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Abstract
In this paper we extend three results about polycycles (also known as graphs) of
planar smooth vector field to planar non-smooth vector fields (also known as piece-
wise vector fields, or Filippov systems). The polycycles considered here may contain
hyperbolic saddles, semi-hyperbolic saddles, saddle-nodes and tangential singularities
of any degree. We determine when the polycycle is stable or unstable. We prove the
bifurcation of at most one limit cycle in some conditions and at least one limit cycle
for each singularity in other conditions.

Keywords Nonsmooth · Filippov · Hidden dynamics · Piecewise · Ageing ·
Switching · Mixed-mode

Mathematics Subject Classification 34A36 · 34C23 · 34C37 · 37C29 · 37G15

1 Introduction and Description of the Results

The field of Dynamic Systems has developed and now have many branches, being one
of them the field of non-smooth vector fields (also known as piecewise vector fields, or
Filippov systems), a common frontier between mathematics, physics and engineering.
See [3, 11] for the pioneering works in this area. For applications, see [4, 16, 17]
and the references therein. In this paper we are interested in the qualitative theory of
non-smooth vector fields.More precisely, in the qualitative theory of polycycles in non-
smooth vector fields. A polycycle is a simple closed curve composed by a collection of
singularities and regular orbits, inducing a first return map. There are many works in
the literature about polycycles in smooth vector fields, take for example some works
about its stability [6, 8, 12, 27], the number of limit cycles which bifurcates from it [9,
10, 14, 21, 28], the displacement maps [7, 13, 15, 25] and some bifurcation diagrams
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[9, 22]. There are also some literature about polycycles in non-smooth vector fields,
dealing for example with bifurcation diagrams [1, 23, 24] and the Dulac problem [2].

The goal of this paper is to extend to non-smooth vector fields three results about
polycycles in smooth vector fields. To do this, we lay, as in the smooth case, mainly
in the idea of obtaining global properties of the polycycle from local properties of its
singularities. For a brief description of the obtained results, let Z be a non-smooth
vector field with a polycycle �n with n singularities pi , each of them being either a
hyperbolic saddle or a tangential singularity. For each pi , we associated a positive real
number ri such that if ri > 1 (resp. ri < 1), then pi locally contract (resp. repels) the
flow. Our first main result deals with the stability of�n , stating that if r(�n) = ∏n

i=1 ri
is such that r(�n) > 1 (resp. r(�n) < 1), then the polycycle contracts (resp. repels)
the flow. Our second and third main results deal with the number of limit cycles that
can bifurcate from �n . More precisely, in our second main result we state sufficient
conditions so that the cyclicity of �n is one and in our third main result we state
sufficient conditions so that the cyclicity of �n is at least n.

The paper is organized as follows. In Sect. 2 we establish the main theorems. In
Sect. 3we have some preliminaries about the transitionsmaps near a hyperbolic saddle,
a semi-hyperbolic singularity with a hyperbolic sector, and a tangential singularity.
Theorems 1 and 2 are proved in Sect. 4. In Sects. 5 and 6 we study some tools to
approach Theorem 3, which is proved in Sect. 7.

2 Main Results

Let hi : R2 → R, i ∈ {1, . . . , N }, N ≥ 1, be C∞-real functions. For these functions,
define�i = h−1({0}). Suppose also that 0 is a regular value of hi , i.e.∇hi (x) �= 0 for
every x ∈ �i , i ∈ {1, . . . , N }. Define� = ∪N

i=1�i and let A1, . . . , AM ,M ≥ 2, be the
connected components of R2\�. For each j ∈ {1, . . . , M}, let A j be the topological
closure of A j and let X j be a C∞-planar vector field defined over A j .

Definition 1 Given �, A1, . . . , AM and X1, . . . XM as above, the associated planar
non-smooth vector field Z = (X1, . . . , XM ;�), with discontinuity �, is the non-
smooth planar vector field given by Z(x, μ) = X j (x, μ), if x ∈ A j , for some j ∈
{1, . . . , M}. In this case, we say that the vector fields X1, . . . , XM are the components
of Z and �1, . . . , �N are the components of �.

From now on, let us denote by p points on � such that there exists a unique
i ∈ {1, . . . , N } such that p ∈ �i . Let also X be one of the two components of Z
defined at p. The Lie derivative of hi in the direction of the vector field X at p is
defined as

Xhi (p) = 〈X(p),∇hi (p)〉 ,

where 〈, 〉 denotes the standard inner product of R2. Under these conditions, we say
that p is a tangential singularity if

Xahi (p)Xbhi (p) = 0, Xa(p) �= 0, Xb(p) �= 0,
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Fig. 1 An example of �3. Observe that �3 does not pass through the intersection of the components of �

where Xa and Xb are the two components of Z defined at p. Let x ∈ �. We say
that x is a crossing point if there exist a unique i ∈ {1, . . . , N } such that x ∈ �i and
Xahi (x)Xbhi (x) > 0, where Xa and Xb are the two components of Z defined at x .

Definition 2 A graphic of Z is a subset formed by singularities p1, . . . pn, pn+1 =
p1, (not necessarily distinct) and regular orbits L1, . . . , Ln such that Li is a stable
characteristic orbit of pi and a unstable characteristic orbit of pi+1 (i.e. ω(Li ) = pi
and α(Li ) = pi+1), oriented in the sense of the flow. A polycycle is a graphic with a
return map. A polycycle �n is semi-elementary if it satisfies the following conditions.

(a) Each regular orbit Li intersects � at most in a finite number of points
{xi,0, xi,1, . . . , xi,n(i)}, with each xi, j being a crossing point;

(b) �n is homeomorphic to S1;
(c) Each singularity pi satisfies exactly one of the following conditions:

(i) pi is semi-hyperbolic and pi /∈ �;
(ii) pi is a hyperbolic saddle and pi /∈ �;
(iii) pi is a tangential singularity.

A polycycle is elementary if it satisfies conditions (a), (b) and if its singularities
satisfies either (i i) or (i i i).

From now on, let �n denote an elementary or semi-elementary polycycle with n
distinct singularities p1, . . . , pn . See Fig. 1.

Observe that �n divide the plane in two connected sets, with only one being
bounded. Let A denote the connected set in which the first return map is contained.
Observe that A can be either the bounded or unbounded set delimited by �n . See
Fig. 2.

Definition 3 Let p ∈ �i be a tangential singularity, X one of the components of
Z defined at p and let Xkhi (p) = 〈

X(p),∇Xk−1hi (p)
〉
, k ≥ 2. We say that X
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Fig. 2 Examples of polycycles �2 such that a A is the bounded set and b A is the unbounded set
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Fig. 3 Examples of a tangential singularity p such that a As �= Au and b As = Au

has m-order contact with � at p, m ≥ 1, if m is the first positive integer such that
Xmhi (p) �= 0.

Let p ∈ �i be a tangential singularity of �n , Ls and Lu the regular orbits of �n

such that ω(Ls) = p and α(Lu) = p. Let Xa and Xb be the two components of Z
defined at p and let Aa , Ab be the respective connected components of R2\� such
that Xa and Xb are defined over Aa and Ab. Given two parametrizations γs(t) and
γu(t) of Ls and Lu such that γs(0) = γu(0) = p, let As , Au ∈ {Aa, Ab} be such that
As ∩ γs([−ε, 0]) �= ∅ and Au ∩ γu([0, ε]) �= ∅, for any ε > 0 small. Let also Xs ,
Xu ∈ {Xa, Xb} denote the components of Z defined at As and Au . Observe that we
may have As = Au and thus Xs = Xu . See Fig. 3.

Definition 4 Given a tangential singularity p, let Xs and Xu be as above. We define
the stable and unstable contact order of p as the contact order ns and nu of Xs and Xu

with � at p, respectively. Furthermore we also say that Xs and Xu are the stable and
unstable components of Z defined at p.

Definition 5 Let�n be an elementary polycycle with distinct singularities p1, . . . , pn .
The hyperbolicity ratio of ri > 0 of pi is defined as follows.
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(a) If pi is a tangential singularity, then ri = ni,u
ni,s

, where ni,s and ni,u are the stable
and unstable contact orders of pi .

(b) If pi is a hyperbolic saddle, then ri = |νi |
λi
, where νi < 0 < λi are the eigenvalues

of pi .

