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Abstract
In this paper we reformulate a formal KAM theorem for Hamiltonian systems with
parameters under Bruno-Rüssmann condition. The proof is based on KAM iteration
and the key is to adjust the parameters for small divisors after KAM iteration instead
of in each KAM step. By this formal KAM theorem we can follow some well known
KAM-type results for hyperbolic tori. Moreover, it can also be applied to the persis-
tence of invariant tori with prescribed frequencies.

Keywords Formal KAM theorem · Bruno-Rüssmann condition · KAM iteration

1 Introduction

With the development of KAM theory, there are many well known KAM theorems [1,
4, 10, 12–14, 16, 21, 22]. The classical KAM theorem [1, 10, 16] asserts that if the fre-
quencymapping satisfies Kolmogorov non-degeneracy condition, then the Lagrangian
invariant tori with Diophantine frequencies can persist under small perturbations.
Kolmogorov non-degeneracy condition can be weakened to Bruno non-degeneracy
condition and Rüssmann non-degeneracy condition [6, 19, 23, 26], in particular, Rüss-
mann non-degeneracy condition is sharpest one for KAM theorems. Moreover, the
Diophantine condition can be weakened to the Bruno-Rüssmann condition [2, 8, 17–
20]. In addition, a similar problem for non-Hamiltonian vector fields with Bruno
frequency vectors is studied in [9]. In particular, as an alternative to the KAMmethod,
the renormalization method is used in [8, 9].

In this paper we are concerned about lower dimensional invariant tori with Bruno
frequency vectors in Hamiltonian systems. Consider the following real analytic nearly
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integrable Hamiltonians

H±(x, y, u, v) = 〈ω, y〉 + 1

2

m∑

j=1

� j

(
u2j ± v2j

)
+ P(x, y, u, v). (1.1)

The phase space is T n × R
n × R

m × R
m associated with the symplectic structure

n∑

i=1

dxi ∧ dyi +
m∑

j=1

du j ∧ dv j ,

where T n = R
n/2πZn is the n-torus. The tangential frequency ω is regarded as a

parameter and is usually implied for simplicity of notations. Assume � j �= 0, ∀ j =
1, 2, . . .m, which usually depend on ω. P is a small perturbation. If P = 0, then
Hamiltonian H+ (H−) becomes a normal form and has a parameterized family of
elliptic (hyperbolic) lower dimensional invariant tori Tω = T n × {0} × {0} × {0} with
frequencies ω.

Melnikov [12, 13] concluded that if P is sufficiently small, formost of the frequency
parametersω, the invariant tori Tω for Hamiltonian H+ can persist under the following
non-resonance conditions:

〈ω, k〉 + � j (ω) �= 0, ∀k ∈ Z
n, j = 1, 2, · · ·m, (1.2)

〈ω, k〉 + �i (ω) + � j (ω) �= 0, ∀k ∈ Z
n, i, j = 1, 2, · · ·m, (1.3)

〈ω, k〉 + �i (ω) − � j (ω) �= 0, ∀k ∈ Z
n, |k| + |i − j | �= 0, (1.4)

where (1.2) is called the first Melnikov condition, while (1.3) and (1.4) are called the
second Melnikov condition. Later the result is improved by Pöschel and Bourgain [3,
17].

As to hyperbolic invariant tori for Hamiltonian H−, there are many well known
KAM theorems [5, 7, 11, 15], which are essentially some extension of Lagrangian
invariant tori. Actually, hyperbolic case is much simpler than elliptic case since there
is no problem of Melnikov conditions.

Recently, Xu and Lu [24] developed some new KAM techniques to prove two
formalKAM theorems,which can be used to prove various kinds ofKAM theorems for
Lagrangian tori and elliptic lower dimensional tori. Note that the frequency considered
in [24] is Diophantine. By motivation of [24], in this paper we want to give a formal
KAM theorem for hyperbolic invariant tori under Bruno-Rüssmann non-resonance.
By this formal KAM theorem, many previous results can be direct corollaries.

2 Main Result

For s, r > 0, let Ts = {
x ∈ C

n/2πZn | |Imx | ≤ s
}
and

Ds,r = {
w ∈ C

n/2πZn × C
n × C

m × C
m : |Imx | ≤ s, |y|1 ≤ r2, |u|2 ≤ r , |v|2 ≤ r

}
,
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where | · | is the sup-norm, | · |1 is the l1−norm, and | · |2 indicates the Euclidean norm.
Let U ⊂ R

n be a domain and � ≥ 0 be an integer.
Consider a parameterized Hamiltonian

H(ξ ;w) = 〈ω(ξ), y〉 + 〈�u, v〉 + P(ξ ;w), (2.1)

where w = (x, y, u, v) is the phase variable and ξ is a parameter. It is easy to see
that (u, v) = (0, 0) is a hyperbolic equilibrium for Hamiltonian H if P = 0. Here
we should note that under the symplectic mapping, u−v√

2
= ũ, u+v√

2
= ṽ, 〈�ũ, ṽ〉 =

1
2

∑m
j=1 � j (u2j − v2j ). So we use the normal form in (2.1) for convenience.

