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Abstract

In this paper, we aim to tackle the questions of existence and multiplicity of solutions to
a new class of « (§)-Kirchhoff-type equation utilizing a variational approach. Further,
we research the results from the theory of variable exponent Sobolev spaces and from
the theory of space yr-fractional HI’: <;) l/’(A). In this sense, we present a few special
cases and remark on the outcomes explored.
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1 Introduction and Motivation

In this paper, we concern the following Kirchhoff’s fractional « (£)-Laplacian equation
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mt(/A " vl )Li‘(g)%:g(s,qb), in A = [0, T]x [0, T],
¢ =0, on A
(1.1)

where

Lff(;)‘/qu _ HCD;TL,v;IIf (‘ CDM v; ¢¢‘K($) 2 u v 1//¢> (12)
H’D” Vs 1//( ) and H’D“ v W( ) are yr-Hilfer fractional partial derivatives of order % <
w < landtype 0 < v < I. Further, k = k(£) € C(A), 1 < k~ = infp k(&) <
kT = suppk(§) < 2, M(z) is a continuous function and g(&,¢) : A x R — Ris
the Caratheodory function. Note that Eq. (1.2), is a generalization of (L“""* ¥ (-) when
k (€) = « is a constant.

The Kirchhoff proposed a model given by equation

9%u 00
P (h T

where p, po, L, h, E are constants, which extends the classical D’ Alembert’s wave
equation.
The operator

ou

2 2
d
| dx _u =0,
9x2

0x

Aoyt = div <|Vu|”(x)_2|Vu|)

is said to be the p(x)-Laplacian, and it becomes p-Laplacian when p(x) = p. The
study of mathematical problems with variable exponents is very interesting. We can
highlight the existence and multiplicity problem of the solution of p(x)-Laplacian
equation, p(x)-Kirchhoff and p-Kirchhoff both in the classical and in the practical
sense [2—4, 11, 12, 20-22, 24]. See also the problems involving fractional operators
and the references therein [25, 26, 29, 30]. We can also highlight fractional differential
equation problems with p-Laplacian using variational methods, in particular, Nehari
manifold [6-10, 15, 16, 31].

In 2006, Correa and Figueiredo [4] investigated the existence of positive solutions
to the class of problems of the p-Kirchhoff type

p—1
|:—M (/ IVulpdx>:| Apu = f(x,u), in A
A

u=20, ondA,

and

p—1
|:—M (/ |Vu|pdx>i| Apu = f(x,u) +Mul*"2u, in A
A
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u=20, ondA,

pN
N-p

where A is a bounded smooth domain of RV, 1 < p<N,s>pt= and

M, f are continuous functions.
In 2010, Fan [21] considered the nonlocal p(x)-Laplacian Dirichlet problems with
non-variational

—AW)Apyu(x) = B(u) f(x,u(x)) in A, ulyga =0,

and with variational form

—a (/ L |Vu| P dx) Apyu(x) =b (f F(x, u)dx> £, u(x))
A p(x) A
in A, ulpp =0, (1.3)

where

t
F(x,t)=/ f(x,s)ds,
0

and a is allowed to be singular at zero. To obtain the existence and uniqueness of solu-
tions for the problem (1.3), the authors used variational methods, especially Mountain
pass geometry.

Problems involving Kirchhoff-type with variable and non-variable exponents are
attracting attention and gaining prominence in several research groups for numerous
theoretical and practical questions [13, 27, 32] and the references therein. On the
other hand, it is also worth mentioning Kirchhoftf’s problems with fractional operators,
which over the years has been increasing exponentially [1, 23, 34]. The p(x)-Laplacian
possesses more complex nonlinearity which raises some of the essential difficulties,
for example, it is inhomogeneous.

Dai and Hao [11] discussed the existence of a solution for a p(x)-Kirchhoff-type
equation given

M <f v dx> div <|V|”(x)_2Vu> — f(x,u)in A,
A P(X)

u =20, on dA.

Motivated by the ideas found in [4, 11, 21], we study the existence and multiplicity
of solutions for problem (1.1) by supposing the following conditions:

(fo) 9: A xR — Rsatisfies Caratheodory condition and
0. 0] < e(1+ [FOD, (14)

where € C4(A) and £(§) < k;(§) forall £ € A.
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(Co) there exists mo > 0 such that 9M(t) = mo.
(Cy) there exists 0 < w < 1 such that im(t) > (1 — w)MN(t)t, where im(t)

/ M(s)ds.
0

+

(f1) Ambrosetti-Rabinowitz condition i.e. there exist 7 > 0, 0 > such that

—w

0<0GE, 1) <tgE, 1), forall |t|>T,a.e£ €A, (1.5)

t
where G (&, 1) :=/ a(&, s)ds.
0

(f2) aE, 1) =o(t| 1,1 — 0, for & € A uniformly, where {~ > k.
(f3) 9, —1) = —g(€,1),E e At eR.