In the case of a smooth vector fields, Cherkas [6] proved that if � is a polycycle
composed by n hyperbolic saddles p1, . . . , pn , with hyperbolicity ratios r1, . . . , rn ,
then � is stable if,

r :=
n∏

i=1

ri > 1,

and unstable if r < 1. Therefore, our first main theorem is an extension, to non-smooth
vector fields, of such classic result.

Theorem 1 Let Z = (X1, . . . , XM ;�) be a planar non-smooth vector field with an
elementary polycycle �n. Let also,

r(�n) =
n∏

i=1

ri . (1)

If r(�n) > 1 (resp. r(�n) < 1), then there is a neighborhood N0 of �n such that the
orbit of Z through any point p ∈ N0 ∩ A has �n as ω-limit (resp. α-limit).

Definition 6 Let �n be a semi-elementary polycycle with n distinct singularities
p1, . . . , pn . We say that pi is stable (unstable) singularity of �n if it satisfies one
of the following conditions.

(a) pi is a semi-hyperbolic singularity and λi < 0 (resp. λi > 0), where λi is the
unique non-zero eigenvalue of pi ;

(b) pi is a hyperbolic saddle and ri > 1 (resp. ri < 1), where ri is the hyperbolicity
ratio of p1;

(c) pi is a tangential singularity and ni,s = 1 (resp. ni,u = 1), where ni,s and ni,u are
the stable and unstable contact orders of pi .

Let �n be a semi-elementary polycycle. We say that the cyclicity of �n is k if at
most k limit cycles can bifurcate from an arbitrarily small perturbation of �n . In the
case of smooth vector fields, Dumortier et al [9] proved that if � is a polycycle of a
smooth vector field composed only by stable (resp. unstable) singular points, then �

has cyclicity one. Furthermore if any small perturbation of � has a limit cycle, then
it is hyperbolic and stable (resp. unstable). Therefore, our second main theorem is an
extension of such result to the realm of non-smooth vector fields.

Theorem 2 Let Z = (X1, . . . , XM ;�) be a planar non-smooth vector field with a
semi-elementary polycycle �n. Suppose that each singularity pi is a stable (resp.
unstable) singularity of �n. If a small perturbation of �n has a limit cycle, then it is
unique, hyperbolic and stable (resp. unstable). In particular, the cyclicity of �n is one.
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Let � be a polycycle of a smooth vector field composed by n hyperbolic saddles
p1, . . . , pn , with hyperbolicity ratios r1, . . . , rn . Let also, Ri = ∏i

j=1 r j . Han et al
[14] proved that if (Ri − 1)(Ri+1 − 1) < 0, i ∈ {1, . . . , n − 1}, then there exists an
arbitrarily small C∞-perturbation of � with at least n limit cycles. In our third main
result, we extend this result to the case of non-smooth vector fields.

Theorem 3 Let Z = (X1, . . . , XM ;�) be a planar non-smooth planar vector field
with an elementary polycycle �n and let Ri = ∏i

j=1 r j , i ∈ {1, . . . , n}. Suppose
Rn �= 1 and, if n ≥ 2, suppose (Ri − 1)(Ri+1 − 1) < 0 for i ∈ {1, . . . , n − 1}.
Then, there exist an arbitrarily small perturbation of Z such that at least n limit cycles
bifurcates from �n. In particular, the cyclicity of �n is at least n.

3 Preliminaries

3.1 TransitionMap Near a Hyperbolic Saddle

Let Xμ be a C∞ planar vector field depending in a C∞-way on a parameter μ ∈ R
r ,

r ≥ 1, defined in a neighborhood of a hyperbolic saddle p0 at μ = μ0. Let 
 ⊂ R
r

be a small enough neighborhood of μ0, ν(μ) < 0 < λ(μ) be the eigenvalues of the
hyperbolic saddle p(μ), μ ∈ 
, and r(μ) = |ν(μ)|

λ(μ)
be the hyperbolicity ratio of p(μ).

Let B be a small enough neighborhood of p0 and� : B×
 → R
2 be aC∞-change of

coordinates such that� sends the hyperbolic saddle p(μ) to the origin and its unstable
and stable manifolds Wu(μ) and Ws(μ) to the axis Ox and Oy, respectively. Let σ

and τ be two small enough cross sections of Oy+ and Ox+, respectively. We can
suppose that σ and τ are parametrized by x ∈ [0, x0] and y ∈ [0, y0], with x = 0 and
y = 0 corresponding to Oy+ ∩ σ and Ox+ ∩ τ , respectively. The flow of Xμ in the
first quadrant in this new coordinate system defines a transition map:

D : (0, x0] × 
 → (0, y0],

called the Dulac’s map [8]. See Fig. 4. Observe that D is of class C∞ for x �= 0 and
it can be continuously extend by D(0, μ) = 0 for all μ ∈ 
.

Definition 7 Let Ik , k ≥ 0, denote the set of functions f : [0, x0] × 
k → R, with

k ⊂ 
, satisfying the following properties.

(a) f is C∞ on (0, x0] × 
k ;

(b) For each j ∈ {0, . . . , k}we have that ϕ j = x j ∂ j f
∂x j (x, μ) is continuous on (0, x0]×


k with ϕ j (x, μ) → 0 for x → 0, uniformly in μ.

A function f : [0, x0] × 
 → R is said to be of class I if f is C∞ on (0, x0] × 


and for every k ≥ 0 there exists a neighborhood 
k ⊂ 
 of μ0 such that f is of class
I k on (0, x0] × 
k .

Theorem 4 (Mourtada, [9, 21]) Let Xμ, σ , τ , and D be as above. Then, for (x, μ) ∈
(0, x0] × 
, we have

D(x, μ) = xr(μ)(A(μ) + ϕ(x, μ)), (2)
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Fig. 4 The Dulac map near a hyperbolic saddle

with ϕ ∈ I and A a positive C∞-function.

Following Dumortier et al [9], we call Mourtada’s form the expression (2) of the
Dulac map and denote by D the class of maps given by (2).

Proposition 1 ([9, 21]) Given D(x, μ) = xr(μ)(A(μ) + ϕ(x, μ)) ∈ D, the following
statements hold.

(a) D−1 is well defined and D−1(x, μ) = x
1

r(μ) (B(μ) + ψ(x, μ)) ∈ D;
(b) ∂D

∂x is well defined and

∂D

∂x
(x, μ) = r(μ)xr(μ)−1(A(μ) + ξ(x, μ)), (3)

with ξ ∈ I .

For a complete characterization of the Dulac map, see [19, 20]. The following result
is also a classical result about the Dulac map.

Proposition 2 Let X be a vector field of class C∞ with a hyperbolic saddle p at
the origin, with eigenvalues ν < 0 < λ. Suppose also that the unstable and stable
manifolds Wu and Ws of p are given by the axis Oy and Ox, respectively, and let
D = D(x) be the Dulac map associated with p. Then, given ε > 0, there is δ > 0
such that,

δ1−
|ν|

λ−ε x
|ν|

λ−ε < D(x) < δ1−
|ν|

λ+ε x
|ν|

λ+ε .

The proof of Proposition 2 is due to Sotomayor [27, Section 2.2]. A similar result
was also proved by Cherkas [6]. Since both the references are not in English (and as
far as we know, there are no translation of it), we find it useful to prove Proposition 2
in this paper.
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Fig. 5 Illustration of X , Xε , D and Dε

Proof of Proposition 2. Let X = (P, Q) be given by,

P(x, y) = λx + r1(x, y), Q(x, y) = νy + r2(x, y).

SinceWs andWu are given the coordinate axis, it follows that r1(0, y) = r2(x, 0) = 0,
for every (x, y) ∈ R

2. Observe that,

r1(x, y) = r1(0, y) + x
∫ 1

0

∂r1
∂x

(sx, y) ds.

Hence, it follows that we can write r1(x, y) = xr1(x, y), with r1 continuous and such
that r1(0, 0) = 0. Similarly, we have r2(x, y) = yr2(x, y). Given ε > 0, consider the
linear vector field Xε = (Pε, Qε) given by,

Pε(x, y) = (λ + ε)x, Qε(x, y) = νy.

