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Abstract
In this paper, we study the nonlinear Schrödinger equation with L2-norm constraint

{−�u = λu + |u|p−2u + h(x)|u|q−2u in RN ,∫
RN u2dx = c2,

where c > 0, N ≥ 3, 1 ≤ q < 2 < p < 2 + 4
N , h ∈ L

2
2−q (RN ) and λ ∈ R

is Lagrange multiplier, which appears due to the mass constraint |u|2 = c. We use
barycentric functions and minimax method to prove that for any c > 0, there exists a
positive solution u ∈ H1(RN ) for some λ < 0.

Keywords Normalized solution · Deformation lemma · Barycentric functions ·
Brouwer degree

1 Introduction andMain Results

In this paper, we study the existence of solutions for the following elliptic problem
with L2-norm constraint
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{−�u = λu + |u|p−2u + h(x)|u|q−2u in RN ,∫
RN u2dx = c2,

(1.1)

where c > 0, N ≥ 3, 1 ≤ q < 2 < p < 2 + 4
N , h ∈ L

2
2−q (RN ) and λ ∈ R is

Lagrange multiplier, which appears due to the mass constraint |u|2 = c.
The energy functional of (1.1) is defined by

I (u) = 1

2

∫
RN

|∇u|2dx − 1

p

∫
RN

|u|pdx − 1

q

∫
RN

h(x)|u|qdx, ∀u ∈ H1(RN ).

For c > 0, we define

Sc := {u ∈ H1(RN ) : |u|2 = c}.

In the last decade, the existence and the properties of the solutions to the
nonhomogeneous problem

{−�u = λu + g(x, u) in RN ,

u ∈ H1(RN )
(1.2)

has been studied by many peoples. When g(x, u) = a(x) f (u), Lehrer and Maia [22]
studied (1.2) via Pohozǎev manifold, where N ≥ 3, λ < 0, f is asymptotically linear
at infinity and a satisfies suitable conditions. The authors obtained the existence of
high energy solutions. When g(x, u) = f (x, u) + h(x), (1.2) turns to

{−�u = λu + f (x, u) + h(x) in RN ,

u ∈ H1(RN ).
(1.3)

For the homogeneous case, i.e. h(x) = 0 (which means 0 is a trivial solution of
(1.3)) has been studied extensively (see e.g. [3, 10, 21, 23]). For the nonhomoge-
neous case (h(x) �≡ 0), this problem without trivial solutions and presents specific
mathematical difficulties. When f (x, u) = a(x)|u|p−2u, Adachi and Tanaka [1]
obtained the existence of at least four positive solutions under the assumptions:
0 < a(x) ≤ a∞ = lim|x |→∞ a(x), h ∈ H−1(RN ) is nonnegative and satisfy-
ing ||h||H−1(RN ) sufficiently small. Zhu [29] obtained the existence of two positive
solutions for the following problem

{−�u = λu + |u|p−2u + h(x) in RN ,

u ∈ H1(RN ),
(1.4)

where h(x) ∈ L2(RN ), h(x) > 0, and 1 < p < N+2
N−2 (N ≥ 3), 1 < p < +∞(N =

2). In [11, 15], the authors studied the Sobolev subcritical perturbation problem with
fixed frequency and proved that this problem has at least one positive solutionwhen the
perturbation is small enough (h may be in different spaces). Moreover, some authors
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also considered the qualitative and asymptotic analysis of solutions to some related
elliptic problem, we refer to [25–28] and the references therein.

In this paper, we consider the normalized solutions to the nonhomogeneous elliptic
equations (1.1). In what follows, we recall some basic facts concerning the existence
of normalized solutions for nonlinear Schrödinger equations in R

N . It is well known
that the following problem

− �u = λu + |u|p−2u, u > 0 in RN (1.5)

has a unique solution(up to a translation), which is radial, radially decreasing. In
addition, there are two exponents which play a crucial role on the existence and profile
of the solutions for (1.5) with L2−norm constraint: in addition to the Sobolev critical
exponent p = 2∗, we have the mass-critical exponent p = 2+ 4

N . If 2 < p < 2+ 4
N

(mass-subcritical regime), then the energy functional associated to (1.5) is bounded
from below on the L2−sphere Sc, while if p ≥ 2 + 4

N (mass-critical or supercritical
regime) this is not true and one is forced to search for critical points that are not global
minima. For mass-supercritical case, Jeanjean [18] considered the problem