(f) aE 1) = clt?®=1 1 > Owhere y € Co(A),kt <y~ < y+ < 1" for
ae. & € A.
Our main results are the following:
Theorem 1.1 If 90 satisfies (Co) and
o 0l < e (1+171), (L.6)

where 1 < E < Kk~ then problem (1.1) has a weak solution.

Theorem 1.2 Assume that M satisfies (Co) — (Cy) and g satisfies (fo), (f1), (f2).
Then, problem (1.1) has a non-trivial solution.

Theorem 1.3 Assume that (Cy), (Cy), (fo) and (f)) hold and g satisfies the condition
(f3). Then, problem (1.1) has a sequence of solutions {:I:qbk} such that €(£¢r) —
400 as k — +o0.

Theorem 1.4 Assume that (Cy), (C1), (fo), (f1), (f2) (f3) hold and g satisﬁes the
condition (f4). Then, problem (1.1) has a sequence of solutions {:I:vk} | such that
E(tw) <0, E(Fvy) — +ooask — 0.

The plan of the paper is as follows. In Sect. 2, we present some definitions on fractional
derivatives and integrals, among others, and results on Sobolev spaces with variable
exponents and y-fractional space. In Sect. 3, we dedicate ourselves to deal with the
main contributions of the article, as highlighted above, i.e., Theorem 1.1, Theorem 1.2,
Theorem 1.3 and Theorem 1.4.

2 Previous Results

In this section, we present a few essential definitions, lemmas and propositions to
attack the main results of the article.
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Let
Ci(A)=1{h : heC(A), h(¢) > 1 forany & € A},
and consider

ht = max h(§), h~ = minh(§) forany h € C(A)
A A
and
2O ) = {¢ €S(A): f p&*® dg < +oo}
A

with the norm

¢ (&)

A

K (€)
dé <1¢,

where S(A) is the set of all measurable real function defined on A. Note that, for
k(&) = k, we have the space .£*.
The -fractional space is given by [6, 7]

o1l 2e@ (a) = ll@llk) = inf {A >0 : /
A

i‘@”)“’(A) {qb e 2G) - ‘Hsagj‘%‘ egk(é)(A)}

with the norm

Hovi Y
11 = 1l = 18l zmcrin) + |05 ] i -

Denote by HI’:(’;);YI(/)/(A) the closure of C{°(A) in Hff(;) Y(A).

Next, we will present the definitions of Riemann-Liouville partial fractional inte-
grals with respect to another function and of the fractional derivatives v -Hilfer for
3-variables. For a study of N-variables, see [5, 31].

Let 0 = (01,60,,603), T = (T\,T,,T3) and u = (w1, U2, u3) where 0 <
w1, 2, w3 < 1 with 8; < T, for all j € {1,2,3}. Also put A = I x
I x Iz = [01,T1] x [0, T2] x [63, T3], where Ti,T», T3 and 6;,6,, 65 are
positive constants. Consider also ¥ (-) be an increasing and positive monotone
function on (01, T1), (62, T»), (03, T3), having a continuous derivative v'(-) on
61, T1], (62, T»], (63, T3]. The Y-Riemann-Liouville fractional partial integrals of
¢ € LV (A) of order 1 (0 < < 1) are given by [5, 31]:

e |-variable: right and left-sided

1 &1
I’;’%(El) = Y (DWW ED — (s g (s)dsy, to 61 < s1 < £
! F(/J/) 61
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and
v Lo
IV g6 = —/ Y (s (s1) — Y EN* T p(s)ds1, 1o & <51 < T,
C'(w) Jg

with & € [0;, T1], respectively.
e 3-variables: right and left-sided

11V ¢ (&, &, s3>

’ ’ ’ _ pn1—1
F(M)F(Mz)l“(m) /9 T Y )Y () (W ED — ¥(s1)
x (Y (&2) — Y (s2))"2~ l(w@a) — w(sg)w—l«p(s], 52, 83)ds3dsrdsy,

tob) <51 <&1,0) <s2 <&,03 <53 <& and

| AT s3>
w’<s1)z/f’(sz>w’<s3>(w<s1> —yE))m!