Let

J (x, y) =
(
P(x, y) Pε(x, y)
Q(x, y) Qε(x, y)

)

=
(

λx + xr1(x, y) (λ + ε)x
νy + yr2(x, y) νy

)

,

and observe that

det J (x, y) = xy
(
νr1(x, y) − νε − (λ + ε)r2(x, y)

)
.

Therefore, there is δ > 0 such that if 0 < x < δ and 0 < y < δ, then det J (x, y) > 0
and thus the vectors X(x, y) and Xε(x, y) have positive orientation. Hence, if Dε is
the Dulacmap associated with Xε, it follows that D(x) ≤ Dε(x), for every 0 < x < δ.
See Fig. 5.

Since Xε is linear, it follows that its flow ϕ is given by

ϕ(t, x, y) = (
xe(λ+ε)t , yeνt ),
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and thus we have Dε(x) = yeνt0 , where t0 > 0 is such that xe(λ+ε)t0 = δ. Hence,
t0 = 1

λ+ε
ln δ

x and thus we have,

Dε(x) = δ

(

exp ln
δ

x

) ν
λ+ε = δ1−

|ν|
λ−ε x

|ν|
λ−ε .

This proves the first inequality of the proposition. The other one can be obtained by
considering Xε(x, y) = ((λ − ε)x, νy). �

3.2 TransitionMap Near A Semi-hyperbolic Singularity

Theorem 5 (Theorem 3.2.2 of [9]) Let Xμ be a C∞-planar vector field depending in a
C∞-way on a parameterμ ∈ 
 ⊂ R

r , r ≥ 1. Suppose that atμ = μ0 we have a semi-
hyperbolic singularity at the origin O. Let also B be a small enough neighborhood
of O. If 
 is a small enough neighborhood of μ0, then for each k ≥ 1, k ∈ N, there
exists a Ck-family of diffeomorphisms on B such that at this new coordinate system,
Xμ is given by

ẋ = g(x, μ), ẏ = ±y,

except by the multiplication of a Ck-positive function. Furthermore, g is a function of
class Ck satisfying,

g(0, μ0) = ∂g

∂x
(0, μ0) = 0.

Let Xμ be a C∞-planar vector field depending in a C∞-way on a parameter μ ∈

 ⊂ R

r , r ≥ 1. Suppose that at μ = μ0 we have a semi-hyperbolic singularity p0
with a hyperbolic sector (e.g. a saddle-node or a degenerated saddle). At μ = μ0, let
λ ∈ R\{0} be the unique non-zero eigenvalue of p0. Reversing the time if necessary,
we can assume that λ < 0. Locally at p0, it follows from Theorem 5 that we can
suppose that Xμ is given by

ẋ = g(x, μ), ẏ = −y,

with g of class Ck (for any k large enough) and satisfying,

g(0, μ0) = ∂g

∂x
(0, μ0) = 0.

In this new coordinate system given by Theorem 5, and at μ = μ0, let σ and τ be two
small cross sections of the axis Oy+ and Ox+ (which are, respectively, the stable and
the central manifolds of p0). As in subsection 3.1, we can suppose that σ and τ are
parametrized by x ∈ [0, x0] and y ∈ [0, y0], with x = 0 and y = 0 corresponding to
Oy+ ∩ σ and Ox+ ∩ τ , respectively (see Fig. 4). Let x∗(μ) be the largest solution of
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g(x, μ) = 0 and observe that x∗(μ0) = 0. For each μ ∈ 
, let σ(μ) ⊂ σ be given
by x ∈ [x∗(μ), x0] and let

C =
⋃

μ∈


{σ(μ), μ} ⊂ σ × 
.

As in Sect. 3.1, in this new coordinate system the flow of Xμ defines a transition map
F : C → (0, y0].

Theorem 6 [Theorem 3 of [9]] Let Xμ and F be as above. Then

F(x, μ) = Ye−T (x,μ), (4)

where Y > 0 and T : C → R
+ is the time function from σ(μ) to τ . Moreover, if

μ = (μ1, . . . , μr ), then for any k, m ∈ N and for any (i0, . . . , ir ) ∈ N
n+1 with

i0 + · · · + ir = m, we have

∂mF

∂xi0∂μ
i1
1 . . . ∂μ

ir
r

(x, μ) = O(||(x, μ)||k). (5)

3.3 TransitionMap Near a Tangential Singularity

Let p0 be a tangential singularity of �n and Xs , Xu be the stable and unstable compo-
nents of Z defined at p0 with μ = μ0. Let B be a small enough neighborhood of p0
and � : B × 
 → R

2 be a C∞ change of coordinates such that �(p0, μ0) = (0, 0)
and �(B ∩ �) = Ox . Let ls = �(B ∩ Ls), lu = �(B ∩ Lu) and τs , τu two small
enough cross sections of ls and lu , respectively. Let also,

σ = [0, ε) × {0}, σ = (−ε, 0] × {0}, or σ = {0} × [0, ε),

depending on �n . It follows from Andrade et al [1] that � can be choose such that the
transition maps T s,u : σ ×
 → τs,u , given by the flow of Xs,u in this new coordinate
system, are well defined and given by,

T u(hμ(x), μ) = ku(μ)xnu + O(xnu+1) +
nu−2∑

i=0

λui (μ)xi ,

T s(hμ(x), μ) = ks(μ)xns + O(xns+1) +
ns−2∑

i=0

λsi (μ)xi ,

(6)

with λ
s,u
i (μ0) = 0, ks,u(μ0) �= 0, hμ : R → R a diffeomorphism and with hμ and

λ
s,u
i depending continuously on μ. For examples of such maps, see Fig. 6.
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T u

T s

(b)

T u

T s

(c)

Fig. 6 Illustration of the maps T u and T s . The choice between a and c depends on whether the Poincaré
map is defined in the bounded or unbounded region delimited by �n

4 Proofs of Theorems 1 and 2

Proof of Theorem 1. For simplicity, we assume that � = h−1(0) has one component
and thus Z = (X1, X2;�) has two components. Moreover, we assume that �n = �3

is composed by two tangential singularities p1, p2 and by a hyperbolic saddle p3. See
Fig. 7. The general case follows similarly. Let Bi be a small enough neighborhood of
pi and let �i : Bi × {μ0} → R

2 be the change of variables chosen as in Sect. 3.3,
i ∈ {1, 2}. Let also B3 be a neighborhood of p3 and �3 : B3 × {μ0} → R

2 be the
change of variables chosen as in Sect. 3.1. Knowing that T s,u

i : σi × {μ0} → τ
s,u
i and

D : σ × {μ0} → τ , let,

σ i = �−1
i (σi ), τ si = �−1

i (τ si ), τ ui = �−1
i (τ ui ),

Js = �−1
3 (σ ), Ju = �−1

3 (τ ),

with i ∈ {1, 2}. Let also,

ρ1 : τ u1 → τ s2 , ρ2 : τ u2 → Js, ρ3 : Ju → τ s1 ,

be defined by the flow of X1 and X2. See Fig. 7. Finally let,

ρ1 = �2 ◦ ρ1 ◦ �−1
1 , ρ2 = �3 ◦ ρ2 ◦ �−1

2 , ρ3 = �1 ◦ ρ3 ◦ �−1
3 ,

and,

T
s
i = �−1

i ◦ T s
i ◦ �i , T

u
i = �−1

i ◦ T u
i ◦ �i , D = �−1

3 ◦ D ◦ �3,

with i ∈ {1, 2}. See Fig. 7.
Let ν < 0 < λ be the eigenvalues of p3 and denote r = |ν|

λ
. Let also ni,s and

ni,u denote the stable and unstable order of pi , i ∈ {1, 2}. Suppose r(�n) > 1. Given
ε > 0, it follows from Sects. 3.1 and 3.3 that,

T s
i (x) = ki,s x

ni,s + O(xni,s+1), T u
i (x) = ki,ux

ni,u + O(xni,u+1),

D(x) < Cx
|ν|

λ+ε , ρ j (x) = a j x + O(x2),
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Fig. 7 Illustration of the maps used in the proof of Theorem 1

with ki,s , ki,u , a j , a �= 0, C > 0, i ∈ {1, 2} and j ∈ {1, 2, 3}. Since ε > 0 is arbitrary,
it follows that if we define