{−�u = λu + f (u) in RN ,∫
RN u2dx = c2,

(1.6)

where N ≥ 1, f is mass supercritical and Sobolev subcritical. A model nonlinearity
is f (u) = ∑k

j=1 |u|p j−2u with 2+ 4
N < p j < 2∗ for all j . Jeanjean obtained a radial

solution (u, λ) ∈ H1
rad(R

N ) × R
+ of (1.6) by a mountain pass argument for I on

Sc ∩ H1
rad(R

N ). In [2] the authors obtained the existence of infinitely many solutions
of (1.6) under the same assumptions as in [18]. For mass-subcritical case, Hirata and
Tanaka [14] employed a version of symmetric mountain pass argument on H1

r (RN ) to
derive the existence and multiplicity of normalized solution for problem (1.6). Here
H1
r (RN ) denotes the space of radial H1−functions onRN . Recently, Jeanjean and Lu

developed a new minimax theorem with index theory in [19], and used that theorem
to give another proof of the result due to Hirata and Tanaka. This has been done in the
recent paper [9] by Chen and Zou who considered the problem

{−�u = λu + |u|p−2u + h(x) in RN ,∫
RN u2dx = c2.

For the mass-subcritical case 2 < p < 2 + 4
N , they proved that there exists a global

minimizer with negative energy for arbitrarily positive perturbation. Secondly, for the
mass-supercritical case 2+ 4

N < p < 2∗ where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = +∞ if

N = 1, 2, when h is a small radial positive function, they proved that the existence of
a mountain pass solution with positive energy. We would like to mention that recently
various results have been obtained for normalized solutions, we refer to [4–7, 13, 16]
and the references therein.

In this paper, we suppose that
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(h1) h ∈ L
2

2−q (RN ), h(x) ≤ 0, h(x) < 0 on a set with positive measure and

|h| 2
2−q

<
(η − 1)m∞

c

cq
,

where m∞
c and η are defined in (2.10) and Lemma 3.1, respectively.

In light of the above discussion and mainly motivated by the results in [8, 30], we
focus our attention on problem (1.1) and establish the existence of positive high energy
solutions. It seems this is the first contribution to the high energy solution for problem
(1.1). We aim to establish the following result:

Theorem 1.1 Let N ≥ 3, 1 ≤ q < 2 < p < 2 + 4
N and h satisfies (h1). Then for any

c > 0, problem (1.1) has a positive solution u ∈ Sc for some λ < 0.

Remark 1.2

(i) To the best of our knowledge, it seems only [9] studied the normalized solution
for such a perturbed equation. In [9], Chen and Zou proved that there exists a
ground state normalized solution with negative energy for arbitrarily positive
perturbation(h(x) ≥ 0). In this case, inequality c(a + b) < c(a) + c∞(b) plays
a crucial role in proving the convergence of this minimizing sequence. In this
paper, we assume that h(x) ≤ 0, in this case, we do not need to prove that
inequality c(a+b) < c(a)+c∞(b) holds. In fact, we obtain the convergence of
non-negative Palais-Smale sequences of I |Sc by a local compactness result(see
Lemma 3.2).

(i i) The question of finding normalized solutions is already interesting for scalar
equations and provides features and difficulties that are not present in the fixed
frequency problem. And thus the existence of normalized solutions becomes
nontrivial and many techniques developed for the fixed frequency problem
can not be applied directly. A series of theories and tools related to fixed fre-
quency problem have been developed, such as fixed point theory, bifurcation,
the Lyapunov-Schmidt reduction, Nehari manifold method, mountain pass the-
ory and many other linking theories. However, for the fixed mass problem,
the normalization constraint certainly brings too much trouble in mathematical
treatment. Comparing to the fixed frequency problem, the fixed mass prob-
lem possesses the following technical difficulties when dealing with it in the
variational framework:

(a) One can not use the usual Nehari manifold method since the frequency is
unknown.

(b) The existence of bounded Palais-Smale sequences requires new arguments.
(c) The Lagrange multipliers have to be controlled.
(d) The embedding H1(RN ) ↪→ L2(RN ) is not compact. For the fixed frequency

problem, usually a nontrivial weak limit is also a solution. However, for the
fixed mass problem, even the weak limit is nontrivial, the constraint condition
may be not satisfied.