Assume that H(ξ ;w) is analytic in w on Ds,r and C�-smooth in ξ on U . Then
P(ξ ;w) can be expanded as Fourier series with respect to x with

P(ξ ;w) =
∑

k∈Zn

Pk(ξ ; w̄)e
√−1〈k,x〉,

where Pk(ξ ; w̄) = ∑
i∈Zn+, j,l∈Zm+ Pi jlk(ξ)yiu jvl , where Z

n+ is composed of all the
integer vectors with nonnegative components, and Z

m+ has the same meaning.
Denote by C�;a(U × Ds,r ) the set which consists of functions that are analytic in

w on Ds,r and C�-smooth in ξ on U . For P ∈ C�;a(U × Ds,r ), we define

‖P‖U×Ds,r =
∑

k

‖Pk‖U ;r e|k|s,

where

‖Pk‖U ;r = sup
|y|1≤r2,|z|2≤r ,|z̄|2≤r

∣∣∣∣∣∣

∑

i∈Zn+, j,l∈Zm+

‖Pi jlk‖α,C�(U )y
i u jvl

∣∣∣∣∣∣
,

with the weighted norm

‖Pi jlk‖α,C�(U ) = max|β|≤�
α|β| max

ξ∈U

∣∣∣∣
∂β Pi jlk(ξ)

∂βξ

∣∣∣∣ ,

where β ∈ Z
n+ and α is a constant in (2.4).

2.1 Bruno-Rüssmann Condition

Let 
 : [0,+∞) → [1,+∞) be a nondecreasing unbounded function. 
 is called an
approximating function if


(0) = 1,
log(
(t))

t
→ 0, 0 ≤ t → ∞, (2.2)
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and

∫ +∞
t−2log(
(t)) dt < ∞. (2.3)

Moreover, assume that the approximation function 
(t) is sufficiently increasing,
which is absolutely continuous and satisfies the condition (5.3) in the Appendix.

If

|〈k, ω〉| ≥ α


(|k|) , 0 �= k ∈ Z
n, (2.4)

where 0 < α ≤ 1, we call ω satisfies Bruno-Rüssmann condition.

Theorem 2.1 (The formal KAM theorem) Let H ∈ C�;a(U × Ds,r ) be given in (2.1).
Then for 0 < σ ≤ s/2, there exists a sufficiently small γ > 0, such that if

‖P‖U×Ds,r ≤ ε = αγ r2, (2.5)

there exist aC�(U )-smooth family of parameterized symplecticmappings {�(ξ ; ·)}ξ∈U
and a family of Hamiltonians {H∗(ξ ; ·)}ξ∈U with the following conclusions holding
true:

(1) �∗ ∈ C�;a(U × Ds/2,r/2) with

‖W (�∗ − id)‖U×Ds/2,r/2 ≤ c�(σ)γ,

where W = diag(σ−1 I d, r−2 I d, r−1 I d, r−1 I d), and�(σ) is as shown in (5.2).
(2)

H∗(ξ ;w) = N∗(ξ ;w) + P∗(ξ ;w), (2.6)

where N∗(ξ ;w) = 〈
ω∗(ξ), y

〉+ 〈
�u, v

〉+ 〈
Q∗(ξ ; x)z, z〉 with z = (u, v)T , and

P∗(w) =
∑

2|i |+| j |+|l|>2

P∗β(x)w̄β, w̄β = yi u jvl .

Furthermore,

‖ω∗ − ω‖C�(U ) ≤ 2αγ, ‖Q∗‖C�(U )×Ts/2 ≤ c�(σ)γ. (2.7)

(3) If for some ξ ∈ U, ω∗(ξ) satisfies (2.4), then

H ◦ �∗(ξ ;w) = H∗(ξ ;w),

therefore, H(ξ ; ·) has an invariant torus �∗(ξ ; T n × {0} × {0} × {0}) with fre-
quencies ω∗(ξ).
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Remark 2.1 Note that in Theorem 2.1 we use the Bruno-Rüssmann condition, which
is a little weaker than the Diophantine condition in [24]. Moreover, we can have a
similar result for elliptic lower dimensional tori. For simplicity we do not mention
elliptic case in this paper.

3 Applications of Theorem 2.1

In this section we give some applications of Theorem 2.1 in two non-degenerate cases
and delay the proof to the next section.

(1) Bruno non-degenerate case Consider a real analytic Hamiltonian

H(q, p, u, v) = h(p) + 〈�u, v〉 + f (q, p, u, v), (3.1)

where � = diag(�1, · · · �m) with � j �= 0, for ∀ j = 1, 2, · · ·m and f is a
sufficiently small perturbation. The phase space is T n × D × R

m × R
m , where

D ⊂ R
n is an open domain.

By introducing parameters, we consider an equivalent system. Let q = x , p =
y + ξ , w = (x, y, u, v), then

H(q, p, u, v) = h(y + ξ) + 〈
�u, v

〉+ f (x, ξ + y, u, v)

= e + 〈
ω(ξ), y

〉+ 〈
�u, v

〉+ P(ξ ;w), (3.2)

where e = h(ξ) is an energy constant, which is usually ignored, ω(ξ) = h p(ξ),

and P(ξ ;w) = O(y2)+ f (ξ + y; x, y, u, v), where O(y2) = h(ξ + y)− h(ξ)−〈
ω(ξ), y

〉
.

Consider the parameterized Hamiltonian (3.2), which is real analytic in w on Ds,r

and C�-smooth in ξ on U , where U = {ξ ∈ D | dist(x, ∂D) ≥ δ0 > 0}. Suppose
the Bruno non-degeneracy condition holds:

rank(∂ξω) = n − 1, rank(∂ξω
T , ωT ) = n, ∀ξ ∈ U . (3.3)

Let

| f (q, p, u, v)| ≤ ε, ∀q ∈ Ts, p ∈ D, |u| ≤ δ, |v| ≤ δ.