π = ρ2 ◦ T u
2 ◦ (T s

2 )−1 ◦ ρ1 ◦ T u
1 ◦ (T s

1 )−1 ◦ ρ3 ◦ D,

then one can conclude that,

π(x) ≤ Kxr0 + O(xn0+1),

with K �= 0 and 1 < r0 < r(�n). Hence, if x is small enough we conclude that
π(x) < x . The result now follows from the fact that the first return map

P = ρ2 ◦ T
u
2 ◦

(
T
s
2

)−1 ◦ ρ1 ◦ T
u
1 ◦

(
T
s
1

)−1 ◦ ρ3 ◦ D,

satisfies P = �−1
3 ◦ π ◦ �3. If r(�n) < 1, the results follows by inverting the time

variable. ��
Proof of Theorem 2. Let us suppose that every singularity of �n is attracting (see Defi-
nition 6). Following the proof of Theorem 1, we observe that the Poincaré map, when
well defined, can be written as the composition

Pμ = Gk ◦ Fk ◦ · · · ◦ G1 ◦ F1,

where each Fi is the transition map near a hyperbolic saddle (given by (2)), a semi-
hyperbolic singularity (given by (4)), or a tangential singularity (given by (6)), and
each Gi is regular transition given by the flow of Z , i.e. a C∞-diffeomorphism in x .
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p1

p2

x0

u0

Σ

L0

Fig. 8 Illustration of �n at μ = μ0

We call y1 = F1(x1), x2 = G1(y1), . . . , yk = Fk(xk), xk+1 = Gk(yk). Thus,

P ′
μ(x1) = G ′

k(yk)F
′
k(xk) . . .G ′

1(y1)F
′
1(x1).

Therefore, it follows from (3), (5) and (6) that for all ε > 0 there exists a neighborhood

 of μ0 and neighborhoods Wi of xi = 0, i ∈ {1, . . . , k + 1}, such that if x1 ∈ W1,
then xi ∈ Wi and |F ′

i (xi )| < ε, for all i ∈ {1, . . . , k + 1} and for all μ ∈ 
. Also,
if 
 and each Wi are small enough, then each G ′

i (yi ) is bounded, and bounded away
from zero. Since ε > 0 is arbitrarily small, it follows that P ′

μ(x1) is also arbitrarily
small, for (x1, μ) ∈ W1 × 
. Therefore, the derivative of the displacement map
dμ(x1) = Pμ(x1) − x1 cannot vanish and thus at most one limit cycle bifurcate from
�n . Moreover, if it does, it is hyperbolic and stable. The other case follows by reversing
the time variable. ��

Unlike Theorems 1 and 2, to obtain Theorem 3 it will be necessary to work on some
technicalities about the displacement maps of a polycycle. We will deal with that at
Sects. 5 and 6.

5 The Displacement Map

Let Z = (X1, . . . , Xm;�) be a planar non-smooth vector field, depending in a C∞-
wayon aparameterμ ∈ R

r , and such that Z has an elementary polycycle�n atμ = μ0.
Let also 
 ⊂ R

r be a small neighborhood of μ0 and from now on assume μ ∈ 
.
In this section, we will study the displacement map between two singularities pi and
pi+1 of �n . We will begin by the case in which both pi and pi+1 are hyperbolic
saddles. To simplify the notation, at μ = μ0, let p1 ∈ A1 and p2 ∈ A2 be two
hyperbolic saddles of �n with the heteroclinic connection L0 such that ω(L0) = p1,
α(L0) = p2 and L0 ∩ � = {x0}, � = h−1(0). Let γ0(t) be a parametrization of
L0 such that γ0(0) = x0 and u0 be a unitary vector orthogonal to Tx0� such that
sign(〈u0,∇h(x0)〉) = sign(X1h(x0)) = sign(X2h(x0)). See Figure 8.
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Also, defineω0 ∈ {−1, 1} such thatω0 = 1 if the orientation of�n is counterclock-
wise and ω0 = −1 if the orientation of �n is clockwise. We denote by DX(p, μ∗) the
Jacobian matrix of X |μ=μ∗ at p, i.e. if X = (P, Q), then

DX(p, μ∗) =

⎛

⎜
⎜
⎝

∂P

∂x1
(p, μ∗) ∂P

∂x2
(p, μ∗)

∂Q

∂x1
(p, μ∗) ∂Q

∂x2
(p, μ∗)

⎞

⎟
⎟
⎠ .

If 
 is a small enough neighborhood of μ0, then it follows from the Implicit Function
Theorem that if μ ∈ 
, then the perturbation pi (μ) of pi is well defined and it is
a hyperbolic saddle of Xi , with pi (μ) → pi as μ → μ0, and with pi (μ) of class
C∞, i ∈ {1, 2}. Let (yi,1, yi,2) = (yi,1(μ), yi,2(μ)) be a coordinate system with its
origin at pi (μ) and such that the yi,1-axis and the yi,2-axis are the one-dimensional
stable and unstable spaces Es

i (μ) and Eu
i (μ) of the linearization of Xi (·, μ) at pi (μ),

i ∈ {1, 2}. It follows from the Center-Stable Manifold Theorem (see [18]) that the
stable and unstable manifolds Sμ

i and Uμ
i of Xi (·, μ) at pi (μ) are given by,

Sμ
i : yi,2 = �i,2(yi,1, μ), Uμ

i : yi,1 = �i,1(yi,2, μ),

where�i,1 and�i,2 areC∞-functions, i ∈ {1, 2}. Restricting
 if necessary, it follows
that there exist δ > 0 such that,

ysi (μ) = (δ,�i,2(δ, μ)) ∈ Sμ
i , yui (μ) = (�i,1(δ, μ), δ) ∈ Uμ

i ,

i ∈ {1, 2}. If Ci (μ) is the diagonalization of DXi (pi (μ), μ), then at the original
coordinate system (x1, x2) we obtain,

xsi (μ) = pi (μ) + Ci (μ)ysi (μ) ∈ Sμ
i , xui (μ) = pi (μ) + Ci (μ)yui (μ) ∈ Uμ

i ,

i ∈ {1, 2}. Furthermore xsi (μ) and xui (μ) are also C∞ at 
. Let φi (t, ξ, μ) be the
flow of Xi (·, μ) such that φi (0, ξ, μ) = ξ and Ls

0 = Ls
0(μ), Lu

0 = Lu
0(μ) be the

perturbations of L0 such that ω(Ls
0(μ)) = p1(μ) and α(Lu

0(μ)) = p2(μ). Then it
follows that,

xs(t, μ) = φ1(t, x
s
1(μ), μ), xu(t, μ) = φ2(t, x

u
2 (μ), μ)

are parametrizations of Ls
0(μ) and Lu

0(μ), respectively. Since L0 intersects �, it fol-
lows that there are t s0 < 0 and tu0 > 0 such that xs(t s0 , μ0) = x0 = xu(tu0 , μ0) and
thus by the uniqueness of solutions we have,

xs(t + t s0 , μ0) = γ0(t) = xu(t + tu0 , μ0),

for t ∈ [0,+∞) and t ∈ (−∞, 0], respectively.
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Fig. 9 Illustration of xs0(μ) and xu0 (μ)

Lemma 1 Taking a small enough neighborhood 
 of μ0, there exists unique C∞-
functions τ s(μ) and τ u(μ) such that τ s(μ) → t s0 and τ u(μ) → tu0 , as μ → μ0, and
xs0(μ) = xs(τ s(μ), μ) ∈ � and xu0 (μ) = xu(τ u(μ), μ) ∈ �, for all μ ∈ 
. See
Fig.9.

Proof Let X1 denote a C∞-extension of X1 to a neighborhood of A1 and observe that
now xs(t, μ0) is well defined for |t − t s0 | small enough. Knowing that � = h−1(0),
define S(t, μ) = h(xs(t, μ)) and observe that S(t s0 , μ0) = h(x0) = 0 and,

∂S

∂t
(t s0 , μ0) = 〈∇h(x0), X1(x0)〉 �= 0.

It then follows from the Implicit Function Theorem that there exist a C∞-function
τ s(μ) such that τ s(μ0) = t s0 and S(τ s(μ), μ) = 0 and thus xs0(μ) = xs(τ s(μ), μ) ∈
�. In the same way one can prove the existence of τ u . ��
Definition 8 It follows from lemma 1 that the displacement function,

d(μ) = ω0[xu0 (μ) − xs0(μ)] ∧ u0,

where (x1, x2)∧ (y1, y2) = x1y2 − y1x2, is well defined near μ0 and it is of class C∞.
See Fig. 10.