(e) For the the general mass subcritical problem, we only need to prove the conver-
gence of the minimizing sequence to obtain a solution to the problem. But the
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perturbation term h(x)|u|q−2u with h(x) ≤ 0 makes it different from the gen-
eral mass subcritical case. In this paper, we can not search for the minimizer of
I in Sc since it does not exist. This fact is proved in Sect.2. Secondly, it is hard
to get the range of energy levels corresponding to pre-compact Palais-Smale
sequences of I |Sc since the embedding H1(RN ) ↪→ L p(RN ) for 2 < p < 2∗
is not compact. Finally, we need to find a solution in a high energy level.

(i i i) To prove Theorem 1.1, we follow the approach in [8, 30]. Firstly, we can show
that problem (1.1) does not have a ground state solution(see Lemma 2.3). Hence,
we need to find a solution in the high energy level. To this aim, we use Splitting
Lemma and carefully analyse the relation between λ and the energy levels of
non-negative Palais-Smale sequences of I |Sc to get the compactness of such
sequences with energy levels close to the infimum of I in Sc(see Lemma 3.1).
Finally, we prove our main result by topological methods.

This work is organized as follows. In Sect. 2, we introduce the variational formu-
lation of (1.1), some notations and show that the problem (1.1) has no ground state
solution. In Sect. 3, we establish a compactness result for some non-negative Palais-
Smale sequences, which are essential to carry out the proof of our main theorem.
Finally in Sect. 4, we prove Theorem 1.1.

2 Preliminaries and Nonexistence Result

In this section, we introduce some notations, some known results which will be used
in this paper and prove that (1.1) has no ground state solution for any c > 0.

Let H1(RN ) be a Sobolev space with the standard norm

||u||2 =
∫
RN

|∇u|2dx +
∫
RN

|u|2dx, ∀u ∈ H1(RN ).

Moreover, throughout this paper, wewill use the notation |·|s = |·|Ls (RN ), s ∈ [1,∞).
Let

I∞(u) = 1

2

∫
RN

|∇u|2dx − 1

p

∫
RN

|u|pdx, ∀u ∈ H1(RN ).

For λ < 0, u ∈ H1(RN ), we define

Iλ(u) = 1

2

∫
RN

|∇u|2dx + −λ

2

∫
RN

|u|2dx − 1

p

∫
RN

|u|pdx − 1

q

∫
RN

h(x)|u|qdx

and

I∞
λ (u) = 1

2

∫
RN

|∇u|2dx + −λ

2

∫
RN

|u|2dx − 1

p

∫
RN

|u|pdx .
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In what follows, we recall the Gagliardo-Nirenberg inequality (see [24]). For any
2 < α < 2∗, there exists a sharp constant C(N , α) > 0 such that

|u|α ≤ C(N , α)|∇u|γα

2 |u|1−γα

2 , where γα := N (α − 2)

2α
. (2.1)

It is well-known that the following problem

⎧⎨
⎩

−�u = −u + u p−1 in RN ,

u > 0 in RN ,

u(0) = maxRN u
(2.2)

has a unique solution wp in H1(RN ), which is radial, radially decreasing and belongs
to C2(RN ) (see [20]). For λ < 0, we denote

wλ,p(x) := (−λ)
1

p−2 wp(
√−λx), ∀x ∈ R

N . (2.3)

Then wλ,p is the unique solution(up to a translation) of

− �u = λu + u p−1, u > 0 in RN . (2.4)

Moreover, there exists c > 0 (see [21] and the references therein) such that

wλ,p(x)|x | N−1
2 e

√−λ|x | → c as |x | → ∞,

w′
λ,p(r)r

N−1
2 e

√−λr → −c
√−λ as r = |x | → +∞.

(2.5)

Lemma 2.1 (Splitting Lemma). For any λ < 0, let {un} ⊆ H1(RN ) be a non-negative
Palais-Smale sequence of Iλ. Then up to a subsequence, there exists a number l ∈
N ∪ {0}, a non-negative function u0 ∈ H1(RN ), l sequences of points {yin} ⊆ R

N for
1 ≤ i ≤ l such that |yin| → +∞ as n → ∞ and

un = u0 +
l∑

i=1

wλ,p(· + yin) + on(1) in H1(RN ). (2.6)

Furthermore, u0 is a weak solution of

− �u = λu + u p−1 + h(x)|u|q−2u in RN , (2.7)

and

|un|22 = |u0|22 + l|wλ,p|22 + on(1), (2.8)

Iλ(un) = Iλ(u0) + l I∞
λ (wλ,p) + on(1). (2.9)
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The proof of Lemma 2.1 can be found in [ [8], Lemma 3.1]. The difference is that
[8] deals with external domains, not withRN . However, in combination with condition
(h1), the proof is similar.