Let r = ε
1
4 ≤ min{δ0, δ}. Then

‖P‖U×Ds,r ≤ ε + cr4 ≤ cε = ε = αγ r2,

where γ = cε
1
2

α
. If ε is sufficiently small, Theorem 2.1 holds for Hamiltonian

(3.2).
Obviously, γ is sufficiently small if ε is sufficiently small. By measure estimate it
follows that for most of ξ ∈ U , ω(ξ) satisfies (2.4).
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Moreover, ω∗(ξ) is a small perturbation of ω. Since ω(ξ) is Bruno non-degenerate
and ω∗ is a small perturbation of ω, by measure estimate as in [17, 24], we can
prove that for most of ξ in the sense of Lebesgue measure, ω∗(ξ) satisfies (2.4).
By Theorem 2.1, for ξ ∈ U such that ω∗(ξ) satisfies (2.4), then the original
Hamiltonian

H(ξ ;w) = 〈
ω(ξ), y

〉+ 〈
�u, v

〉+ P(ξ ;w), ξ ∈ U

can be normalized to

H∗(ξ ;w) = 〈
ω∗(ξ), y

〉+ 〈
�∗u, v

〉+ P∗(ξ ;w), ξ ∈ U ,

and then it admits a lower dimensional invariant torus with frequencies ω∗(ξ).
However, in this paper we are interested in the persistence of an invariant torus
of the unperturbed system with frequency ω0 = ω(ξ0) (ξ0 ∈ U ). If ω0 satisfies
(2.4), since ω(ξ) is Bruno non-degenerate in the sense of (3.3), in the same way
as in [24] (Here we refer to Proposition 1 in [24] for details), there exist a ξ ∈ U
and a small constant λ = O(ε) such that ω∗(ξ) = (1 + λ)ω0. By Theorem 2.1,
Hamiltonian H has an invariant torus with the frequency ω∗(ξ), which is a small
dilation of ω0.

(2) Rüssmann non-degenerate case In this case we can also obtain many invariant
tori by standard KAM method if f is sufficiently small, but we cannot get more
information about their frequencies. Here we are concerned about the persistence
of KAM tori with prescribed frequencies. Consider the Hamiltonian H in (3.1)
with

h(y) = 〈ω0, y〉 + y2l11 + · · · + y2lnn , |y| ≤ 2δ0, l1, l2, · · · ln ≥ 2.

Then ω(ξ) = ω0 + (2l1ξ
2l1−1
1 , · · · 2lnξ2ln−1

n ). Assume that ω0 satisfies (2.4).
Obviously, deg(ω,U , ω0) �= 0, whereU = {ξ ∈ R

n | |ξ | ≤ δ0}. By Theorem 2.1,
if f is sufficiently small, deg(ω∗,U , ω0) �= 0. Then there exists ξ∗ ∈ U , such that
ω∗(ξ∗) = ω0 and so H(ξ∗; ·) has a hyperbolic lower dimensional invariant torus
with frequencies ω0.

4 Proof of Theorem 2.1

In this section we are going to prove Theorem 2.1. Our KAM iteration is divided into
several parts. Let

�(σ) = sup
t≥0

(1 + t)�+2
�+2(t)e−σ t .

By the property of approximation functions, �(σ) is well defined.



A Formal KAM Theorem for Hamiltonian Systems... Page 7 of 23 92

4.1 KAM Step and Iteration Lemma

Our KAM step is summarized in the following iteration lemma.

Lemma 4.1 (Iteration Lemma) Consider H(ξ ;w) = N (ξ ;w) + P(ξ ;w), where

N (ξ ;w) = 〈
ω(ξ), y

〉+ 〈
�u, v

〉+ 〈
Q(ξ ; x)z, z〉

is a normal form, with z = (u, v)T , Q(ξ ; x) is a small 2m-order symmetric matrix,
and P is a perturbation.

Let H ∈ C�;a(U × Ds,r ), and ‖Q‖U×Ts � 1. Suppose

‖P‖U×Ds,r ≤ ε = αr2E .

Let r+ = ηr , s+ = s − 4σ . If ε > 0 is sufficiently small, then the following results
hold true:

(1) There exists a parameterized family of symplectic mappings {�(ξ ; ·), ξ ∈ U },
such that � ∈ C�;a(U × Ds+,r+) with

�(ξ ; ·) : Ds+,r+ → Ds,r .

Moreover,

||W (� − id)||U×Ds+,r+ ≤ c�E

and

||W (D� − I d)W−1||U×Ds+,r+ ≤ c�E,

where W = diag(σ−1 I d, r−2 I d, r−1 I d, r−1 I d) and D denotes the differential
operator with respect to w.

(2) There exists a Hamiltonian H+ ∈ C�;a(U × Ds+,r+) with

H+(ξ ;w) = N+(ξ ;w) + P+(ξ ;w),

where N+(ξ ;w) = 〈ω+(ξ), y〉 + 〈�u, v〉 + 〈
Q+(ξ ; x)z, z〉, and ω+ = ω + ω̂.

Moreover,

‖ω̂‖ ≤ ε

r2
, ‖Q+ − Q‖U×Ts ≤ c�E . (4.1)

Furthermore, P+ satisfies

‖P+‖U×Ds−4σ,ηr ≤ c�Eε + ce−Kσ ε + cη3ε.
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(3) Set

RK
α =

{
ω ∈ R

n | |〈k, ω〉| ≥ α


(|k|) , 0 < |k| ≤ K

}

and

Ũ = {ξ ∈ U | ω(ξ) ∈ RK
α }. (4.2)

Then,

H ◦ �(ξ ;w) = H+(ξ ;w) = N+(ξ ;w) + P+(ξ ;w), ∀ ξ ∈ Ũ .

Moreover, define

Ũ+ =
{
ξ ∈ U | ω+(ξ) ∈ RK+

α+
}

, (4.3)

where K+ > K. If 2K
(K )ε ≤ (α+ − α)r2, then Ũ+ ⊂ Ũ .

4.1.1 Proof of Iteration Lemma

1. Truncation Let

P =
∑

i, j,l

Pi jl(ξ ; x)yi u jvl .