Remark 1 We observe that L0 can intersect � multiple times. In this case, following
Sect. 2, we write L0 ∩ � = {x0, x1, . . . , xn} and let γ0(t) be a parametrization of L0
such that γ0(ti ) = xi , with tn < · · · < t1 < t0 = 0. Therefore, applying lemma 1 one
shall obtain xun (μ) and then applying the Implicit Function Theorem multiple times
one shall obtain xui (μ) as a function of xui+1(μ), i ∈ {0, . . . , n − 1}, and thus the
displacement function is still well defined at x0.



142 Page 16 of 33 P. Santana

Σ Σxu
0xu

0 xs
0xs

0

d(μ) > 0 d(μ) < 0

Fig. 10 Illustration of d(μ) > 0 and d(μ) < 0

Let us define,

xsμ(t) = φ1(t, x
s
0(μ), μ) for t ≥ 0, xuμ(t) = φ2(t, x

u
0 (μ), μ) for t ≤ 0,

new parametrizations of Ls
0(μ) and Lu

0(μ), respectively. In the following lemma we
will denote by Xi some C∞-extension of Xi at some neighborhood of Ai , i ∈ {1, 2},
and thus xsμ(t) and xuμ(t) are well defined for |t | small enough.

Lemma 2 For any μ∗ ∈ 
 and any i ∈ {1, . . . , n} the maps
∂xsμ∗

∂μi
(t),

∂xuμ∗

∂μi
(t),

are bounded as t → +∞ and t → −∞, respectively.

Proof Let us consider a small perturbation of the parameter in the form,

μ = μ∗ + εei , (7)

where ei is the ith vector of the canonical base of Rr . The corresponding perturbation
of the singularity p2(μ∗) takes the form,

p2(μ) = p2(μ
∗) + εy0 + o(ε).

Knowing that X2(p2(μ), μ) = 0 for any ε it follows that,

0 = ∂X2

∂ε
(p2(μ), μ) = DX2(p2(μ), μ)[y0 + o(ε)] + ∂X2

∂μ
(p2(μ), μ)ei ,

and thus applying ε → 0 we obtain,

y0 = −F−1
0 G0ei ,



Stability and Cyclicity of Polycycles... Page 17 of 33 142

θ1 θ2

Σ

u0 u0

Fig. 11 Illustration of θ1 > 0 and θ2 < 0

where F0 = DX2(p2(μ∗), μ∗) and G0 = ∂X2
∂μ

(p2(μ∗), μ∗) (observe that F0 is
reversible because p2 is a hyperbolic saddle). Hence,

∂ p2
∂μi

(μ∗) = −F−1
0 G0ei .

Therefore, it follows from the C∞-differentiability of the flow near p2(μ) that,

lim
t→−∞

∂xuμ∗

∂μi
(t) = ∂ p2

∂μi
(μ∗) = −F−1

0 G0ei

and thus we have the proof for xuμ∗ . The proof for xsμ∗ is similar. ��
Let θi ∈ (−π, π) be the angle between Xi (x0) and u0, i ∈ {1, 2}. See Fig. 11.
For i ∈ {1, 2} we denote by Mi the rotation matrix of angle θi , i.e.

Mi =
(

cos θi − sin θi
sin θi cos θi

)

.

Following Perko [25], we define

nu(t, μ) = ω0[xuμ(t) − x0] ∧ u0, ns(t, μ) = ω0[xsμ(t) − x0] ∧ u0.

It then follows from Definition 8 that,

d(μ) = nu(0, μ) − ns(0, μ),

and thus,

∂d

∂μ j
(μ0) = ∂nu

∂μ j
(0, μ0) − ∂ns

∂μ j
(0, μ0). (8)
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Therefore, to understand the displacement function d(μ), it is enough to understand
nu and ns . Let Xi = (Pi , Qi ), i ∈ {1, 2}. Knowing that γ0 is a parametrization of L0
such that γ0(0) = x0, let L

+
0 = {γ0(t) : t > 0} ⊂ A1 and,

I+
j =

∫

L+
0

eD1(t)
[

(M1X1) ∧ ∂X1

∂μ j
(γ0(t), μ0) − sin θ1R1, j (γ0(t), μ0)

]

dt, (9)

where,

Di (t) = −
∫ t

0
divXi (γ0(s), μ0)ds,

and,

Ri, j = ∂Pi
∂μ j

[(
∂Qi

∂x1
+ ∂Pi

∂x2

)

Qi +
(

∂Pi
∂x1

− ∂Qi

∂x2

)

Pi

]

+∂Qi

∂μ j

[(
∂Pi
∂x2

+ ∂Qi

∂x1

)

Pi +
(

∂Qi

∂x2
− ∂Pi

∂x1

)

Qi

]

,

i ∈ {1, 2}, j ∈ {1, . . . , r}.
Proposition 3 For any j ∈ {1, . . . , r} it follows that,

∂ns

∂μ j
(0, μ0) = ω0

||X1(x0, μ0)|| I
+
j .

Proof From now on in this proof we will denote X1 some C∞-extension of X1 at
some neighborhood of A1 and thus xsμ(t) is well define for |t | small enough. Let
j ∈ {1, . . . , r}. Defining,

ξ(t, μ) = ∂xsμ
∂μ j

(t),

it then follows that,

ξ̇ (t, μ) = ∂ ẋ sμ
∂μ j

(t) = ∂

∂μ j

(
X1(x

s
μ(t), μ)

) = DX1(x
s
μ(t), μ)ξ(t, μ) + ∂X1

∂μ j
(xsμ(t), μ).

(10)

Let (s, n) = (s(t, μ), n(t, μ)) be the coordinate system with origin at xsμ(t) and such
that the angle between X1(xsμ(t), μ) and s equals θ1, and n is orthogonal to s, pointing
outwards in relation to G. See Fig. 12.

Write ξ(t, μ) = ξs(t, μ)s+ ξn(t, μ)n in function of this new coodinate system and
observe that ξn (i.e. the component of ξ in the direction of n) is given by

ξn(t, μ) = ω0
ρ(t, μ)

||X1(xsμ(t, μ)|| ,
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n
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s

s

θ1

θ1

Σ

Fig. 12 Illustration of (s, n) along xsμ(t)

where ρ(t, μ) = ξ ∧ M1X1(xsμ(t), μ). Since n(0, μ) is precisely equal to the normal
direction of u0, it follows that,

∂ns

∂μ j
(0, μ) = ω0

ρ(0, μ)

||X1(xsμ(0), μ)|| . (11)

Denoting M1X1 = (P0, Q0), ξ = (ξ1, ξ2) and,

ρ(t, μ) = ξ ∧ M1X1(x
s
μ(t), μ), (12)

we conclude that,

ρ = ξ1Q0 − P0ξ2,

where,

P0 = P1 cos θ1 − Q1 sin θ1, Q0 = Q1 cos θ1 + P1 sin θ1.

Hence,

ρ̇ = ξ̇1Q0 − ξ̇2P0 + ξ1 Q̇0 − ξ2 Ṗ0. (13)

Knowing that,

Ṗ1 = ẍ1 = ∂P1
∂x1

P1 + ∂P1
∂x2

Q1, Q̇1 = ẍ2 = ∂Q1

∂x1
P1 + ∂Q1

∂x2
Q1,
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we conclude,

Ṗ0 = ∂P1
∂x1

P1 cos θ1 + ∂P1
∂x2

Q1 cos θ1 − ∂Q1

∂x1
P1 sin θ1 − ∂Q1

∂x2
Q1 sin θ1,

Q̇0 = ∂Q1

∂x1
P1 cos θ1 + ∂Q1

∂x2
Q1 cos θ1 + ∂P1

∂x1
P1 sin θ1 + ∂P1

∂x2
Q1 sin θ1.

(14)

Replacing (10) and (14) in (13) one can conclude,

ρ̇ = divX1ρ − M1X1 ∧ ∂X1

∂μ j
+ sin θ1R1, j . (15)

Solving (15) we obtain,

ρ(t, μ)eD1(t)
∣
∣
∣
t1

t0
=

∫ t1

t0
eD1(t)

[

sin θ1R1, j (x
s
μ,μ) − M1X1 ∧ ∂X1

∂μ j
(xsμ(t), μ)

]

dt .

