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Abstract
In this paper, we consider the following fractional Schrödinger equations with
prescribed L2-norm constraint:

{
(−�)su = λu + h(εx) f (u) in R

N ,∫
RN |u|2dx = a2,

where 0 < s < 1, N ≥ 3, a, ε > 0, h ∈ C(RN , R
+) and f ∈ C(R, R). In the

mass subcritical case but under general assumptions on f , we prove the multiplicity
of normalized solutions to this problem. Specifically, we show that the number of
normalized solutions is at least the number of global maximum points of h when ε

is small enough. Before that, without any restrictions on ε and the number of global
maximum points, the existence of normalized ground states can be determined. In
this sense, by studying the relationship between h0 := inf x∈RN h(x) and h∞ :=
lim|x |→∞ h(x), we establish new results on the existence of normalized ground states
for nonautonomous elliptic equations.

Keywords Fractional Schrödinger equation · Ground states · Multiple normalized
solutions

Supported by National Natural Science Foundation of China (No. 11971393).

B Chun-Lei Tang
tangcl@swu.edu.cn

Chen Yang
yangchen6858@163.com

Shu-Bin Yu
yshubin168@163.com

1 School of Mathematics and Statistics, Southwest University, Chongqing 400715,
People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12346-023-00827-7&domain=pdf


128 Page 2 of 24 C. Yang et al.

1 Introduction andMain Results

We are concerned with the following fractional Schrödinger equations with prescribed
L2-norm constraint:

{
(−�)su = λu + h(εx) f (u) in R

N ,∫
RN |u|2dx = a2,

(1.1)

where 0 < s < 1, N ≥ 3, a, ε > 0, h ∈ C(RN , R
+), f ∈ C(R, R) and λ ∈ R

appears as an unknown Lagrange multiplier.
In particular, (−�)s is the fractional Laplacian operator defined as

(−�)su(x) = CN ,sP.V.
∫
RN

u(x) − u(y)

|x − y|N+2s dy, ∀u ∈ S(RN ),

whereS(RN ) denotes the Schwartz space of rapidly decreasing smooth functions, P.V.
stands for the principle value of the integral and CN ,s is some positive normalization
constant [20]. Moreover, the operator (−�)s can be seen as the infinitesimal genera-
tors of Lévy stable diffusion processes, see [4] for example. Of course, this operator
also arises in several areas such as optimization, finance, phase transitions, stratified
materials, crystal dislocation, flame propagation, conservation laws, ultra-relativistic
limits of quantum mechanics, materials science, and water waves, see for instance [8,
13, 20, 22, 26] for an introduction to these topics and their applications.

When s ↗ 1− and h = 1, problem (1.1) reduces to the following class of elliptic
problems

{−�u = λu + f (u) in R
N ,∫

RN |u|2dx = a2.
(1.2)

The above problem has been studied by JeanJean in [14], where the author proved
that the existence of normalized solutions in purely L2-supercritical case, i.e., f (u) =
|u|p−2u, 2+4/N < p < 2∗ := 2N/(N −2). Recently, Soave [24] carefully analyzes
the cases when the combined power nonlinearities in (1.2) are of mixed type, that is,

f (u) = μ|u|q−2u + |u|p−2u, 2 < q ≤ 2 + 4

N
≤ p < 2∗.

After that, a great attention has been paid to problem (1.2), we refer the reader to [2,
5, 15, 25, 31] and the related results mentioned there. As far as the nonautonomous
Schrödinger equations are concerned, most of the current researches add an additional
term V (x)u compared to problem (1.2), and then prove the existence of normalized
solutions under the appropriate assumptions on potential V , see for instance, [19,
28] and the references therein. In particular, if h 
= 1, Alves [1] was concerned
with the existence of multiple normalized solutions to the following nonautonomous
Schrödinger equations
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{−�u = λu + h(εx) f (u) in R
N ,∫

RN |u|2dx = a2,
(1.3)

where a, ε > 0 and λ ∈ R is an unknown parameter that appears as a Lagrange
multiplier. The nonlinearity f is a continuous function with a L2-subcritical growth
and satisfies the following assumptions:

( f1) f is odd and there is q ∈ (2, 2 + 4
N ) such that lims→0

| f (s)|
|s|q−1 = α > 0;

( f2) there exist constant c1, c2 > 0 and p ∈ (2, 2 + 4
N ) such that

| f (s)| ≤ c1 + c2|s|p−1, ∀s ∈ R;

( f3) there exists q1 ∈ (2, 2 + 4
N ) such that f (s)/sq1−1 is an increasing function of

s on (0,∞).

Moreover, the function h satisfies the following conditions:

(h1) h ∈ C(RN ) and 0 < h0 := inf x∈RN h(x) ≤ maxx∈RN h(x) := hmax ;
(h2) h∞ := lim|x |→∞ h(x) < hmax ;
(h3) h−1({hmax }) = {a1, a2, · · · , al} with a1 = 0 and a j 
= ai if j 
= i .