Make a truncation for the perturbation P and let

R = P000(ξ ; x) + 〈
P100(ξ ; x), y〉+ 〈

P010(ξ ; x), u〉+ 〈
P001(ξ ; x), v〉

and

〈
Q̂1(ξ ; x)z, z〉 = 〈

P020(x)u, u
〉+ 〈

P011(x)u, v
〉+ 〈

P002(x)v, v
〉
,

here and below ξ is implied without confusion.
Let

RK = PK
000(x) + 〈

PK
100(x), y

〉+ 〈
PK
010(x), u

〉+ 〈
PK
001(x), v

〉
,

where

PK
i jl(x) =

∑

k∈Zn ,|k|≤K

Pi jlke
i
〈
k,x
〉
, i = √−1.
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Since R is composed of the zero-order terms and the one-order terms of P , by
Cauchy’s estimate we have ‖R‖U×Ds,r ≤ 4ε. Then we truncate the Fourier series of
R at order K to obtain RK . By the definition of the norm, we have

‖RK ‖U×Ds,r ≤ 4ε,

and

‖R − RK ‖U×Ds−σ,r ≤
∑

|k|>K

‖Rk‖e|k|(s−σ)

≤ e−Kσ
∑

|k|>K

‖Rk‖e|k|s ≤ 4e−Kσ ε. (4.4)

2. Construction of symplectic transformations The symplectic mapping � is the
flow Xt

F at 1-time, where F will be decided later. Let

F = F000(x) + 〈
F100(x), y

〉+ 〈
F010(x), u

〉+ 〈
F001(x), v

〉
.

Let G = (F010, F001)T and J be the standard 2m-th symplectic matrix. Let H =
N + R + (P − R), it follows that

N ◦ � = N + {N , F} +
∫ 1

0
{(1 − t){N , F}, F} ◦ Xt

F dt,

R ◦ � = R +
∫ 1

0
{R, F} ◦ Xt

F dt,

〈
Q̂1(ξ ; x)z, z〉 ◦ � = 〈

Q̂1(ξ ; x)z, z〉+
∫ 1

0
{〈Q̂1(ξ ; x)z, z〉, F} ◦ Xt

F dt,

where {·, ·} denotes the Poisson bracket.
Then

{N , F} = 〈〈
Qx , F100

〉
z, z

〉− 〈
ω, Fx

〉+ 〈
�v, F001

〉− 〈
�u, F010

〉+ 〈
JG, 2Qz

〉
.

It follows that

H ◦ X1
F = N − ∂ωF − 〈

�u, F010
〉+ 〈

�v, F001
〉

+ RK + 〈
Q̂1z, z

〉+ 〈〈
Qx , F100

〉
z, z

〉+ 〈
JG, 2Qz

〉+ P+,

where ∂ωF
def= 〈

ω, Fx
〉
and

P+ =
(
R − RK

)
+
(
P − R − 〈

Q̂1(ξ ; x)z, z〉
)

◦ X1
F + P̃, (4.5)
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where

P̃ =
∫ 1

0
{(1 − t){N , F} + R + 〈

Q̂1(ξ ; x)z, z〉, F} ◦ Xt
F dt .

Then, we need to solve the equations:

⎧
⎪⎨

⎪⎩

∂ωF000 = PK
000 − [P000]

∂ωF100 = PK
100 − [P100]

∂ωG − MG − 2Q(ξ ; x)JG = g

, (4.6)

where M = diag(−�,�), g = (P010, P001)T , [ · ] denotes the mean value over T n .
3. Extension of small divisors Take a C∞(R)-smooth function ψ(t) such that

ψ(t) =
⎧
⎨

⎩
0, |t | ≤ 1

2
,

1, |t | ≥ 1.

For h > 0, set ψh(t) = ψ( t
h ). Then ψh(t) ∈ C∞(R) with the estimate:

| d
l

dtl
ψh(t)| ≤ cl

hl
, ∀t ∈ R, ∀l ≥ 1,

where cl is a constant depending on l.
Set

h = α


(|k|) , tk(ξ) = 〈k, ω(ξ)〉, fk(ξ) = ψh(tk(ξ))

i〈k, ω(ξ)〉 .

Recall the definition of Ũ , it follows easily that for ξ ∈ Ũ , fk(ξ) = 1
i〈k,ω(ξ)〉 . Here,

we observe that even though Ũ = ∅, the extension fk(ξ) is still well defined on U .
Then fk(ξ) ∈ C�(U ), which satisfies

∣∣∂
β fk
∂ξβ

(ξ)
∣∣ ≤ ch−|β|−1|k||β|, ξ ∈ U , ∀|β| ≤ �.

Set

F�k(ξ ; w̄) = fk(ξ)(P�k − [P�k]) = ψh(tk(ξ))

i〈k, ω(ξ)〉 (P�k − [P�k]),

where the subscript � = 000, 100, 0 < |k| ≤ K . Then we extend F�k(ξ ; w̄) for ξ

from Ũ to the whole set U .
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4. Solving the homological equations The first two equations for (4.6) are standard.
By the extension of small divisors, in the same way as in [24, 25], we have F000 and
F100 such that

‖F000‖U×Ds−2σ,r ≤ cα−1
∑

k


�+1(|k|)|k|�e−|k|σ ‖P000k‖e|k|s

≤ cα−1 sup
t≥0

t�
�+1(t)e−σ t‖P000‖U×Ds−σ,r

≤ cα−1ε sup
t≥0

(1 + t)�
�+1(t)e−σ t

≤ cα−1��+1ε

and

‖F100‖U×Ds−2σ,r/2 ≤ cα−1r−2��+1ε,

where ��+1(σ ) = sup
t≥0

(1+ t)�+1
�+1(t)e−σ t . Moreover, for ξ ∈ Ũ , where Ũ is given

in (4.2), F000 and F100 are solutions of the equations.
For G = (F010, F001)T , we apply Lemma 5.1 with Q0 = M, Q̂ = 2QJ to have

G satisfying

‖F010‖U×Ds−2σ,r/2 ≤ cr−1ε, ‖F001‖U×Ds−2σ,r/2 ≤ cr−1ε. (4.7)

Therefore,

‖F‖U×Ds−2σ,r/2 ≤ cα−1��+1ε, (4.8)

and

‖∂x F‖U×Ds−2σ,r/2 ≤
∑

k

|k| · ‖Fk‖e|k|(s−σ)

≤ cα−1 sup
t≥0

t · (1 + t)�+1
�+1(t)e−σ tε ≤ cα−1�ε,

where �(σ) = sup
t≥0

(1 + t)�+2
�+2(t)e−σ t .

