = i
(
T̃ ,Wβ, V α̃

) − i
(
T̃ , Vα0 , V α̃

) = 0 − 1 = −1,

whence the existence of v3. 
�
Obviously, the solution v2 can be zero. However, this is not the case if f (·, 0) �= 0.
Next we establish the existence of an arbitrary number of solutions, or of a sequence

of solutions, by assuming a strong oscillation in s of nonlinearity f (r , s) .

Theorem 3.9 (10) Let (αi )1≤i≤k , (βi )1≤i≤k (k ≤ +∞) be increasing finite or infinite
sequences of positive numbers with βi < αi ≤ βi+1 for all i . If the assumptions
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of Theorem 3.4 are satisfied for each couple (αi , βi ) , then problem (1.2) has k
(respectively, when k = +∞, an infinite sequence of) distinct solutions vi with

βi < |vi |0 , |vi |∞ < αi . (3.5)

(
20

)
Let (αi )i≥1 , (βi )i≥1 be decreasing infinite sequences with αi+1 ≤ βi < αi

for all i . If the assumptions of Theorem 3.4 are satisfied for each couple (αi , βi ) ,

then problem (1.2) has an infinite sequence of distinct solutions vi satisfying (3.5).

Proof Denote

Ki := {v ∈ K+ : βi < |v|0 , |v|∞ < αi } .

It is sufficient to remark that Ki ∩ Ki+1 = ∅ for all i . To prove this let us first assume
that sequences (αi ) , (βi ) are increasing (case (10)). Then since αi ≤ βi+1, for any
v ∈ Ki one has |v|0 ≤ |v|∞ < αi ≤ βi+1. Hence v /∈ Ki+1. Similarly, in case (20),
if v ∈ Ki , then |v|∞ ≥ |v|0 > βi ≥ αi+1, so v /∈ Ki+1. 
�
Remark 3.10 Under assumptions (Hφ) and (H f ), if multiple decreasing solutions are
obtained via Theorem 3.6, then for all of them, one has the same bound 1/γ for the
ratio between their maximum and minimum on the interval [R1, R] .

3.4 Existence andMultiplicity under Asymptotic Conditions

In the situation where only the existence of solutions is of interest and not exactly
their location, the asymptotic conditions on f are sufficient and easier to check than
the punctual conditions.

Assume here again, as in Remark 3.5(b), the following form of f ,

f (r , s) = a (r) g (s) ,

where a is continuous and positive on [R0, R] and g is increasing on R+.

Thus the existence of two numbers α, β with α > β and satisfying (h1), (h2)
obviously follows from the asymptotic conditions

lim inf
τ→+∞

g (τ )

τ
<

ε

Ma
and lim sup

τ→0

g (τ )

τ
>

ε

ma
,

respectively.
Also, two sequences (αi ) and (βi ) exist as in Theorem 3.9 (10) provided that

lim inf
τ→+∞

g (τ )

τ
<

ε

Ma
and lim sup

τ→+∞
g (τ )

τ
>

ε

ma
,

and as in Theorem 3.9 (20) provided that

lim inf
τ→0

g (τ )

τ
<

ε

Ma
, lim sup

τ→0

g (τ )

τ
>

ε

ma
.



107 Page 14 of 20 R. Precup, C-I. Gheorghiu

4 Numerical Solutions

In order to carry out our numerical experiments we have use the MATLAB object-
oriented package Chebfun.We refer only to Trefethen [17] and Trefethen et al. [18] for
the details on using this package although the literature on this topic is much broader.

The numerical experiments performed on a similar problem in [10], encouraged us
to use this programming environment and not others. It proved to be very simple and
flexible in writing a code, including in imposing the boundary conditions, an otherwise
non-trivial matter. The details it provides regarding the convergence of the Newton
method are extremely useful.

We present three concrete Neumann problems for which numerical solutions are
obtained confirming the theoretical results.

4.1 First Example

We look for a nonzero numerical solution and to confirm the theory for the Neumann
boundary value problem involving the classical Laplacian

{
− (

rv′)′ + rv = r
√

v
r+1 , r ∈ (0, 1)

v′ (0) = v′ (1) .
(4.1)

Here, with the notations from the previous sections, n = 2, ε = 1, R0 = 0, R =
1 and f (r , s) = √

s/ (r + 1) . Notice the special form of f , f (r , s) = a (r) g (s) ,

where a (r) = 1/ (r + 1) is decreasing and g (s) = √
s is increasing.

The theory is confirmed if a decreasing positive solution v and numbers α, β > 0,
β < α are found such that the following inequalities are satisfied:

mag (β) > εβ, Mag (α) < εα,

β < v (R) , v (R0) < α,

which applied to the present example, for which ε = 1, ma = 1/2, Ma = 1, g (α) =√
α and g (β) = √

β, read as:

β < 0.25, 1 < α, β < v (1) , v (0) < α. (4.2)

The numerical solution v is presented in Fig. 1 and the confirmation of the theory
takes place, for example, with α = 0.4 and β = 0.35.