We denote

mc := inf
u∈Sc

I (u), m∞
c := inf

u∈Sc
I∞(u). (2.10)

Lemma 2.2 (Lemma 3.1, [30]). For any c > 0, m∞
c ∈ (−∞, 0). Moreover, if {un} ⊆

Sc is a non-negative minimizing sequence for I∞ in Sc, then up to a subsequence,
there exists {yn} ⊆ R

N such that

un(· − yn) → wλ,p strongly in H1(RN ) as n → ∞,

where λ < 0 is determined by

c2 = (−λ)sp |wp|22, sp := 2

p − 2
− N

2
. (2.11)

In particular, m∞
c is attained by the function wλ,p and can be expressed as

m∞
c =

(
c2

|wp|22

) sp+1
sp

I∞(wp). (2.12)

We define the map � : RN → Sc

�[y] = wλ,p(· − y).

Lemma 2.3 mc = m∞
c ∈ (−∞, 0) and mc could not be attained.

Proof For any u ∈ H1(RN )\{0}, by (h1), we have I∞(u) ≤ I (u), then m∞
c ≤ mc.

Next, we prove that mc ≤ m∞
c . Considering {yn} ⊂ R

N , |yn| → ∞, we have

�[yn] ∈ Sc. Moreover, by h ∈ L
2

2−q (RN ), we have

∫
RN

h(x)|wλ,p(x − yn)|qdx → 0 as n → ∞,

which implies that

mc ≤ lim
n→∞ I (�[yn]) = lim

n→∞ I∞(�[yn]) = m∞
c .

Therefore, mc = m∞
c ∈ (−∞, 0).

We suppose that there exists a critical point u ∈ H1(RN ) of I at level mc. By a
direct calculation,

m∞
c ≤ I∞(u) = I (u) + 1

q

∫
RN

h(x)|u|qdx = mc + 1

q

∫
RN

h(x)|u|qdx,
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then,

∫
RN

h(x)|u|qdx = 0, (2.13)

that is, I∞(u) = m∞
c . By Lemma 2.2, we have u = wλ,p up to a translation, where

λ < 0 is determined by (2.11). Since wλ,p > 0 in R
N , we deduce that u > 0 in R

N .
Moreover, by (h1), we have

∫
RN

h(x)|u|qdx < 0,

which contradicts to (2.13). ��

3 Compactness Result

In this section, we prove the compactness of some specific Palais-Smale sequence of
I in Sc.

Lemma 3.1 Let N ≥ 3, 1 ≤ q < 2 < p < 2 + 4
N , c > 0. Then, there exists a

positive constant η = η(c) ∈ (2−1/sp , 1) depending on c such that if {un} ⊆ Sc is a
nonnegative Palais-Smale sequence of I |Sc at level d with m∞

c < d < ηm∞
c , then up

to a subsequence, there exists u0 ∈ Sc such that

un → u0 strongly in H1(RN ) as n → ∞.

Furthermore, u0 is a positive solution of (1.1) for some λ < 0.

Proof Since 2 < p < 2 + 4
N , we have sp > 0, then 0 < 2−1/sp < 1. By Lemma 2.2,

we get

m∞
c < ηm∞

c < 2−1/spm∞
c < 0. (3.1)

Let {un} ⊆ Sc be a nonnegative Palais-Smale sequence of I |Sc at level d, where
d ∈ (m∞

c , 2−1/spm∞
c ). By I (un) → d < 0 as n → ∞ and

I (un) = 1

2
|∇un|22 − 1

p
|un|pp − 1

q

∫
RN

h(x)|un|qdx

≥ 1

2
|∇un|22 − 1

p
C p(N , p)cp(1−γp)|∇un|pγp − |h| 2

2−q
cq ,

which implies that I is coercive in Sc. Then {un} is bounded in H1(RN ). Moreover,
( I |Sc )′(un) = on(1). By the Lagrange multiplier rule, there exists {λn} ⊆ R such that

∫
RN

∇un∇ψdx − λn

∫
RN

unψdx −
∫
RN

u p−1
n ψdx −

∫
RN

h(x)uq−1
n ψdx
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= on(1)‖ψ‖, ∀ψ ∈ H1(RN ). (3.2)