5. Estimates of the symplectic mapping Write the symplectic mapping as

�(ξ ;w) = X1
F = (ã(ξ ; x), b̃(ξ ;w), d̃(ξ ; x, u), ẽ(ξ ; x, v)).

By the construction of F and �, it follows that b̃ is affine in y, u, v, d̃ and ẽ are the
translations of u, v, respectively. Moreover, by the estimates of F, we have

‖ã − id‖U×Ds−2σ,r/2 ≤ c��+1E, ‖b̃ − id‖U×Ds−2σ,r/4 ≤ cα−1�ε,

‖d̃ − id‖U×Ds−2σ,r/4 ≤ cr−1ε, ‖ẽ − id‖U×Ds−2σ,r/4 ≤ cr−1ε.
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And

D� =

⎛

⎜⎜⎝

ãx 0 0 0
b̃x b̃y b̃u b̃v

d̃x 0 I d 0
ẽx 0 0 I d

⎞

⎟⎟⎠ .

By Lemma 5.4, we have

��+1(σ )

σ
≤ ��+2(σ )

2(� + 1)
= �(σ)

2(� + 1)
.

Assume that

c�E ≤ σ < η2 ≤ 1

4
. (4.9)

Then the symplectic mapping � : Ds−4σ,ηr → Ds−3σ,2ηr , with estimates

‖W (� − id)‖U×Ds−4σ,ηr ≤ c�E (4.10)

and

‖W (D� − I d)W−1‖U×Ds−4σ,ηr ≤ c�E, (4.11)

where the weight matrix W = diag(σ−1 I d, r−2 I d, r−1 I d, r−1 I d).
6. Estimates of the new error terms Recall that N = 〈

ω(ξ), y
〉+ 〈

�u, v
〉+ 〈

Qz, z
〉
.

Let Q̂2 = Qx · F100. Then it follows that H ◦ � = N+ + P+, where N+ = N + N̂ ,
with

ω̂(ξ) = [P100], Q̂(ξ ; x) = Q̂1 + Q̂2.

By standard estimate, we get

‖ω̂‖U ≤ αE, ‖Q̂‖U×Ts−4σ ≤ c�E .

Also note that P+ is given in (4.5). By (4.4), we have

∥∥∥R − RK
∥∥∥
U×Ds−σ,r

≤ 4e−Kσ ε.

By Taylor’s formula with remainder and Cauchy’s estimate, we have

∥∥∥P − R −
〈
Q̂1(ξ ; x)z, z

〉∥∥∥
U×Ds,2ηr

≤ cη3ε,
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Combining with the estimates of F , R and Q̂1, we get

‖P+‖U×Ds−4σ,ηr ≤ c�Eε + ce−Kσ ε + cη3ε, (4.12)

where c is a constant independent of KAM steps.
In the same way as [17], we will choose iteration parameters such that the KAM

step can iterate. The idea is as follows. By some suitable choices of K , η, ε+, r+ as

e−Kσ ∼ �E, η3 ∼ �E, ε+ ∼ �Eε, r+ ∼ ηr ,

we can have

‖P+‖U×Ds−4σ,ηr ≤ c�Eε + ce−Kσ ε + cη3ε ≤ ε+ = α+r2+E+.

Moreover, it follows that

ε+
r2+

∼ �Eε

η2r2
∼ �E2

η2
∼ �

1
3 E

4
3 ∼ E+.

In KAM step, E will decrease rapidly and it will be so small that �
1
3 E

4
3 becomes

much smaller.

4.1.2 KAM Iteration

Recall that

�(σ) = sup
t≥0

(1 + t)�+2
�+2(t)e−σ t .

By Lemma 5.3, for σ = s/2, there exists a sequence σ0 ≥ σ1 ≥ σ2 ≥ · · · > 0, such
that σ0 + σ1 + σ2 + · · · = σ and

�(σ) = ∞
�
j=0

�(σ j )
κ j , κ j = κ − 1

κ j+1 with κ = 4

3
.

At the initial step, let H0 = H and set s0 = s, r0 = r , E0 = γ . For i ≥ 0, define

αi+1 = (1 − 1

2i+3 )α, �i = i−1
�
j=0

(
a2 j�(σ j )

)κ j , Ei = (�i E0)
κ i ,

where�0 = 1, a = (2c)3, and c is the constant in the estimate of P+. Let εi = αi r2i Ei .

Moreover, define Ki and ηi by

e−Kiσi = 2i+4�(σi )Ei , η3i = 2i�(σi )Ei .
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Here the multipliers 2i+4 and 2i are required for small divisor conditions. Define
ri+1 = ηi ri , si+1 = si − 4σi .

Note that

�(σ) = ∞
�
j=0

�(σ j )
κ j ,

∞∑

j=0

κ j = 1,
∞∑

j=0

jκ j = 1

κ − 1
.

Then we get

�i → 8a�(σ), i → ∞.