F(M)F(Mz)F(Ms) /g X
x (Y (s2) — Y (&))" 1<w(s3> — Y (ENT (51, 52, 83)ds3dsadst,

withé] <51 < T, & <0 < Th, & <53 < T3, & € [01, T1], & € [62, T»] and
&3 € [03, T3], respectively.

On the other hand, let ¢, v € C"(A) be two functions such that i is increasing
and ¢’ (¢)) #0with &; € [0, T;], j € {1,2,3}. The left and right-sided -Hilfer
fractional partial derivative of 3- Varlables of p € AC"(A) of order u = (w1, K2, 13)
(0 < py, o, u3 < 1) andtype v = (vq, v2, v3) where O < vy, v, v3 < 1, are defined
by [5, 31]

BV g, 62, £)
3
:I”“"”"”( 1 ( d ))I(l V) (A=), ¥
’ YEDY (E) V' (53) \ 98108,083 o1, 5,83)
and @

MotV &), £, £3)

3
— -y ( _ 1 < d ))I(l VY (1—p), ¥ ’
’ W EDY E)V (83 \ 96106208 b1, 62, £3),

2.2)

where 6 and T are the same parameters presented in the definition of fractional integrals
5V () and IV ().
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Taking &6 = 0 in the definition of H’Dg’v”/’(.), we have H’D’S’VW(J. During
the paper we will use the following notation: H’D i ¢(&1,62,8) = H@g’v;wcb

HDIYY (81, &, &) = HDU" g and T4V (81, £, &3) = 14V .
Let6d = (01,6,), T = (T1, T>) and . = (w1, i2). The relatlon

[l

i T2 .
fg /9 (B0 @1, ) 6 61, &) diady

T, T
= , / 06)) iaid <M>d d
/9] /92 @ (61, 6) ¥ ED Y EDIT 7 E) U E) §2d§)

(2.3)

is valid.
One can prove Eq. (2.3) directly by interchanging the order of integration by the
Dirichlet formula in the particular case Fubini theorem, i.e.,

T, T )
/ / (1 . &)) ¢ (1. £2) diadsy
61 6

&
:fe /@ F(MI)F(M2) o Jon ey o @)

¥ (s (W (&) — ¥ (s2))27!
x (51, 52) dSzd81¢ (&1, &) d&rdé

T T ) )
2/9 /9 F(,ul)F(pLz) . V(s ¥ (s2) (Y (§1)

—y s W E) -y (Sz))’”_l
x¢ (&1, Ez) dé>d&1¢ (51, 52) dsadsg

T
_ I’“”( ¢ (s1,52) )d ds,.
/91 . Iﬂ sV (s2)9(s1, 52) T o0 v 60 sodsg

Theorem 2.1 Let vy (-) be an increasing and positive monotone function on [61, T1] X
[02, T»), having a continuous derivative ' (-) # 0on (01, T1) x (62, T>). If0 < u =
(1, m2) <land0 <v = (vy,v2) <1, then

T T )
[;/9 (Hi)g’v,%hp(51,52)>¢(§1,§2)d$2d51

T, T
— i ’ ’ H©,u,v;1//< ¢($1,$2) )d d
/01 /;2 L&) Y EDY (&) "Dy YA §2d&;
(2.4)

forany ¢ € C' and ¢ € C! satisfying the boundary conditions ¢ (01, 62) = 0 =
¢ (T, T2).



27 Page8of 21 J.V.daC. Sousaetal.

Proof In fact, using the Eq. (2.3), one has

T, T
. / / HZ)M,U;V/( ¢(§1’$2) )d d
/91 _/92 &1L, &) Y EDY (62) "O7 T ED &) §2d&)

T, b
— i / 1 I)/—/m// DV;I//( ¢ (¢1,8) )d d
/91 /02 @ (61, 6) ¥ (&)Y (&I T\ E) v E §2d&;

T T
= ,/9 v (ED Y (6)

0,

[Iéj“” HplviVy (&), &) +

xI;*’“‘” D;;l//( ¢(§1’$2) )df]d%‘z

WE) =Y O G E) -y )
T (y) !

v (&) V(&)
1 d d\ (1-va—py )
hered; = ( —————— |1 01,0
(W ereds (w@l)wsz) a; d&) 0 v 1.0
T T ) . o
= /9 ) W (&) Y EIEY BV g &) g 1Y
1 2
Dy;x//< ¢ (&1, &) >d d
T\ e ve ) e
dj ot 1 1
W (ED Y E) (Y ED) — v 0)) (W (&) — ¥ (62)
L) Jo, Jo,
oY priv <M>d d
N LG ) At
T, o
_ Iu;wH@u,vu// ’ I—u:l/f( ¢ (61,62) >d d
/91 /@ o P e G e ey ) 49

T T )
_ f / (M0h Ve 1.6 ¢ (61, &) diady,
0 6>

where D;;w (+) is the y-Riemann-Liouville fractional derivative with y = u 4+ v(1 —
). o

Proposition 2.2 [31] The spaces L*EV(A) and H?(;;w(A) are separable and

reflexive Banach spaces.