From Fig. 2a we observe that the Newton method converges in five steps and has
at least order two of convergence. The panel b of the same figure shows that Chebfun
use a polynomial of order 16 whose coefficients decrease linearly to order 10−14.

The residual in approximating the differential operator has been of order 10−11 and
the boundary conditions have been exactly satisfied.
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Fig. 1 Graph of the numerical
solution of problem (4.1). The
initial guess for the initialization
of the Newton procedure is
v0 := 1
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Fig. 2 a The convergence of Newton method. b The behavior of Chebyshev coefficients of solution to
problem (4.1)

4.2 Second Example

Here we look for a nonzero numerical solution and to confirm the theory for the Neu-
mannboundary value problem involving themean curvature operator in theMinkowski
space,

⎧⎨
⎩

−
(
r v′√

1−v′2

)′ + rv = r
√

v
r+1 , r ∈ (0, 1)

v′ (0) = v′ (1) ,

(4.3)
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Fig. 3 Graph of the numerical
solution of problem (4.3). The
initial guess for the initialization
of the Newton procedure is
v0 := 1

0 0.2 0.4 0.6 0.8 1
r

1.35
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1.4

1.41

v(
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or equivalently

{
−v′′ − 1

r

(
1 − v′2) v′ + (

1 − v′2) 3
2 v = (

1 − v′2) 3
2

√
v

r+1 , r ∈ (0, 1)
v′ (0) = v′ (1) .

Here again, n = 2, ε = 1, R0 = 0, R = 1, f (r , s) = √
s/ (r + 1) and the theory

is confirmed by inequalities ( 4.2).
The numerical solution v is displayed in Fig. 3 and the confirmation of the theory

takes place, for example, with α = 1.45 and β = 1.35.
From Fig. 4a we observe that the Newton method converges in four steps and has

at least order two of convergence. The panel b of the same figure shows that Chebfun
use a polynomial of order 16 whose coefficients decrease linearly to order 10−14.

The residual in approximating the differential operator has been of order 10−11 and
the boundary conditions have been exactly satisfied.

4.3 Third Example

As the theory shows, the Neumann problem can have multiple positive solutions for
functions f (r , s)which are oscillatingwith respect to s.Tomakemore understandable
this statement, let us first consider the simplest case of the autonomous equation
(1.1), that is f (r , s) = g (s) . Then it is trivial to see that any constant C satisfying
εC = g (C) is a solution of the problem

{− (
rn−1φ

(
v′))′ + εrn−1v = rn−1g(v) in (R0, R)

v′ (R0) = v′(R) = 0.

Hence if the graph of g intersects the line of equation y = εx in several points, then
the problem has at least as many solutions. Therefore one obtains multiple solutions
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Fig. 4 a The convergence of Newton method. b The behavior of Chebyshev coefficients of solution to
problem (4.3)

when g is oscillating, here around the line y = εx . The phenomenon also occurs
in the non-autonomous case, as the theory shows. Thus, for f (r , s) = a (r) g (s) ,

multiple solutions are guaranteed if g oscillates up and down the lines y = (ε/Ma) x
and y = (ε/ma) x, respectively.

As an example of such a function, we can mention

g (s) = as + bs sin (c ln (s + 1)) , s ∈ R+,

where a, b, c > 0 and a ≥ (c + 1) b (for g to be increasing). This function has a
countable number of intersections with a line y = λx, provided that a − b ≤ λ ≤
a + b. For numerical simulations, we choose the following values of parameters:
a = 2, b = c = 1 and we consider the following Neumann problem for the classical
Laplacian

{− (
rv′)′ + rv = r

r+1 (2v + v sin (ln (v + 1))) , r ∈ (0, 1)
v′ (0) = v′ (1) .

(4.4)

Figs. 5 and 7 show two positive solutions of this problem. They were obtained by using
the same procedure as before, with different initial approximations. In general, initial
approximations can be suggested by the localization intervals as given by the theory.

From Fig. 6a we observe that the Newton method converges in six steps and the
panel b) of the same figure shows that Chebfun use a polynomial of order 16 whose
coefficients decrease linearly to order 10−8.

The residual in approximating the differential operator has been only of order 10−5

but the boundary conditions have been exactly satisfied.
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Fig. 5 Graph of a numerical
solution of problem (4.4). The
initial guess for the initialization
of the Newton procedure is
v0 := cos (πr) + 106
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Fig. 6 a The convergence of Newton method. b The behavior of Chebyshev coefficients of solution to
problem (4.4)

All these last three observations lead us to state that Chebfun no longer achieves the
accuracy of the previous two problems. Another solution to problem (4.4) is displayed
in Fig. 7.

To find it, Newton’s algorithm starts from a different initial guess. However, com-
paring these last two solutions, i.e, Figs. 5 and 7, it is observed that they have identical
allures (shapes).
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Fig. 7 Graph of a second
numerical solution of problem
(4.4). The initial guess for the
initialization of the Newton
procedure is
v0 := cos (πr) + 102
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We can conclude that using Chebfun we have succeeded to numerically confirm,
with great accuracy, someof our theoretical results regarding the existence, localization
and multiplicity of positive radial solutions for Neumann problems in the ball.
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