Note that �(σi ) ≤ �(σ j ) for all j ≥ i . It follows that

a2i�(σi ) = ∞
�
j=i

(
a2i�(σi )

)κ jκ
i ≤

( ∞
�
j=i

(
a2 j�(σ j )

)κ j
)κ i

and then

a2i�(σi ) · Ei ≤
(( ∞

�
j=0

a2 j�(σ j )

)κ j

E0

)κ i

= (a�(σ)E0)
κ i . (4.13)

Denote by Di = Dsi ,ri . By Lemma 4.1, there exists a sequence of Hamiltonians
{Hi (ξ ;w), ξ ∈ U , w ∈ Di } such that Hi ∈ C�;a(U × Di ) and Hi = Ni + Pi ,where

Ni = 〈ωi , y〉 + 〈�u, v〉 + 〈Qi (x)z, z〉,

and Pi satisfies that

‖Pi‖U×Di ≤ εi = αi r
2
i Ei . (4.14)

Moreover, there exists a sequence of parameterized symplectic transformations
{�i (ξ ;w), ξ ∈ U , w ∈ Di+1}, such that for each ξ ∈ U , �i (ξ ;w) : Di+1 → Di .
Moreover, and �i ∈ C�;a(U × Di+1) with estimates:

‖Wi (�i − id)‖U×Di+1 ≤ c�(σi )Ei (4.15)

and

‖Wi (D�i − I d)W−1
i ‖U×Di+1 ≤ c�(σi )Ei . (4.16)

Let

Ũi =
{
ξ ∈ U | |〈k, ωi (ξ)〉| ≥ αi


(|k|) , 0 < |k| ≤ Ki

}
.
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Then for ξ ∈ Ũi ,

Hi+1 = Hi ◦ �i = Ni+1 + Pi+1, (4.17)

where

Ni+1 = 〈ωi+1, y〉 + 〈�u, v〉 + 〈Qi+1(x)z, z〉,

and by (4.9) and (4.12),

‖Pi+1‖U×Di+1 ≤ c�(σi )Eiεi + ce−Kiσi εi + cη3i εi

≤ c · 2i�(σi )Eiεi .

By the definitions of ηi , εi , Ei and ri+1 = ηi ri , it follows that

c2i�(σi )Eiεi

r2i+1αi+1
≤ 2c2i�(σi )E2

i

η2i
≤ (

(2c)32i�(σi )
) 1
3 E

4
3
i ≤ (

a2i�(σi )
) 1
3 E

4
3
i ≤ Ei+1,

where a = (2c)3. Then

‖Pi+1‖U×Di+1 ≤ εi+1 = αi+1r
2
i+1Ei+1. (4.18)

In addition,

|ω̂i | ≤ αi Ei , ‖Q̂i‖ ≤ c�(σi )Ei , (4.19)

where ω̂i = ωi+1 − ωi .
Let �0 = id, �i = �0 ◦ �1 ◦ · · · ◦ �i−1, i ≥ 1. By Lemma 4.1 again, if

2Ki
(Ki )εi ≤ (αi+1−αi )r2i ,∀i ≥ 0,we have Ũi ⊃ Ũi+1, ∀i ≥ 0.Themonotonous-
ness of {Ũi } implies that for ξ ∈ Ũi , Hi = H ◦ �i .

Now we verify the assumption 2Ki
(Ki )εi ≤ (αi+1 − αi )r2i , which is equivalent
to 2i+4Ki
(Ki )εi/r2i ≤ α. By the definition of εi , we need to prove

Ei ≤ 1

(2i+4 − 4)Ki
(Ki )
. (4.20)

Recall e−Kiσi = 2i+4�(σi )Ei . By the definition of �(σi ), it follows that

1

Ki
(Ki )
= e−Kiσi

Ki
(Ki )e−Kiσi
= 2i+4�(σi )Ei

Ki
(Ki )e−Kiσi

≥ 2i+4�(σi )Ei

�(σi )
= 2i+4Ei ,
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then

Ei ≤ 1

2i+4Ki
(Ki )
≤ 1

(2i+4 − 4)Ki
(Ki )
,

which shows (4.20).

4.1.3 Convergence

Now we consider the convergence of the KAM iteration. Note that ri → 0 as i → ∞.
Let Di → D∗ = Ds/2,0 as i → ∞. We first consider the convergence of {�i }. The
proof is the same way as in [17]. First we have

‖W0D�i−1W
−1
i−1‖ ≤ ‖W0D�0W

−1
0 ‖‖W0W

−1
1 ‖‖W1D�1W

−1
1 ‖ · · · ‖Wi−3W

−1
i−2‖

‖Wi−2D�i−2W
−1
i−2‖‖Wi−2W

−1
i−1‖

≤
i−2∏

j=0

(
1 + c�

(
σ j
)
E j
)
.

By (4.13), if a�(σ)E0 < 1, then
∏∞

j=0(1+c�(σ j )E j ) < ∞. (4.15) and (4.16) imply
that

‖W0(�i − �i−1)‖U×Di = ‖W0(�i−1 ◦ �i−1 − �i−1)‖U×Di

≤ ‖W0D�i−1W
−1
i−1‖U×Di · ‖Wi−1(�i−1 − id)‖U×Di

≤ c�(σi−1)Ei−1, (4.21)

and so {�i } is convergent on D∗.
Note that �i has the same structure as �i , and recall z = (u, v)T . Let

�i (ξ ;w) = (Ai (x), y + Bi (x) + Ci (x)y + Di (x)z, z + Ei (x)).

Since {�i (ξ ;w)} is convergent for x ∈ Ts/2, y = 0, z = 0, then {Ai (x)} and
{Bi (x)}, {Ei (x)} are convergent as i → ∞ for x ∈ Ts/2. Below we prove that
{Ci (x)}, {Di (x)} are also convergent on Ts/2.