Proposition 2.3 [18] Set p(¢) = / 1o (&)< dE. Forany ¢ € LE (A). Then,
A

(1) For¢ #0, @l = A ifand only if p (%) =1,
@) 16l < 1. (= L:> Difandonlyif p(¢) < 1 (=1,> 1),
3) I 1lee) > 1. then 1915 ) < p(@) < [915,),

@) If1plee) < 1. then |9 ) < p(9) < 16[<¢).
(5) limj— y00 [kl (&) = 0 if and only if limj_, 100 p (%) =0
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(6) limg— o0 |Pklic(e) = +00 if and only if limg— 100 p(Pr) = +00.

Proposition2.4 [17]If ¢, ¢x € LEQ), k=1,2,...then the following statements
are equivalent each other

(D) limg— oo (O — Plie) =05
(2) limg— 400 p(k — @) =05
(3) ¢ — ¢ in measure in Q and limy_, 1 p(Pr) = p(P).

Proposition 2.5 [7, 8] Forany ¢ € H,/:(;) w(A) there exists a positive constant ¢ such
that

« <c |HoyrY H :
lloll & ®n) =¢ ” ¢ LEE(A)

are equiv-
LrEE(A)

HH@M v; w

In this sense, we have that the norms ||¢|| and ”H’DM’V; ‘”q&

alent in the space Hf(’;)“p(A), so let’s use |||

, for
jk(é)( A)
simplicity [7, 8].

Proposition 2.6 [31] Assume that the boundary of A possess the property k € C(A)
withk(§) <2.1fqg € C(A) and 1 < h(§) <k, (§), (1 <q(&) <«k,;(§)) for§ € A

then there is a continuous (compact) embedding ’Hl’j(;) w(A) — L1E(A), whose
N 2K
= .
w2 — ke
We write

where meas {€ € A, ¢7 >0} > 0. We denote £V = (ZT*7) : HY V(A —

«(®)
( ’K‘(;)"’(A)) then

k(§)—2

@ = [ [rof Yol Rag g Mo Yy ae
A

forall ¢, v € HELY (M)

Proposition 2.7 1.L*V #(;)w(A) — < “(;)w(A)) is a continuous, bounded

and strictly monotone operator;

2. L*Y is a mapping of type (Si), i.e, if ¢p—¢ in Hfj(s)w(A) and

T oo (L7 () — LA (@), ¢ — §) < O, then ¢, — ¢ in HisV (A);

*
3. LKWV HM(;)w(A) — (Hf(;)w(A)) is a homeomorphism.
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Proof 1.1tis obvious that £* is continuous and bounded. For any &, y € A [22, 28]

[(16172% = 1y 2y) 6 = ] (61 = y1) ™ = e = DIg =y @5)

with 1 < k < 2 and

1 K
(1612 -y 2y) € -0 = <5) &=yl Kz 2. 2.6)

2. From inequality (2.5), if ¢, —¢ and lim,,_, 1 oo (L (¢n) — LV (@), ¢ — @) < 0,
then limn_>+o<, (LPY (pp) — LV (@), ¢ — ¢) = 0. In view of inequalities (2.5) and
2.6), "¢, " Y b goes in measure to D" V% in A, so we get a subsequence,

satisfying Hi)ng ¢¢n H©g+v 10¢ a.e. § € A. Using Fatou’s lemma, yields

k(&) k(&)
H //- Vi w‘l’ dg

1 H I‘« vy - d
o f gy "6 o[ = [ [
2.7
From ¢,—¢, yields
Jim (LY (@) 6 — ) = lim (L7 (g0) = L (). fu — ¢) = 0.
(2.8)

On the other hand, we also have

(€™ ). b — )
b K(§)—2 - v:
- /A Hpp g, [T Hppm Vg, How it (g, _ g)ae

. Ke( k(§)-2 .
://.\ H@S‘J’rv»‘ﬁqbn dé _ / ‘H@M V] W H:D(L)Ljrvﬂﬂd)n H@M vy Kbd)ds

vy K )
> /A Hop Vou|  de - / (K%) 15" V| d
o )