Based on the above assumptions, it is proved that the number of normalized solutions
is at least the number of global maximum points of h when ε is small enough. In
addition, it is worth noting that the condition (h3) was introduced in [10] to prove the
multiplicity of positive and nodal solutions of problem (1.3) without mass constraint.

In the sequel, we turn our attention to the case of s ∈ (0, 1). In this regard, it is
well known that when dealing with problem (1.1) with f (u) = |u|p−2u and h = 1,
the L2-critical exponent

p̄ := 2 + 4s

N

plays a special role. From the variational point of view, if the problem is purely L2-
subcritical, i.e., 2 < p < p̄, then the functional of (1.1) is bounded frombelowonmass
constraintmanifold. In the L2-supercritical case, i.e., p̄ < p < 2∗

s := 2N/(N−2s), on
the contrary, the functional is unbounded below. Formore details, we refer to [3, 17, 29,
30, 32] and the references therein. Compared with the research about nonautonomous
Schrödinger equations or autonomous fractional Schrödinger equations, there are few
works concerning the existence of normalized solutions for nonautonomous elliptic
equations in the fractional setting. Indeed, the corresponding results are presented
in [11, 16, 21], which have been studied the fractional Schrödinger equation with
potential.

In light of the above discussion and mainly motivated by the results in [1], we focus
our attention on problem (1.1) and establish the existence of normalized ground states
and multiple solutions in the nonautonomous fractional setting, which have not been
studied in the existing literature and are also not a simple extension of the results in
[1]. Moreover, in this paper the assumptions related to f are presented as below:
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(F1) f ∈ C(R, R) is odd and limt→0
| f (t)|
|t |q−1 = α > 0 for some q ∈ (2, 2 + 4s

N );

(F2) there exist constant C > 0 and p ∈ (2, 2 + 4 s
N ) such that

| f (t)| ≤ C(1 + |t |p−1), ∀t ∈ R;

(F3) there exists q1 ∈ (2, 2 + 4s
N ) such that

0 < q1F(t) ≤ f (t)t for all t ∈ R\{0}.

Here, the conditions (F1)-(F2) are fractional versions of ( f1)-( f2). For convenience,
we replace monotonicity condition ( f3) with the Ambrosetti-Rabinowitz condition
(F3). Then, we give two examples that f satisfies the above assumptions: the one is

f (t) = α|t |q−2t + |t |p−2t, ∀t ∈ R,

where 2 < q1 ≤ q < p < 2 + 4s/N ; the other one is

f (t) = α|t |q−2t + |t |r−2t ln(1 + |t |), ∀t ∈ R,

where 2 < q1 ≤ q < r < p < 2 + 4s/N .
Before stating ourmain results, we present some necessary notations. The fractional

Sobolev space Hs(RN ) is defined for any s ∈ (0, 1) as

Hs(RN ) = {u ∈ L2(RN ) : (−�)s/2u ∈ L2(RN )},

which is a Hilbert space endowed with scalar product

〈u, v〉 =
∫
RN

(−�)
s
2 u(−�)

s
2 vdx +

∫
RN

uvdx, ∀u, v ∈ Hs(RN )

and the norm is given by

‖u‖2 =
∫
RN

|(−�)
s
2 u|2dx +

∫
RN

|u|2dx, ∀u ∈ Hs(RN )

with

∫
RN

|(−�)
s
2 u|2dx =

∫
R2N

|u(x) − u(y)|2
|x − y|N+2s dxdy.

The usual norm in the Lebesgue space Lr (RN ) is denoted by |u|r with 2 ≤ r ≤ 2∗
s .

From [20], Hs(RN ) is continuously embedded into Lr (RN ) for any 2 ≤ r ≤ 2∗
s and

compactly embedded into Lr
loc(R

N ) for every 1 ≤ r < 2∗
s . Naturally, associated to

problem (1.1), the energy functional Iε : Hs(RN ) → R is of the form

Iε(u)= 1

2

∫
RN

|(−�)
s
2 u|2dx−

∫
RN

h(εx)F(u)dx, ∀u ∈ Hs(RN ).
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It is standard to verify that Iε ∈ C1(Hs(RN ), R). Meanwhile, for a > 0, we define

S(a) :=
{
u ∈ Hs(RN ) :

∫
RN

|u|2dx = a2
}

and

mε,a2 := inf
u∈S(a)

Iε(u).

Moreover, the ground states of (1.1) on S(a) is defined as follows:

Definition 1.1 We say that ũ is a ground state of (1.1) on S(a) if it is a solution to (1.1)
having minimal energy among all the solutions which belongs to S(a):

Iε|′S(a) (ũ) = 0 and Iε(ũ) = inf
{
Iε(u) : Iε|′S(a) (u) = 0 and u ∈ S(a)

}
.