Let

�i (ξ ;w) = (ai (x), y + bi (x) + ci (x)y + di (x)z, z + ei (x)).

Then ai : x ∈ Tsi+1 → ai (x) ∈ Tsi . By the estimate for D� in Lemma 4.1, it follows
that

‖ci (x)‖ ≤ c�(σi )Ei , ‖di (x)‖ ≤ c�(σi )Eiri , x ∈ Tsi+1 .
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Moreover,

(
I dn + Ci (x) Di (x)

0 I d2m

)
=

i−1∏

j=0

(
I dn + c j (x̃ j (x)) d j (x̃ j (x))

0 I d2m

)
,

where I dk indicates the k-th unit matrix and

x̃ j (x) = a j ◦ a j−1 ◦ · · · ◦ ai−1(x), x̃ j : x ∈ Tsi → x̃ j (x) ∈ Ts j+1 .

Then we have

‖c j (x̃ j (x))‖ ≤ c�(σi )Ei , ‖d j (x̃ j (x))‖ ≤ c�(σi )Eiri , x ∈ Tsi .

Thus, as i → ∞, {Ci (x)} and {Di (x)} are convergent on Ts/2. So �i is actually
convergent on Ds/2,r/2. Let �∗ = limi→∞ �i .

Note thatωi = ω0+∑i−1
j=0 ω̂ j . By (4.19), it followsωi → ω∗ as i → ∞, moreover,

|ω∗ − ωi | ≤
∞∑

j=i

α j E j ≤ 2αi Ei .

In particular, noting ω0 = ω, we have

|ω∗ − ω| ≤ 2αE0.

Also note Qi = ∑i−1
j=0 Q̂ j . (4.19) implies Qi → Q∗ as i → ∞. Recall that

E0 = γ. If γ is sufficiently small,

‖Qi‖U×Tsi
≤

i−1∑

j=0

c�(σ j )E j ≤ c�(σ)E0 = c�(σ)γ � 1.

Thus limi→∞ Ni = N∗, where

N∗ = 〈
ω∗, y

〉+ 〈
�u, v

〉+ 〈
Q∗(ξ ; x)z, z〉. (4.22)

Let Pi → P∗, then P∗ ∈ C�;a(U × Ds/2,r/2). By (4.14) and Cauchy’s estimate we
have ∂y P∗ = 0, ∂z P∗ = 0, ∂2zz P∗ = 0 for (y, z) = (0, 0). Thus,

P∗(ξ ;w) =
∑

2|i |+| j |+|l|>2

P∗β(ξ ; x)w̄β, w̄β = yi u jvl . (4.23)
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Let Ũ∗ = {ξ ∈ Ũ | ω∗(ξ) ∈ RK
α }. We are going to prove that Ũ∗ ⊂ Ũi for ∀i ≥ 0.

Recall that 2i+4Ki
(Ki )εi/r2i ≤ α. For ξ ∈ Ũ∗ and 0 < |k| ≤ Ki ,

|〈k, ωi (ξ)
〉| ≥ |〈k, ω∗(ξ)

〉| − |〈k, ω∗(ξ) − ωi (ξ)
〉| ≥ α


(|k|) − 2εi
r2i

Ki ≥ αi


(|k|) ,

thus ωi (ξ) ∈ RKi
αi , ∀i ≥ 0 and so Ũ∗ ⊂ Ũi , ∀i ≥ 0.

By (4.17), it follows that

H ◦ �i = Ni + Pi , (ξ ;w) ∈ Ũ∗ × Di .

Taking the limit (as i → ∞) in the above equation, we get

H ◦ �∗ = N∗ + P∗, (ξ ;w) ∈ Ũ∗ × Ds/2,r/2,

where N∗ and P∗ are given in (4.22) and (4.23). Thus, we finish the proof.
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Appendix

Lemma 5.1 Let λ1, λ2, · · · λ2m be the eigenvalues of matrix Q0 with |Reλi | ≥ δ0 > 0,
for any i = 1, 2, · · · 2m. Set g(x) ∈ A, where A denotes the analytic function space
defined on the strip Ts, among which Ts = {x ∈ C

n/2πZn : |Imx |∞ ≤ s}. There
exists a sufficiently small ε0 > 0, such that for Q̂(x) ∈ A, if ||Q̂||Ts ≤ ε0, then the
equation

〈
ω, ∂x f (x)

〉− (Q0 + Q̂(x)) f (x) = g(x)

has a unique solution f (x) ∈ A, with

|| f ||Ts ≤ c||g||Ts .

Proof Let L f = 〈
ω, ∂x f (x)

〉 − Q0 f (x), f ∈ A. Then L : A → A is a linear
operator. By assumption, the matrix Q0 is hyperbolic, the operator L has a bounded
inverse with ‖L−1‖ ≤ 1

δ0
. By Banach fixed point theorem, it is easy to follow this

lemma and we omit the details. ��
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Let 
̄ be an approximation function satisfying (2.2) and (2.3). Let

�̄(σ ) = sup
t≥0


̄(t)e−σ t .

Define

�̄(σ ) = inf
∞
�
j=0

�̄(σ j )
κ j , κ j = κ − 1

κ j+1 with κ = 4

3
, (5.1)

where the infimum is taken for sequences {σ j } satisfying
σ0 ≥ σ1 ≥ σ2 ≥ · · · > 0 and σ0 + σ1 + σ2 + · · · ≤ σ.

We first state a lemma which is proved in [17]. We also refer it to [18].

Lemma 5.2 (Lemma A.1 [17]) For all σ > 0, the function �̄(σ ) is finite. More
precisely, if

1

logκ

∫ ∞

T

log
(

̄(t)

)

t2
dt ≤ σ,

then

�̄(σ ) ≤ e(κ−1)σT .