(16)

Observe that X1(xsμ(t), μ) → 0 as t → +∞. Therefore, it follows from (11) and (12)

that ρ(t, μ) → 0 as t → +∞ (since from lemma 2 we know that ∂ns
∂μ j

is bounded).
Thus, if we take t0 = 0 and let t1 → +∞ in (16), then it follows that,

ρ(0, μ) =
∫ +∞

0
eD1(t)

[

M1X1 ∧ ∂X1

∂μ j
(xsμ(t), μ) − sin θ1R1, j (t, μ)

]

dt,

and thus it follows from (11) and (12) we have that,

∂ns

∂μ j
(0, μ0) = ω0

||X1(x0, μ0)|| I
+
j .

��
Remark 2 Observe that even if L0 intersects � in multiple points, L+

0 was defined in
such a way that there is no discontinuities on it. Moreover, if L0 ∩ � = {x0}, then
L−
0 = {γ0(t) : t < 0} also has no discontinuities and thus, as in Proposition 3, one

can prove that,

∂nu

∂μ j
(t, μ) = ω0

ρ(t, μ)

||X2(xuμ(t), μ)|| ,

with ρ satisfying (15), but with xuμ instead of xsμ and X2 instead of X1. Furthermore
we have ρ(t, μ) → 0 as t → −∞ and thus by setting t1 = 0 and letting t0 → −∞
we obtain,

ρ(0, μ) = −
∫ +∞

0
eD2(t)

[

M2X2 ∧ ∂X2

∂μ j
(xuμ(t), μ) − sin θ2R2, j (t, μ)

]

dt .
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Hence, in the simple case where L0 intersects � in a unique point x0, it follows from
(8) and from Proposition 3 that,

∂d

∂μ j
(μ0) = −ω0

(
1

||X2(x0, μ0)|| I
−
j + 1

||X1(x0, μ0)|| I
+
j

)

,

with,

I+
j =

∫

L+
0

eD1(t)
[

(M1X1) ∧ ∂X1

∂μ j
(γ0(t), μ0) − sin θ1R1, j (γ0(t), μ0)

]

dt,

I−
j =

∫

L−
0

eD2(t)
[

(M2X2) ∧ ∂X2

∂μ j
(γ0(t), μ0) − sin θ2R2, j (γ0(t), μ0)

]

dt .

Remark 3 If instead of a non-smooth vector field we suppose that Z = X is smooth,
then we can assume X1 = X2 and take u0 = X(x0,μ0)||X(x0,μ0)|| . In this case we would have
θ1 = θ2 = 0 and therefore conclude that,

∂d

∂μ j
(μ0) = − ω0

||X(x0, μ0)||
∫ +∞

−∞
e− ∫ t

0 divX(γ0(s),μ0)ds
[

X ∧ ∂X

∂μ j
(γ0(t), μ0)

]

dt,

as in the works of Perko, Holmes and Guckenheimer [13, 15, 25].

Remark 4 Within this section, the hypothesis of a polycycle is not necessary. In fact,
if we assume only a heteroclinic connection between saddles, then we can define the
displacement function as

d(μ) = [xu0 (μ) − xs0(μ)] ∧ u0,

and therefore obtain,

∂d

∂μ j
(μ0) = −

(
1

||X2(x0, μ0)|| I
−
j + 1

||X1(x0, μ0)|| I
+
j

)

.

it is only necessary to pay attention at which direction we have d(μ) > 0 or d(μ) < 0.

Let us now study the case where at least one of the endpoints of the heteroclinic
connection is a tangential singularity. In the case of the hyperbolic saddle, we use the
Center-Stable Manifold Theorem [18] to take a point xs1(μ)within the stable manifold
of the hyperbolic saddle. Then, we define,

xs(t, μ) = φ1(t, x
s
1(μ), μ), (17)

where φ1 is the flow of X1, the component of Z which contains the hyperbolic saddle.
Then, we use the Implicit Function Theorem at lemma 1 to obtain a smooth function
τ s(μ) such that,

xs0(μ) = xs(τ s(μ), μ) ∈ �, (18)
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Fig. 13 Illustration of xs0(μ) and xu0 (μ) in the case of a tangential singularity

for every μ ∈ 
, where 
 is a small enough neighborhood of μ0. Therefore, in the
case of the tangential singularity, we define

xs1(μ) = T s(hμ(0), μ), (19)

where T s and hμ are given by (6). However, in the case of a hyperbolic saddle the
definition of xs(t, μ) given by (17) works essentially because the hyperbolic saddle is
structurally stable. But this may not be the case of a tangential singularity. Moreover,
the parameters at (6), related with the transitions maps near tangential singularities,
depend continuously on the parameter μ. Hence, we cannot take its derivative with
respect to μ. To avoid these problems, it is sufficient to assume that Z is constant, in
relation to μ, in a neighborhood of the tangential singularity.

Remark 5 From now on, given a tangential singularity p of the planar non-smooth
vector field Z , we suppose that Z is constant, in relation to μ, in a neighborhood B of
p.

In this case, let xs1(μ) ∈ B be given by (19). It follows from Remark 5 that xs1(μ) =
xs1 is constant. Now, similarly to the case of the hyperbolic saddle, let xs(t, μ) be
given by (17) (i.e. xs(t, μ) is the parametrization of the regular orbit Ls

0(μ)). Let
x0 = xs(t s0 , μ0) be the intersection of L0(μ0) and �. See Fig. 13.

Similarly to lemma 1, it follows from the Implicit Function Theorem that there
exist a C∞-function τ s(μ) such that τ s(μ) → t s0 , as μ → μ0, and such that xs0(μ) =
xs(τ s(μ), μ) ∈ �, for all μ ∈ 
. Similarly, one can define xu1 (μ) and then obtain
τ u(μ) and xu0 (μ). Therefore, we have obtained an analogous version of lemma1 for the
case of tangential singularities. Since Z is constant, in relation toμ, in a neighborhood
of p1, it follows that the partial derivatives of xs in relation to μ are zero near p1.
Hence, lemma 2 is also clear in this case. Although the assumption made at Remark 5
is strong, we observe that to prove Theorem 3, we will make use of bump-functions to
construct perturbations that does not affect any tangential singularity. We now prove
the similar version of Proposition 3.
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Proposition 4 Let p1 be a tangential singularity satisfying Remark 5. Then for any
j ∈ {1, . . . , r} it follows that,

∂ns

∂μ j
(0, μ0) = ω0

||X1(x0, μ0)|| (I
+
j + H+

j ),

where I+
j is given by (9)

H+
j = eD1(t1) ∂γ0

∂μ j
(t1) ∧ M1X1(p1, μ0),

and γ0 is a parametrization of L+
0 such that γ0(0) = x0 and γ0(t1) = p1.

Proof Let γ0 be a parametrization of L0 such that γ0(0) = x0 and γ0(t1) = p1. It
follows from Proposition 3 that,

∂ns

∂μ j
(0, μ) = ω0

ρ(0, μ)

||X1(xsμ(0), μ)|| ,

with,

ρ(t, μ) = ξ ∧ M1X1(x
s
μ(t), μ),

satisfying,

ρ(t, μ)eD1(t)
∣
∣
∣
t1

t0
=

∫ t1

t0
eD1(t)

[

sin θ1R1, j (x
s
μ,μ) − M1X1 ∧ ∂X1

∂μ j
(xsμ(t), μ)

]

dt .

(20)

Observe that t1 > 0 and thus we can define L+
0 = {γ0(t) : 0 < t < t1}. Then, it

follows from (20) that,

ρ(0, μ0) = I+
j + eD1(t1)ρ(t1, μ0).

Since Z is constant in a neighborhood of p1, it follows that ξ(t1, μ) = 0 and thus
ρ(t1, μ0) = 0. This finishes the prove. ��

In the following proposition we use the Poincaré-Bendixson theory for non-smooth
vector fields (see Buzzi et al [5]) and the displacement maps to prove, under some
conditions, the bifurcation of limit cycles. Such result will be used in an induction
argumentation in the proof of Theorem 3.