H MVW (E)d _f H MVV/ K(f)d 29
>/Ax<s>‘ I N (S)‘ of " as. el

Using the inequalities (2.7)—(2.9), it follows that

k(&) k(&)
ds = M v; ¥
: /A é) ‘ ¢

lim o Yl dt.

n=>+00 Jp K(S) ‘

(2.10)
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From Eq. (2.10) it follows that the integral of the functions family
Hry u vy on

k(&)
} possess absolutely equicontinuity on A. Since

{K(S) ’

<c ’H H Vi 1ﬁ¢
( ) !
the integrals of the family {Té) ‘Hggf: 1ﬂ¢n Hpm ™ w(])‘K

lutely equicontinuous on A and therefore

K(E)

opmen”) e

} are also abso-

lim /AK(E) ‘H o5V, — H@’O‘j;%r de = 0. (2.12)

n—-+00

Using Eq. (2.12), one has

lim /’Hsg*j;%ﬂ - H@lgg‘%]“ dE = 0. (2.13)

n—-+00 J A

From Proposition 2.4 and Eq. (2.13), ¢, — ¢, i.e., LV is of type (S).
3. By the strictly monotonicity, £/ is an injection. Since

H uvw
(LY¢, ¢) /‘ Do
m — =
llgll>+oo  ||@]] ||¢||—>+oo [l

()
d§

:+OO

LMV is coercive, thus £V is a surjection in view of Minty-Browder theorem [35].
Hence £*V has an inverse mapping (£*V)~! : (Hf:(g) W(A)) H,/:(;) Y(A).
Therefore, the continuity of (£*-V)~! is sufficient to ensure £*" to be a homeomor-
phism. If f,, £ € HiS (M), fu = folet gn = (L) TN(F), ¢ = (L)1),

then LY () = fu, LMV (P) = f. So {¢,} is bounded in Hff(;) 1//(A). Without loss
of generality, we can assume that ¢, —¢y. Since f,, — f, then

lim (£ (¢n) = L7 (90), $n = d0) = Nim_(fu, du — d0) = 0.

n—-+00

Since £*V is of type (S4), ¢p — o, we conclude that ¢, — ¢, so (L4V)!is
continuous. O

Proposition 2.8 [22] (Holder-type inequality) The conjugate space of L@ (A) is
LI (A) where = 1. Forevery ¢ € L (A) and v € L9 (A), it

® " x®
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follows that

1 1
¢>vd€'§ <—+—)II¢IIK Tvllg)-
N g @& 11V1g @)

Definition 2.1 We say that ¢ € H (A) is a weak solution of the problem (1.1), if

c(®)
1 ATI) <s>—2 . .

m (1o ol ) [ [t ol ol o g uae

=/Ag($,¢)vd$ (2.14)

where v € H”(g) Y (A).

Define
~ k(&)
<I>(¢)=9ﬁ</ ol el ds) and W) = [ .o @15
NG s

where
~ t ¢
) = /O M(s)ds, G, §) = /O a&, 1.

The associated energy functional € = ®(¢) — WV (¢) : Hff(g) v (A) — Rtoproblem

(1.1) is well defined. Note that ¢ € C! (H’L@) (AN), R) , is a weakly lower semi-
continuous and ¢ € Hf:( U) v (A) is a weak solution of the problem (1.1) if and only if
¢ is a critical point of €. Moreover, yields

os’(¢>)v=9n</ (E)‘ ““"f\@)ds)

(5) .
/ ‘ng v; 1/; Hggjrv,wqﬁ H@lt vy de

—/ 9§, p)vdé
A

= ' (p)v— W(9), YveHLLV(A). (2.16)

Definition 2.2 We say that € satisfies (PS) condition in H (E) (A) if any sequence

(pn) C H,’f(;) Y (A) such that {€(¢,)} is bounded and & (¢,) — 0 as n — o0, has

a convergent subsequence.

Lemma 2.9 If 9N(¢) satisfies (Cp) and (C1), g satisfies (fo) and ( f1), then € satisfies
(PS) condition.
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Proof Consider the sequence {¢,} in 1., Y (A), such that |€(¢,)| < cand & (¢,) —
0. Hence, one has

1
c+1lgnll = E@n) — *Q‘f'(fbn)qﬁn

:9’5’{ H:U"}]/fn(d>—/‘G,nd
(/K@)‘ ¢ £) - | G gna

_%M<AK@ﬂHlHW¢MQ )Kw%ﬁfwwka

( 1
dt + / SOE )
A
z(l_w)sm(/ R ds)r—/G@,«m)ds
A K(E) A

([ Mol a )/ Mo Vol de+ [ ateonnds
(o o) o

+ [ (Gac.000, - Geon ) as
NN
> (1525 ) moloar . @.17)

So {llénl, (&)} is bounded. We assume that ¢, —¢ (without loss of generality), then
6/((f)n)((]bn - ¢) — 0. Thus, one has

¢ (én)(Pn — @)

k(&)
—Mm H /LV 14 » d )
</A @ "8 e[ e

K(§)—2
[ [Pt o] ol Y o, Mt (9 - s
A

- [ 600w -0
k(&)
dg)

— m / H M v Y "
< A K(S) ‘ ¢
K(&)— " . b
T, (Mg, - T g) de

f ’ngv v

- fA 9, dn)(Pn — P)dg — 0.