Let 
 be an approximation function satisfying (2.2) and (2.3). Let � ≥ 0 and

�(σ) = sup
t≥0

(1 + t)�+2
�+2(t)e−σ t .

Define

�(σ) = inf
∞
�
j=0

�(σ j )
κ j , κ j = κ − 1

κ j+1 with κ = 4

3
, (5.2)

where the infimum is taken for sequences {σ j } satisfying

σ0 ≥ σ1 ≥ σ2 ≥ · · · > 0 and σ0 + σ1 + σ2 + · · · ≤ σ.

Since 
 is an approximation function, it is easy to check that (1 + t)�+2
�+2(t)
is also an approximation function. By Lemma 5.2 with 
̄(t) = (1+ t)�+2
�+2(t), it
follows that for all σ > 0, �(σ) is finite.

Lemma 5.3 The supremum in the definition of �(σ) can be attained. Moreover, the
infimum in the definition of �(σ) can also be attained. More precisely, for any σ > 0,
there exists a sequence σ ∗

0 ≥ σ ∗
1 ≥ σ ∗

2 ≥ · · · > 0 such that
∑∞

i=0 σ ∗
i = σ and

�(σ) = ∞
�
j=0

�(σ ∗
j )

κ j .
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Proof This lemma is actually proved in [17, 18]. However, because of small divisor
conditions, our definitions of � and � are different. For the convenience of readers,
we give the proof, but the idea is the same as in [17, 18].

At first, by assumption (2.2) we have log(
(t))
t → 0, 0 ≤ t → ∞. Then it is easy

to see that the supremum �(σ) = supt≥0(1+ t)�+2
�+2(t)e−σ t is attained and finite.
Note that

�(σ) = inf
∞
�
j=0

�(σ j )
κ j , κ j = κ − 1

κ j+1 with κ = 4

3
.

Let

f (σ̃ ) = ∞
�
j=0

�(σ j )
κ j ,

where

σ̃ = (σ0, σ1, σ2, · · · σn, · · · ) ∈ l1.

We consider f (σ̃ ) as a functional on l1.
Note that the weakly convergence in l1 implies the pointwise convergence. Then

f (σ̃ ) is weakly lower semi-continuous on the set:

A =
⎧
⎨

⎩(σ0, σ1, σ2, · · · σn, · · · ) |
∑

j≥0

σ j ≤ σ, σ j > 0,∀ j ≥ 0

⎫
⎬

⎭ .

In fact, let σ̃k⇀σ̃ , that is,

σk j → σ j , k → ∞, ∀ j = 0, 1, 2 · · · .

Moreover,

lim
k→∞

�(σk j ) ≥ lim
k→∞

(1 + t)�+2
�+2(t)e−σk j t = (1 + t)�+2
�+2(t)e−σ j t , ∀t ≥ 0,

thus,

lim
k→∞

�(σk j ) ≥ sup
t≥0

(1 + t)�+2
�+2(t)e−σ j t = �(σ j ).

Then

lim
k→∞

f (σ̃k) ≥
∞∏

j=0

lim
k→∞

�(σk j ) ≥
∞∏

j=0

�(σ j ) = f (σ̃ ).
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Also note that if σ j → 0, we have f (σ̃ ) → +∞. And A is a bounded set of
l1. Then the infimum inf σ̃∈A f (σ̃ ) can be attained. Thus, there exists a sequence
σ ∗
0 ≥ σ ∗

1 ≥ σ ∗
2 ≥ · · · > 0 such that

∑∞
i=0 σ ∗

i ≤ σ and

�(σ) = f (σ̃∗) = ∞
�
j=0

�
(
σ ∗
j

)κ j
,

where σ̃∗ = (σ ∗
0 , σ ∗

1 , σ ∗
2 , · · · ). Now we can prove

∑∞
i=0 σ ∗

i = σ by contradiction.
If not so, that is,

∑∞
i=0 σ ∗

i < σ, then there exists a sequence {σ ′
i } such that σ ∗

i <

σ ′
i , ∀i ≥ 0, and

∑∞
i=0 σ ′

i = σ. Obviously, f (σ̃ ′) < f (σ̃∗), which is a contradiction.
Thus,

∑∞
i=0 σ ∗

i = σ .
In addition, the infimum is not only attainable, but also finite. This conclusion can

follow from Lemma 5.2. ��

If the approximation function 
(t) is absolutely continuous and for almost every
t ≥ 0, assume that

d

dt
log
(

(t)

) ≥ 1

1 + t
, (5.3)

then 
(t) is called a sufficiently increasing function. Without saying it directly, we
assume that all approximation functions in this paper are sufficiently increasing.

Lemma 5.4 If the approximation function 
(t) is sufficiently increasing, then it fol-
lows

��+1(σ ) ≤ σ

2(� + 1)
��+2(σ ), � ≥ 0,

where ��+1(σ ) = sup
t≥0

(1 + t)�+1
�+1(t)e−σ t .

Proof Assume that the approximation function
(t) is sufficiently increasing, if σ(1+
t) ≤ 2(� + 1), we can get

d

dt
log
(
(1 + t)�+1
�+1(t) − σ t

) ≥ d

dt
log
(
(1 + t)�+1
�+1(t)

)− 2(� + 1)

1 + t
≥ 0,

then (1+ t)�+1
�+1(t)e−σ t can get the supremum at some point t∗ and the inequality
σ(1 + t∗) ≥ 2(� + 1) holds true. Thus, it follows
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��+1(σ ) = (1 + t∗)�+1
�+1(t∗)e−σ t∗ ≤ σ

2(� + 1)
(1 + t∗)�+2
�+1(t∗)e−σ t∗

≤ σ

2(� + 1)
��+2(σ ).

The conclusion is proven. ��
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