Proposition 5 Let Z and�n be as in Sect.2, with the tangential singularities satisfying
Remark 5, and di : 
 → R, i ∈ {1, . . . , n}, be the displacement maps defined at the
regular orbits of �n. Let σ0 ∈ {−1, 1} be a constant such that σ0 = 1 (resp. σ0 = −1)
if the Poincaré map is defined in the bounded (resp. unbounded) region of �n. Then
following statements holds.
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R1

R2

R3

di(μ) = 0. di(μ) < 0.

Fig. 14 Observe that if di (μ) > 0, then the composition may not be well defined

(a) If r(�n) > 1 and μ ∈ 
 is such that σ0d1(μ) ≤ 0, . . . , σ0dn(μ) ≤ 0 with
σ0di (μ) < 0 for some i ∈ {1, . . . , n}, then at least one stable limit cycle �

bifurcates from �n.
(b) If r(�n) < 1 and μ ∈ 
 is such that σ0d1(μ) ≥ 0, . . . , σ0dn(μ) ≥ 0 with

σ0di (μ) > 0 for some i ∈ {1, . . . , n}, then at least one unstable limit cycle �

bifurcates from �n.

Proof For the simplicity we will use the same polycycle � used in the proof of Theo-
rem 1. Let xi,0 ∈ Li be as in Sect. 2 and li be transversal sections of Li through xi,0,
i ∈ {1, 2, 3}. Let Ri : li × 
 → li−1 be functions given by the compositions of the
functions used in the proof of Theorem 1, i ∈ {1, 2, 3}. See Fig. 14.

Hence, if di (μ) ≤ 0, i ∈ {1, 2, 3}, then the Poincaré map P : l1 × 
 → l1 can
be written as P(x, μ) = R3(R2(R1(x, μ), μ), μ). We observe that P is C∞ in x ,
continuous in μ, and it follows from the proof of Theorem 1 that P(·, μ0) is non-flat.
It follows from Theorem 1 that there is an open ring A in the bounded region delimited
by �, such that the orbit � through any point q ∈ A0 spiral towards �3 as t → +∞.
Let p be the interception of � and l1, q0 ∈ A0∩ l1, ξ a coordinate system along l1 such
that ξ = 0 at p and ξ > 0 at q0 and let we identify this coordinate system with R+.
Observe that P(q0, μ0) < q0 and thus by continuity P(q0, μ) < q0 for any μ ∈ 
.
See Fig. 15.

Therefore, it follows from the Poincaré-Bendixson theory and from the non-flatness
of P that at least one stable limit cycle �0 bifurcates from �3. Statement (b) can be
prove by time reversing. ��

6 The Further Displacement Map

Let Z and�n be as in Sect. 2, with the tangential singularities satisfying Remark 5. Let
Lu
i (μ) and Ls

i (μ) be the perturbations of Li such that α(Lu
i ) = pi+1 and ω(Ls

i ) = pi ,
i ∈ {1, . . . , n}, with each index being modulo n. Following the work of Han et al
[14], let Ci = xi,0. If Ci /∈ �, then let vi be the unique unitary vector orthogonal to
Z(Ci , μ0) and pointing outwards in relation to �n . See Fig. 16.
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q0

P (q0, μ)

Fig. 15 Illustration of the application of the Poincaré-Bendixson theory

p1
p2

p3

C1

x1,1

C2 C3

Σ

l1

l2

l3

Fig. 16 An example of the construction of the points Ci and the lines li

On the other hand, ifCi ∈ �, then let vi be the unique unitary vector tangent to TCi �

and pointing outwards in relation to �n . In both cases, let li be the transversal section
normal to Li atCi . It is clear that any point B ∈ li can be written as B = Ci +λvi , with
λ ∈ R.Moreover, let Ni be a small enough neighborhood ofCi and Ji = Ni∩�. It then
follows that any point B ∈ Ji can be orthogonally projected on the line li : Ci + λvi ,
λ ∈ R, and thus it can be uniquely, and smoothly, identified with Ci + λBvi , for some
λB ∈ R. In either case Ci ∈ � or Ci /∈ �, observe that if λ > 0, then B is outside �n

and if λ < 0, then B is inside �n . For each i ∈ {1, . . . , n} we define,

Bu
i = Lu

i ∩ li = Ci + bui (μ)vi , Bs
i = Ls

i ∩ li = Ci + bsi (μ)vi . (21)
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B∗
1

Bs
1

Bu
1

Bu
2

Bs
2

p1

p2

r2 > 1 and d∗
1 < 0.

B∗
2

Bs
1

Bu
1

Bu
2

Bs
2

p1

p2

r2 < 1 and d∗
1 < 0.

Fig. 17 Illustration of d∗
1 < 0 for both r2 > 1 and r2 < 1

Therefore, it follows from Sect. 5 that,

di (μ) = bui (μ) − bsi (μ),

i ∈ {1, . . . , n}. Let ri = |νi (μ0)|
λi (μ0)

if pi is a hyperbolic saddle or ri = ni,u
ni,s

if pi is a
tangential singularity, i ∈ {1, . . . , n}. If ri > 1 and di (μ) < 0, then following [14],
we observe that,

B∗
i−1 = Lu

i ∩ li−1 = Ci−1 + b∗
i−1(μ)vi−1,

is well defined and thus we define the further displacement map as,

d∗
i−1(μ) = b∗

i−1(μ) − bsi−1(μ).

See Fig. 17.
On the other hand, if ri < 1 and di−1(μ) > 0, then,

B∗
i = Ls

i−1 ∩ li = Ci + b∗
i (μ)vi ,

is well defined and thus we define the further displacement map as,

d∗
i−1(μ) = bui (μ) − b∗

i (μ).

Proposition 6 For i ∈ {1, . . . , n} and 
 ⊂ R
r small enough we have,

d∗
i−1(μ) =

{
di−1(μ) + O(||μ − μ0||ri ) if ri > 1,

di (μ) + O(||μ − μ0||
1
ri ) if ri < 1.
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Proof For simplicity let us assume i = n and rn > 1. It follows from the definition of
d∗
n−1 and dn−1 that,

d∗
n−1 = (b∗

n−1 − bun−1) + dn−1. (22)

Let B = Bs
n + λvn ∈ ln , λ < 0, with |λ| small enough and observe that the orbit

through B will intersect ln−1 in a point C which can be written as,

C = Bu
n−1 + F(λ, μ)vn−1.

Therefore, we have a function F : ln → ln−1 with F(λ, μ) < 0 for λ < 0, |λ| small
enough, such that F(λ, μ) → 0 as λ → 0. From (21) we have,

Bu
n = (Cn + bsnvn) + (bun − bsn)vn = Bs

n + dnvn
B∗
n−1 = (Cn−1 + bun−1vn−1) + (b∗

n − bun−1)vn−1 = Bu
n−1 + (b∗

n − bun−1)vn−1.

(23)

Since B∗
n−1 is the intersection of the positive orbit through Bu

n with ln−1 it follows
from (23) that,

b∗
n − bun−1 = F(dn, μ).

Therefore, it follows from (22) that,

d∗
n−1 = F(dn, μ) + dn−1. (24)

If pi is a hyperbolic saddle, then F is, up to the composition of some diffeomorphisms
given by the flow of the components of Z , the Dulac map Di defined at Sect. 3.1.
If pi is a tangential singularity (we remember that we are under the hypothesis of
Remark 5), then F is, up to the composition of some diffeomorphisms given by the
flow of the components of Z , the composition T u

i ◦ (T s
i )−1 defined at Sect. 3.3. In

either case, it follows from Sect. 3 that,

|F(λ, μ)| = |λ|rn (A(μ) + O(1)), (25)

with A(μ0) �= 0. Since dn = O(||μ||), it follows from (25) that,

F(dn, μ) = O(||μ||rn ),

and thus from (24) we have the result. The case rn < 1 follows similarly from the fact
that the inverse F−1 has order r−1

n in μ. ��
Corollary 1 For each i ∈ {1, . . . , n} the further displacement map d∗

i is continuous
differentiable with the j-partial derivative given either by the j-partial derivative
of di or di+1. Furthermore a connection between pi and pi−2 exists if and only if
d∗
i−2(μ) = 0 and di−1(μ) �= 0.
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p1

p2

p3

Σ

G1,j

G2,j

G3,j

l1

l2

l3

Fig. 18 Illustration of the sets Gi, j

7 Proof of Theorem 3

Proof of Theorem 3 Let Z = (X1, . . . , XM ;�) and denote Xi = (Pi , Qi ), i ∈
{1, . . . , M}. Let {p1, . . . , pn} be the singularities of �n and Li the regular orbits
between them such that ω(Li ) = pi and α(Li ) = pi+1. If Li ∩ � = ∅, then take
xi,0 ∈ Li and γi (t) a parametrization of Li such that γi (0) = xi,0. If Li ∩ � �= ∅,
then let Li ∩ � = {xi,0, . . . , xi,n(i)} and take γi (t) a parametrization of Li such
that γi (ti, j ) = xi, j with 0 = ti,0 > ti,1 > · · · > ti,n(i). In either case denote
L+
i = {γi (t) : t > 0} if pi is a hyperbolic saddle or L+

i = {γi (t) : 0 < t < ti },
where ti is such that γi (ti ) = pi , if pi is a �-singularity. Following [14], for each
i ∈ {1, . . . , n} let Gi, j , j ∈ {1, 2}, be two compact disks small enough such that,