(2.18)
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Using the condition ( fy), Proposition 2.6 and Proposition 2.8 it follows that

/;\g@v &n)(Pn — ¢p)dE — 0.

In this sense, we obtain

1 .
m{/ ( Hgﬂ,v,lﬁ »
A K(s>’ o+ ¢
b K(§)-2
fA 0" Vg,

Using the condition (Cyp), yields

k(&)
a )

H@ﬁ,vﬂﬁ (H@li,l)lqun _ H@lj_,l);‘pd)) dé N O

Ly | E)-2 . . .
/ ‘H@SL_;_V‘ ¥ H@lg:i_”; w(,bn (H@iy", W¢n _ H@iyva W¢> dé -0
A

Finally, using Proposition 2.7, hence ¢,, — ¢. Therefore, we complete the proof.
O

Since Hf:(;) V(A) is a reflexive and separable Banach space (see Proposition 2.2),

there exist {¢;} C Hf:(’;)’w(A) and {e;‘} C (Hf:(’;)’w(A)> such that Hg(;) w(A) =

. *
spanf{e; : j =1,2,,...}, (HI’:(’;jw(A)> = spanfe 1 j =1,2,3,.. .} and

« lifi=j
<€j,€j>= L. .
0if i #j

Let’s use (Hf:(’;)”/f(A))' = span{¢;}, Vi = 69];:1 (H,’:(’;);IIJ(A)) and Zj
J J

o[ (15 W)

Lemma 2.10 [22] If i1 € C1(A), u(§) < ki (§) for any & € A, denote

Br = sup{lplue) - 1@l =1, ¢ € Zi} (2.19)

then limkﬁﬂw Br = 0.

Lemma 2.11 [33] (Fountain Theorem) Assume

(A1) X is a Banach Space, € € C'(X,R) is an even functional. If for each k =
1,2, ... there exist pp > ri > 0 such that:

(A2) infyez, |1p)|=r, E(@) — +00 ask — +oo.

(A3) maxgey, [jp)|=p €(#) < 0.

(A4) € satisfies (PS) condition for every ¢ > 0,

then € has a sequence of critical values tending to +o0c.
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Lemma 2.12 [33] (Dual Fountain Theorem) Assume (A1) is satisfied and there is
ko > 0 so that for each k > ko, there exist pr > yr > 0 such that

(B1) infgez, |igl|=pr €(P) = 0.

(B2) b = maxgey,,|ip||=r, €(#) <O.

(B3) dy =infgez, |ip/1<p €(@) — 0ask — +oo.
(Bs) € satisfies (PS)} condition for every c € [d,, 0).

Then € has a sequence of negative critical values converging to 0.

Definition 2.3 We say that € satisfies this (P.S)} condition with respect to (Y,), if

any sequence {¢,,} C 'H,l:(g) 1lf(A) such thatnj — 400, ¢y, € Yy, €(¢y,) — ¢ and

(€| Y, ) (¢n;) — 0, contains a subsequence converging to a critical point of €.

Lemma 2.13 [11]Assume that (Cyp), (C1), (fo) and (f1) hold, then € satisfies the (P S)

condition.

3 Main Results
In this section, we will address the main results of this paper, using variational

techniques and results from Sobolev spaces with variable exponents and from the
y-fractional space H,’f (;) l/’(A), as discussed in the previous section.

Proof of Theorem 1.1 Using the inequalities (1.4) and (1.6), yields

t
< / 0(E. 5)ds
0

t —~
c/ (1 + |s|PNds
0

' r
:c/ ds—l—c/ |s|ﬂ_lds
0 0

<c (Il +11P) 3.1)

t
G, D) = '/0 o€, $)ds

and 9/51(t) > mot. In this sense follows of (3.1)

- H/MH// _
e =T ( [ s oo e - [ G e

=g [ o [0 Vo e —c [ ioilae —c [ 1oiae

mo
> —lIgllc —c 161 — ¢ ligll — +oo,

as ||¢|| — —+oo. Since € is weakly lower semi-continuous, ¢ has a minimum point ¢
in H“@) (A), and ¢ is a weak solution of problem (1.1). ]



27 Page 16 of 21 J.V.daC. Sousaetal.

Proof of Theorem 1.2 Using Lemma 2.9, & satisfies (PS) condition in H,’(‘(g’) Y(A).