By {un} ⊆ Sc is bounded in H1(RN ), then from (3.2), we have

− λnc
2 = |un|pp − |∇un|22 +

∫
RN

h(x)|un|qdx + on(1)||un||, (3.3)

which implies that {λn} is bounded, up to a subsequence, there exists λ ∈ R such that
λn → λ as n → ∞. Furthermore, by p > 2 and I (un) → d < 0 as n → ∞, we have

−λnc
2 =|un|pp − |∇un|22 +

∫
RN

h(x)|un|qdx + on(1)

= − pI (un) + p − 2

2
|∇un|22 + (1 − p)

∫
RN

h(x)|un|qdx + o(1)

≥ − pd + o(1).

Letting n → ∞, we get

− λ ≥ −pd

c2
> 0. (3.4)

Thus λ < 0. By (3.2) and {un} ⊆ H1(RN ) is bounded, we see that {un} is a Palais-
Smale sequence of Iλ. By Lemma 2.1, up to a subsequence, there exists an integer
l ≥ 0, a non-negative function u0 ∈ H1(RN ), l sequences {yin} ⊆ R

N for 1 ≤ i ≤ l
such that |yin| → +∞ as n → ∞ and

un = u0 +
l∑

i=1

wλ,p(· + yin) + on(1) in H1(RN ). (3.5)

In addition, u0 is a solution of

− �u = λu + u p−1 + h(x)|u|q−2u in RN , (3.6)

and

c2 = |u0|22 + l|wλ,p|22, (3.7)

Iλ(un) = Iλ(u0) + l I∞
λ (wλ,p) + on(1). (3.8)

Since

Iλ(v) = I (v) + −λ

2
|v|22 for v ∈ H1(RN )

and

I∞
λ (v) = I∞(v) + −λ

2
|v|22 for v ∈ H1(RN ),
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by (3.7), (3.8), Lemmas 2.2 and 2.3, we have

d = I (u0) + lm∞|wλ,p |2
≥ m∞|u0|2 + lm∞|wλ,p |2

= C

[
(c2 − l|wλ,p|22)

sp+1
sp + l(|wλ,p|22)

sp+1
sp

]
,

(3.9)

where

C := (|wp|22)−
sp+1
sp I∞(wp) < 0.

Next,wewill divide into three steps to prove that there existsη = η(c) ∈ (2−1/sp , 1)
such that if m∞

c < d < ηm∞
c , then l = 0.

Step 1. If m∞
c < d < 2−1/spm∞

c , then |wλ,p|22 ≥ kc2, where

k := 1

2

[
−pI∞(wp)

|wp|22

]sp

∈
(
0,

1

2

)
.

In fact, by (3.4) and Lemma 2.2, we have

|wλ,p|22 = (−λ)sp |wp|22 ≥
(−pd

c2

)sp
|wp|22

≥
(−p2−1/spm∞

c

c2

)sp

|wp|22
= kc2.

Moreover, wp is a solution of (2.2), then we have

|∇wp|22 + |wp|22 = |wp|pp.

Therefore,

I∞−1(wp) =
(
1

2
− 1

p

) (
|∇wp|22 + |wp|22

)
>

(
1

2
− 1

p

)
|wp|22.

Note that I∞(wp) = I∞−1(wp) − 1
2 |wp|2 < 0, we have

0 <
−pI∞(wp)

|wp|22
< 1.

Since sp > 0, we deduce that k ∈ (
0, 1

2

)
.
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Step 2. Let

k1 := k(sp+1)/sp + (1 − k)(sp+1)/sp ∈ (2−1/sp , 1).

If m∞
c < d < k1m∞

c , then l ≤ 1. Indeed, for l ≥ 1, we consider

Fl(t) := (c2 − lt)
sp+1
sp + lt

sp+1
sp , ∀ 0 ≤ t ≤ c2

l
.

Here we point out that Fl(t) is actually the transformation form of (3.9). Evidently,
Fl ∈ C1([0, c2

l ]) and

F ′
l (t) = sp + 1

sp
l
[
t1/sp − (c2 − lt)1/sp

]
, ∀ t ∈

[
0,

c2

l

]
.

Let tl := c2
l+1 , then Fl is strictly decreasing in [0, tl ] and strictly increasing in [tl , c2

l ].
Thus,

min
t∈[0,c2/l]

Fl(t) = Fl(tl) = (l + 1)
− 1

sp (c2)
sp+1
sp > 0.