(1) �n ∩ Gi, j = L+
i ∩ Gi, j �= ∅, j ∈ {1, 2};

(2) Gi,1 ⊂ IntGi,2;
(3) Gi,2 ∩ Gs,2 = ∅ for any i �= s;
(4) Gi, j ∩ � = ∅.

Let ki : R2 → [0, 1] be a C∞-bump function such that,

ki (x) =
{
0, x /∈ Gi,2,

1, x ∈ Gi,1.

See Fig. 18.
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Let μ ∈ R
n and gi : R2 → R

2, i ∈ {1, . . . , n}, be maps that we yet have to define.
Let also,

g(x, μ) =
n∑

i=1

μi ki (x)gi (x),

and for now one let us denote Xi = Xi + g. Let 
 be a small enough neighborhood
of the origin of Rn . It follows from Sect. 5 that each displacement map di : 
 → R

controls the bifurcations of Li near xi,0. It follows from Definition 8 that,

di (μ) = ω0[xui,0(μ) − xsi,0(μ)] ∧ ηi ,

where ηi is the analogous of u0 in Fig. 8. But from the definition of g we have that
each xui,0(μ) does not depend on μ and thus xui,0 ≡ xi,0. Furthermore it follows
from the definition of ki that each singularity pi of �n also does not depend on μ

and thus ∂γi
∂μ j

(ti ) = 0 for every tangential singularity pi . Therefore, it follows from
Propositions 3 and 4 that,

∂di
∂μ j

(0) = − ω0

||Xi (x0, μ0)||
∫

L+
i

eDi (t)
[

(Mi Xi ) ∧ ∂Xi

∂μ j
(γi (t), 0) − sin θi Ri, j (γi (t), 0)

]

dt,

with,

Di (t) = −
∫ t

0
divXi (γ0(s), μ0)ds,

and,

Ri, j = ∂Pi
∂μ j

[(
∂Qi

∂x1
+ ∂Pi

∂x2

)

Qi +
(

∂Pi
∂x1

− ∂Qi

∂x2

)

Pi

]

+∂Qi

∂μ j

[(
∂Pi
∂x2

+ ∂Qi

∂x1

)

Pi +
(

∂Qi

∂x2
− ∂Pi

∂x1

)

Qi

]

,

i , j ∈ {1, . . . , n}. We observe that if Li ∩ � = ∅, then θi = 0. It follows from
the definition of the sets Gi, j that

∂di
∂μ j

(0) = 0 if i �= j . Let Mi Xi = (Pi , Qi ) and

Ri,i = ∂Pi
∂μi

Fi,1 + ∂Qi
∂μi

Fi,2, where,

Fi,1 =
(

∂Qi

∂x1
+ ∂Pi

∂x2

)

Qi +
(

∂Pi
∂x1

− ∂Qi

∂x2

)

Pi ,

Fi,2 =
(

∂Pi
∂x2

+ ∂Qi

∂x1

)

Pi +
(

∂Qi

∂x2
− ∂Pi

∂x1

)

Qi .
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Let gi = (gi,1, gi,2) and observe that,

(Mi Xi ) ∧ ∂Xi

∂μi
− sin θi Ri,i = ki [gi,2(Pi − sin θi Fi,2) − gi,1(Qi + sin θi Fi,1)].

Therefore, if we take gi = −ω0(−Qi − sin θi Fi,1, Pi − sin θi Fi,2), then we can
conclude that,

di (μ) = aiμi + O(||μ||2), (26)

with ai = ∂di
∂μi

(0) > 0, i ∈ {1, . . . , n}. If n = 1, then it follows from Proposition 5
that any μ ∈ R arbitrarily small such that (R1 −1)σ0μ < 0 result in the bifurcation of
at least one limit cycle. Suppose n ≥ 2 and that the result had been proved in the case
n − 1. We will now prove by induction in n. For definiteness we can assume Rn > 1
and therefore Rn−1 < 1 and thus rn > 1. Moreover, it follows from Theorem 1 that
�n is stable. Define,

D = (d1, . . . , dn−2, d
∗
n−1).

It follows from Proposition 6 and from (26) that we can apply the Implicit Function
Theorem on D and thus obtain unique C∞-functions μi = μi (μn), μi (0) = 0,
i ∈ {1, . . . , n − 1}, such that,

D(μ1(μn), . . . , μn−1(μn), μn) = 0,

for |μn| small enough. It also follows from (26) that dn �= 0 ifμn �= 0, with |μn| small
enough. Therefore, if μi = μi (μn) and μn �= 0, then it follows from the definition of
D = 0 that there exist a �n−1 = �n−1(μn) polycycle formed by n − 1 singularities
and n − 1 regular orbits L∗

i = L∗
i (μn) such that,

(1) �n−1 → �n ,
(2) L∗

n−1 → Ln ∪ Ln−1 and,
(3) L∗

i → Li , i ∈ {1, . . . , n − 2},
as μn → 0. See Fig. 19.

Let,

R∗
j =

j∏

i=1

ri

∣
∣
∣
∣
∣
∣
μi=μi (μn), i∈{1,...,n−1}

,

j ∈ {1, . . . , n − 1}. Then it follows from the hypothesis,

(Ri − 1)(Ri+1 − 1) < 0,

for i ∈ {1, . . . , n − 1} and from the hypothesis Rn−1 < 1, that,

(R∗
i − 1)(R∗

i+1 − 1) < 0,
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Before the perturbation.
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After the perturbation.

Fig. 19 Illustration of the induction process with R3 > 1 and R2 < 1. Blue (resp. red) means a stable (resp.
unstable) polycycle or limite cycle

for i ∈ {1, . . . , n − 2} and R∗
n−1 < 1 for μn �= 0 small enough. Thus, it follows

from Theorem 1 that �n−1 is unstable while �n is stable. It then follows from the
Poincaré-Bendixson theory, and from the fact that the first return map is non-flat, that
at least one stable limit cycle γ n(μn) exists near �n−1. In fact both the limit cycle
and �n−1 bifurcates from �n . Now fix μn �= 0, |μn| arbitrarily small, and define the
non-smooth system,

Z∗
0 = Z∗(x) + g∗(x, μ),

where Z∗(x) = Z(x) + g(x, μ1(μn), . . . , μn−1(μn), μn) and,

g∗(x, μ) =
n−1∑

i=1

μi ki (x)gi (x),

with μi = μi − μi (μn). It then follows by the definitions of Gi, j and L∗
i that,

�n−1 ∩ Gi, j = (L∗
i )

+ ∩ Gi, j �= ∅,

i ∈ {1, . . . , n − 1} and j ∈ {1, 2}. In this new parameter coordinate system the bump
functions ki still ensures that

∂di
∂μ j

(μ) = 0 if i �= j . Since ai > 0, it also follows that

at the origin of this new coordinate system we still have ∂di
∂μi

(0) > 0. Therefore, it
follows by induction that at least n−1 crossing limit cycles γ j (μ), j ∈ {1, . . . , n−1},
bifurcates near �n−1 for arbitrarily small |μ|. Furthermore, we observe that γ n(μn)

persists for μ small enough, because it has odd multiplicity. ��
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