Since kT < ¢~ < ¢(§) < KZ(t), Hg(;;w(A) o gt (A) then there exist ¢ > 0
such that

pler < cllpll. ¢ € HELY (). (3.2)

Let € > 0 such that ec*" < 2m_0+- From the conditions ( fp) and ( f2), yields
K

G, 1) <eltl +cltf®, (5,1) e A xR. (3.3)

Using the condition (Cp) and the inequality (3.3), yields

mo k(&)
¢¢) = —+/ Tof V| s - e/ 1" a5 — cf 1 ds

K A A A
mo -

= I — eIl — cligllf
mo _

> Sl —cllgll. (3.4)

when [|¢]] < 1.

Therefore, there exists » > 0, § > 0 such that, E(¢) > 6 > O for every ||¢|| = r.
From ( f1), it follows that

GEn=cltl’, EeA, |t|>T.

M(t)

Consider the conditions (Cp) and (C;). Note that the function g(¢) = Py

is
decreasing. So for all 7o > 0, when ¢ > 1y, yields

g(1) = g(10).

M) _ M)
tH/w=1 — fljw-1"

In this sense, from it follows that ln(i)??(t)) < ln(ﬁ(to)) —

1
Int —
1—w 1—w

In ty. Therefore, one has

M(10)
1/1—w
Iy

M(t) < V170 < T for t > 1o (3.5)

where f9 > 0 (constant). For w € H,’j(;) V(A) — {0} and t > 1, yields

_ & U | mguiy <) _
G(tw)—i))?(/;\@‘t oTo) u)‘ di;‘) /AG(x,tw)dg
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1
s ) =
<ctl-o (/ ‘ ’”wwK dé) —ct9/ lw|’de — ¢
A k(&) A

— —00 as t — +00.

+

due to 6 > . Since &(0) = 0, € satisfies the conditions of the Mountain Pass

Theorem. So & admits at least one nontrivial critical point. O

Now, we will use the Lemma 2.11 (Fountain Theorem) and Lemma 2.12 (Dual
Fountain Theorem) to prove Theorem 1.3 and Theorem 1.4, respectively.

Proof of Theorem 1.3 Note that € is an even function and satisfies (PS) condition (see
condition (f3) and Lemma 2.9). Purpose here is proof that there is o > yx > 0 (k
large) such that (A;) and (A3) hold and, so use Lemma 2.11 (Fountain Theorem).

_ _ + {Jr -1 K—lﬁr .
(Ap)Forany ¢ € Zy,n € A, |||l =y = (cCT B, my , it follows that

e =3 ( [ [ \@)ds)—ng@,as)ds

mo Hoyuovi ¥ |<© (@) _/
> = AK@)\% 0| c/A|¢| dg —c | Iplae
z—+ll¢ll“ — cllglI™ = clig|]
K
K~ ¢t kT
> 111 — B 1Bl —cllpll — ¢

= my <L+ - %) (CCJr,B,ermal)ﬁk:r{+ - (c§+,3§ )K _ ¢ — 400

as k — +ooand with«™ < ¢+, k™ > 1 and B — O.

(A3) Using (f1), we have G(&,1) > c|t|9 — c. Therefore, for any w € Y; with
[lw|| =1and 1 <t = pg, yields

_ & b By, €O _
@(;w)_m(fﬂ@ ‘r D! w‘ dg) /AG(E,tw)dE

1
(S) -
= Cpk (/ ‘HQM "V dé) —Cp;f/ lw|?de — c. (3.6)
A

Note that, since 6 > and dim Y; = k holds, &(¢p) - —oo as ||¢]|| — +o0

w
for ¢ € Y. In this sense, using the Lemma 2.12 (Fountain theorem), we concluded
the proof of Theorem. O

Proof of Theorem 1.4 First, note that, using condition (f3) and Lemma 2.13, it fol-
lows that € satisfies the conditions (A1) and (B4) (see Lemma 2.12-Dual Fountain
Theorem).
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(By) Forany v € Zg, ||v]| =1,and 0 < ¢ < 1, yields

- 1 . ®
vy =M( | — [F1o" "V aw)| " ag) = [ G, ryae
A k(&) o+ A
. &) _
zﬂ%“/ﬂHQ&W%K d&—a“/ﬂm“ds—af/ﬁmﬁws
Kkt A A A

[ ST G

my .+ c ts if 1

2 i _[ ﬁlé* s 19llcer< (3.7
K cBp 1 if lPllee)>1-

v

Since ¢~ > kT, without loss of generality taking o = t with k (sufficiently
large), for v € Z; with ||v|]| = 1, holds &(zv) > 0. In that sense, we have
infgez, . |1o/1=p €(@) > 0 for k sufficiently large. Thus, the condition (B}) is satisfied.