Combining Step 1 and (3.7), we have l ≤ k−1. Let

h(l) := (1 − lk)(sp+1)/sp + lk(sp+1)/sp , ∀l ∈ [1, k−1].

It is obvious that h ∈ C1([1, k−1]) and

h′(l) = k(sp+1)/sp − k
sp + 1

sp
(1 − lk)

1
sp , ∀l ∈ [1, k−1].

Let

l0 := 1

k
−

(
sp

sp + 1

)sp
∈ (1, k−1).

Then h is strictly decreasing in [1, l0] and strictly increasing in [l0, k−1]. If l ≥ 2, by
(3.9), we have

d ≥ C max{Fl(kc2), Fl(c2/l)} = max{h(l), l−1/sp }m∞
c

≥ max{h(1), h(k−1), 2−1/sp }m∞
c

= k1m
∞
c ,

contradicting to d < k1m∞
c . Hence l ≤ 1.

Step 3. There exists η = η(c) ∈ [k1, 1) such that if m∞
c < d < ηm∞

c , then l = 0.
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By Step 2, we have l ≤ 1. If u0 ≡ 0, then by (3.7) and (3.9), we have d = 0 or
d = m∞

c , which contradicts to m∞
c < d < 0. Hence, u0 �≡ 0. From (3.7), we have

|∇u0|22 − λ|u0|22 = |u0|pp +
∫
RN

h(x)|u0|qdx . (3.10)

Combining Sobolev inequality and (3.10), there exists C1 > 0 independent of u0 and
λ such that

min{1,−λ}(|∇u0|22 + |u0|22) ≤ |u0|pp +
∫
RN

h(x)|u0|qdx

≤ C1(|∇u0|22 + |u0|22)
p
2 .

By u0 �≡ 0, λ < 0 and p > 2, we have

|∇u0|22 + |u0|22 ≥
(
min{1,−λ}

C1

) 2
p−2

> 0. (3.11)

On the other hand, by (3.10), (2.1) and λ < 0, we have

|∇u0|22 ≤ |u0|pp ≤ C(N , p)|∇u0|pγp
2 |u0|p(1−γp)

2 .

Since 2 < p < 2 + 4
N , that is, 0 < pγp < 2. Then,

|∇u0|2 ≤ C
p

2−pγp (N , p)|u0|
p(1−γp )

2−pγp
2 . (3.12)

Thus, together with (3.4), (3.11), (3.12) and d < 2−1/spm∞
c , it follows that

C
p

2−pγp (N , p)|u0|
p(1−γp )

2−pγp
2 |u0|22

≥
(

1

C1
min

{
1,−p2−1/sp m

∞
c

c2

}) 2
p−2

> 0,

(3.13)

which implies that there exists C(c) > 0 such that

|u0|22 ≥ C(c).

Denote

η(c) :=

⎧⎪⎨
⎪⎩
k1, if c2 ≤ C(c),

max

{
k1,

F1(c2−C(c))

(c2)
sp+1
sp

}
if c2 > C(c).

(3.14)
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If c2 ≤ C(c), together with |u0|22 ≥ C(c) and (3.7), we find that |u0|22 = c2 and
l = 0.

If c2 > C(c), then 0 < c2 − C(c) < c2 and hence

0 < F1(c
2 − C(c)) < max{F1(0), F1(c2)} = (c2)

sp+1
sp ,

which implies that 0 <
F1(c2−C(c))

(c2)
sp+1
sp

< 1. Therefore, η(c) ∈ [k1, 1). If l = 1, then it

follows from Step 1 and (3.7), we have

kc2 ≤ |wλ,p|22 ≤ c2 − C(c).

Then, by (3.9), we deduce that

d ≥ C max{F1(kc2), F1(c2 − C(c))} ≥ η(c)m∞
c ,

which contradicts to d < η(c)m∞
c . Hence l = 0. ��

4 Proof of Theorem 1.1

In this section, let c > 0, N ≥ 3 and 1 ≤ q < 2 < p < 2+ 4
N . We focus on the proof

of Theorem 1.1.

Lemma 4.1 Assume that h satisfy (h1). Then

sup
y∈RN

I (�[y]) < ηm∞
c , (4.1)

where η = η(c) ∈ (0, 1) is defined in (3.14).

Proof By (h1), we have

I (�[y]) = I∞(�[y]) + (I (�[y]) − I∞(�[y]))
= m∞

c +
∫
RN

h(x)|wλ,p|qdx
≤ m∞

c + |h| 2
2−q

|wλ,p|q2
= m∞

c + |h| 2
2−q

cq

< ηm∞
c .

��
Next, we define the barycentre of a function u ∈ H1(RN )\{0}. Let

μ(u)(x) = 1

|Br |
∫
Br (x)

|u(y)|dy,
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with μ(u) ∈ L∞(RN ) and μ is a continuous function. Subsequently, take

û(x) =
[
μ(u)(x) − 1

2
maxμ(u)

]+
.

It follows that û ∈ C0(R
N ). Now, we define the barycenter of u by

β(u) = 1

|û|L1

∫
RN

xû(x)dx ∈ R
N .

Since û has compact support, by definition, β(u) is well defined. The function β

satisfies the following properties:

(a) β is a continuous function in H1(RN )\{0}.
(b) If u is radial, then β(u) = 0.
(c) β(tu) = β(u).
(d) Given y ∈ R

N and defining uy(x) := u(x − y), then β(uy) = β(u) + y.
Let P be the cone of non-negative functions of H1(RN ). Define

M := {u ∈ P ∩ Sc : β(u) = 0}.

Moreover, by wλ,p ∈ M, we have M �= ∅. Therefore, we are allowed to define
b := infu∈M I (u).

Lemma 4.2 There holds b > m∞
c .

Proof By thedefinitionofb,wehaveb ≥ mc = m∞
c . To reach the conclusion,we argue

by contradiction. Indeed, suppose b = m∞
c , then there is a sequence {un} ⊆ P ∩ Sc

such that

β(un) = 0,∀n ≥ 1 and I (un) → m∞
c as n → ∞.

Thus, by Lemma 2.2, there exits a sequence {yn} ⊆ R
N such that

un(· − yn) → wλ,p as n → ∞ in H1(RN ). (4.2)

Then, we have

yn = β(un) + yn = β(un(x − yn)) → β(wλ,p) = 0 as n → ∞,

that is, limn→∞ yn = 0. From (4.2), we have un → wλ,p in H1(RN ) and I (un) →
I (wλ,p) = mc, which contradicts to Lemma 2.3. ��

Condition (h1) implies that I∞(�[y]) < I (�[y]), for any y ∈ R
N . By Lemma

4.2, b > m∞
c . By the definition of �[y] and Lemma 2.3, we have I (�[y]) → m∞

c as
|y| → ∞. Then there exists R̄ > 0 such that

m∞
c < max

|y|=R̄
I (�[y]) <

b + m∞
c

2
(4.3)
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for any R ≥ R̄. Next, we define a set � ⊂ P ⊂ H1(RN ) as follows:

� := {�(y) : |y| ≤ R̄}.

Let

H =
{
h ∈ C(P ∩ Sc,P ∩ Sc) : h(u) = u,∀u ∈ P ∩ Sc with I (u) <

b + m∞
c

2

}

and

� = {A ⊂ P ∩ Sc : A = h(�), h ∈ H}.

Lemma 4.3 If A ∈ �, then A ∩ M �= ∅.
Proof We just to show that for every A ∈ �, there exists u ∈ A such that β(u) = 0. It
suffices to prove that for every h ∈ H, there exists ỹ ∈ R

N with |ỹ| ≤ R̄ such that

(β ◦ h ◦ �)[ỹ] = 0.

For any h ∈ H, we define

J = β ◦ h ◦ � : RN → R
N

and F : [0, 1] × B̄R̄(0) → R
N given by

F(t, y) = tJ (y) + (1 − t)y.

We claim that 0 /∈ F(t, ∂ B̄R̄(0)). Indeed, for |y| = R̄, by (4.3), we have

I (�[y]) <
b + m∞

c

2
.

Hence,

F(t, y) = t(β ◦ �)[y] + (1 − t)y

and

(F(t, y), y) = t(β(�[y]), y) + (1 − t)(y, y).

If t = 0, then (F(t, y), y) = |y|2 = R̄2 > 0. If t = 1, then by β(�[y]) = y, we have
F(1, y) = (β(�[y]), y) = |y|2 > 0. If t ∈ (0, 1), then (F(t, y), y) > 0 since the
terms t, 1 − t, (β(�[y]), y) and |y|2 are all positive. Then, by the invariance under
homotopy of the Brouwer degree, one has

deg(F(t, ·), BR̄(0), 0) = deg(J , BR̄(0), 0) = 1, ∀t ∈ [0, 1].
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Then, there exists ỹ ∈ BR̄(0) such that J (ỹ) = 0, that is,

J (ỹ) = (β ◦ h ◦ �)[ỹ] = 0.