(By) Forve Y, |lv|=1and0 <t < pr < 1, yields

- 1 by [€E)
eam:m(/[\@(ﬂ@& vy dg)—/AG(s,zv)dg

L

. k(&) -0
50(/ ‘t Hng‘_v’wv d&) —c/ |tv|y(5)d§
A A

1
K . K (&) I-o
<ctl-o <f ‘Hi)ggr”"/’v dé) — Cty+/ |U|y(§)d§'.
A A

, there exists a ry € (0, pg) such that E(tv) < 0 when

Using the fact y T < IK
t = r¢. So, we obtain
br == max €&(¢) < 0.
PEYk,
llpll=rx

Thus, the condition (B,) is satisfied.
(B3) Using the fact that Y N Z # @ and ry < pg, one has

dp = inf &(¢) < by := max €E(¢) <O0.
peZy, PEY,
[lpl1<px [lpll=rk
Using the inequality (3.7), for v € Z, [[v]| = 1,0 <t < pr and ¢ = tv, yields

cBp 15 pllee) <1

E(p) = E(tv) > — v
cBp 15 Pllee > 1

hence d; — 0i.e. (B3) is satisfied. Therefore, by means of Theorem 1.4, we conclude
the proof. O
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4 A Special Problem and Comments

The following idea is to discuss some consequences of Theorem 1.1-Theorem 1.4.
Consider the following fractional problem

1 R (E) vy .
(a +b/A e 1oy Vol ) LAV = g€, ), in A =10,T]x[0,T]
$ =0 @.1)

where

wovs ¥ Hytovs ¥ [y ¥ [CEO72 v
L ¢= "2 <‘ Do+ ¢‘ Dor ¢

and a, b are two positive constants.

Let9(t) = a+bt witht = /

- ‘H Pk %,‘ d&. Note that, M(t) > a > 0
A K

4
and taking w = 3 yields

t
M(t) = / M(s)ds = at + grz > %(a +bt)t > é(a +bt)t = (1 — w)M(0)L.
0

Therefore, the conditions (Cg) and (C1) are satisfied. In this sense, as a consequence
of Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theorem 1.4, we have the following
corollaries, namely:

Corollary 4.1 If 9 satisfies (Co) and |g(&,1)| < A; + Ao |t|P~!, where 1 < 8 < k™,
then problem (4.1) has a weak solution.

Corollary 4.2 [f 90 satisfies (Co) and (Cy), and f satisfies (fo), (f1) and ( f>), where
¢~ > kT, then problem (4.1) has a nontrivial solution.

Corollary 4.3 Assume that the conditions (Cy), (C1), (fo), (f1) and (f3) hold. Then,
problem (4.1) has a sequence of solutions {:I:qbk},j'gl’ such that €(+¢y) — 400 as
k — +oo.

Corollary 4.4 Assume that the conditions (Cp), (Cy), (fo) (f1), (f3) and (fa) hold.
Then, problem (4.1) has a sequence of solutions {:I:q)k} | such that €(L£¢y) — +00
as k — +o0.

Remark 1 Note that, we can take other functions with respect to 9i(z) and ¢ in Eq.
(4.1) and get other versions of Kirchhoff-type problems, that is:

o M(t) = a+ bt w1tht—/ —‘Hz)‘” ‘/’qs‘xds.

o M(r) = br with r = / @ ‘ D6 W¢>) d&. Note that it also holds for
A K
k(&) =«.
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e Note that, we only discuss the special cases above, starting from the particular
choice of M(r) = bt, t and x (). However, it is also possible to obtain and discuss
other special cases, through the limits of 8 — 0, 8 — 1 and the function ¥ (-).

Kirchhoff-type problems are of great interest, in particular, in recent years an
approach involving fractional operators has gained prominence. After the results
investigated above, some future questions can be addressed, namely:

e Discuss the same objectives of the present article for Kirchhoff-type problems with
double phase.

e Another investigation possibility is to modify the problem boundary condition
(1.1), to Neumann boundary.
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