��
Now, let us denote

d := inf
A∈�

sup
u∈A

I (u), (4.4)

Kd = {u ∈ P ∩ Sc : I (u) = d and ∇ I |Sc (u) = 0},

and

Lγ = {u ∈ Sc : I (u) ≤ γ }

for every γ ∈ R.
Proof of Theorem 1.1. We will show that d given by (4.4) is a critical value, that is,

Kd �= ∅. First, we claim that

m∞
c < d < ηm∞

c .

In fact, by Lemma 4.3, for each A ∈ �, there is ũ ∈ A ∩ M. Hence,

b = inf
u∈M

I (u) ≤ inf
u∈A∩M

I (u) ≤ I (ũ) ≤ sup
u∈A∩M

I (u) ≤ sup
u∈A

I (u).

Since b > m∞
c , from Lemma 4.2, we have

m∞
c < b ≤ sup

u∈A
I (u), ∀A ∈ �.

Thus,

m∞
c < b ≤ inf

A∈�
sup
u∈A

I (u) = d.

By the definition of d,

d ≤ sup
u∈A

I (u), ∀A ∈ �,

it follows that

d ≤ sup
�[y]∈�

I (h(�[y])), ∀h ∈ H.
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Now, taking h ≡ I , we find

d ≤ sup
�[y]∈�

I (�[y]).

Hence,

d ≤ sup
|y|≤R̄

I (�[y]) ≤ sup
y∈RN

I (�[y]).

By Lemma 4.1, we have

d ≤ sup
y∈RN

I (�[y]) < ηm∞
c . (4.5)

Combining (4.4) and (4.5), one has

m∞
c < d < ηm∞

c .

Suppose on the contrary that Kd = ∅. Note that

b + m∞
c

2
≤ d + m∞

c

2
< d < ηm∞

c .

By Lemma 3.1 and the deformation lemma, there exists a continuous map

τ : [0, 1] × Sc ∩ P → Sc ∩ P

and a positive number ε0 such that

(a) Ld+ε0\Ld−ε0 ⊂⊂ Lηm∞
c

\L b+m∞
c

2
,

(b) τ (t, u) = u,∀u ∈ Ld−ε0 ∪ {Sc ∩ P\Ld+ε0} and for any t ∈ [0, 1], and
(c) τ (1, Ld+ ε0

2
) ⊂ Ld− ε0

2
.

Fix Ã ∈ � such that

d ≤ sup
u∈ Ã

I (u) < d + ε0

2
.

Since

I (u) < d + ε0

2
, for any u ∈ Ã,

it follows that

Ã ⊂ Ld+ ε0
2
.
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Now, by item (c) above, we have

I (u) < d − ε0

2
, for any u ∈ τ(1, Ã),

that is,

sup
u∈τ(1, Ã)

I (u) < d − ε0

2
. (4.6)

Moreover, we note that τ(1, ·) ∈ C(P ∩ Sc,P ∩ Sc). By Ã ∈ �, there exists h ∈ H
such that Ã = h(�). Then,

h̃ = τ(1, ·) ◦ h ∈ C(P ∩ Sc,P ∩ Sc).

By the definition ofH,

h(u) = u,∀u ∈ P ∩ Sc with I (u) <
b + m∞

c

2

and

h̃(u) = τ(1, u),∀u ∈ P ∩ Sc with I (u) <
b + m∞

c

2
.

By

b + m∞
c

2
< d − ε0

and (b), we have

h̃(u) = τ(1, u) = u,∀u ∈ P ∩ Sc with I (u) <
b + m∞

c

2
< d − ε0,

which implies that h̃ ∈ H. Moreover, τ(1, Ã) ∈ � since τ(1, Ã) = h̃(�). Therefore,
by the definition of d, we have

d ≤ sup
u∈τ(1, Ã)

I (u),

which contradicts (4.6). Consequently, Kd �= ∅ and d is a critical value of functional
I on P ∩ Sc. By u ∈ P ∩ Sc, we have u ≥ 0 in R

N . Since u �= 0, it follows from the
strong maximum principle in [12] that u > 0 in R

N , and thus, u ∈ Sc is a positive
solution of (1.1) for some λ < 0. The proof is finished. ��
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