Now, we are in the position to state our main results. Note that (h1)-(h2) imply
the inequality 0 < h0 ≤ h∞ < hmax holds. It is necessary to consider two different
situations, namely,

h0 = h∞ (1.4)

or the other h0 < h∞. For example, set

h(x) =
{
h̃(x), 0 ≤ |x | ≤ |al |,

k0
1+|x−al | + 2 − k0, |x | > |al |,

where

h̃(x) = 1

1 + |x − a1||x − a2||x − a3| · · · |x − al | + 1,

0 = |a1| < |a2| < · · · < |al | and 2 − k0 > inf
0≤|x |≤|al |

h̃(x).

It is obvious that h satisfies (h1)− (h3) but the identity (1.4) dose not hold. Moreover,
h̃(x) satisfies (h1) − (h3) and (1.4). As we will see, whether the identity (1.4) holds
true or not is directly related to the restriction on parameter ε in problem (1.1). Indeed,
we can establish the existence of the normalized ground states for any ε > 0 if (1.4)
holds.

Theorem 1.2 Assume that (F1)−(F3), (h1)−(h2) and (1.4) hold. Then problem (1.1)
has a positive ground state solution ũ ∈ S(a) for any ε > 0 and the corresponding
Lagrange multiplier λ̃ < 0.

Remark 1.3 In particular, the condition (h2) ensures that h is not a constant function.
In this sense, we establish new results on the existence of normalized ground states
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for nonautonomous elliptic equations. Of course, the proof processes of Theorem 1.2
allow h to be a constant function, which extends the results in [17] to the general
nonlinearity in the L2-subcritical sense.

We stress that in order to determine the inequality mε,a2 ≤ m∞,a2 , the identity
(1.4) plays an essential role, see Lemma 2.6. Once the inequality mε,a2 ≤ m∞,a2 is
established, the relative compactness of all the minimizing sequences for mε,a2 can
be verified in Proposition 2.7. If the condition (1.4) in Theorem 1.2 is not satisfied, it
is necessary to impose restriction on parameter ε to estimate the relationship between
mε,a2 andm∞,a2 . Indeed, the property that 0 is a maximum point of h in (h3) condition
determines this point, see the last part of Sect. 2.

Theorem 1.4 Assume that (F1)− (F3) and (h1)− (h3) hold. Then there exists ε0 > 0
such that for any 0 < ε < ε0, the results of Theorem 1.2 still hold true.

To discuss the multiplicity of normalized solutions for problem (1.1), the condition
(h3) is pivotal. Indeed, our result shows how the “shape” of the graph of h affects the
number of normalized solutions.

Theorem 1.5 Assume that (F1) − (F3) and (h1) − (h3) hold. Then there exists
ε0 > 0 such that for any 0 < ε < ε0, problem (1.1) possesses at least l couple
(ui , λi ) ∈ Hs(RN ) × R of weak solutions with

∫
R3 |ui |2dx = a2, Iε(ui ) < 0 and the

corresponding Lagrange multipliers λi < 0 for i = 1, 2, · · · , l.

The remainder of this paper is organized as follows. In Sect. 2, we establish the
strong subadditivity inequality and complete the proof of Theorems 1.2 and 1.4. Sec-
tion3 is devoted to accomplishing the proof of Theorem 1.5 if the assumption (h3)
holds.

2 Existence of Normalized Ground States

In this section, we establish the existence of normalized ground states for problem
(1.1), namely, Theorems 1.2 and 1.4 can be accomplished. First of all, the properties
of functional Iε and mε,a2 are as follows. Meanwhile, the letter C will be used to
denote a suitable positive constant, whose value can change from line to line.

Lemma 2.1 Assume that (F1) − (F3) and (h1) − (h2) hold, then the functional Iε is
coercive and bounded from below on S(a).

Proof According to (F1) − (F2), there is C > 0 such that

|F(t)| ≤ C(|t |q + |t |p), ∀t ∈ R. (2.1)

Then, by the fractional Gagliardo-Nirenberg inequality [6, Appendix B.1]



Normalized Ground States and Multiple Solutions... Page 7 of 24 128

∫
RN

|u|rdx ≤ Cs,N ,r

( ∫
RN

|(−�)
s
2 u|2dx

) N (r−2)
4s

(∫
RN

|u|2dx
) r

2− N (r−2)
4s

, ∀r ∈ (2, 2∗
s ),

(2.2)

we can conclude that

Iε(u) = 1

2

∫
RN

|(−�)
s
2 u|2dx −

∫
RN

h(εx)F(u)dx

≥ 1

2

∫
RN

|(−�)
s
2 u|2dx − Chmax

∫
RN

|u|qdx − Chmax

∫
RN

|u|pdx

≥ 1

2

∫
RN

|(−�)
s
2 u|2dx − CCs,N ,qhmaxa

q− N (q−2)
2s

( ∫
RN

|(−�)
s
2 u|2dx

) N (q−2)
4s

− CCs,N ,phmaxa
p− N (p−2)

2s

( ∫
RN

|(−�)
s
2 u|2dx

) N (p−2)
4s

.

As q, p ∈ (2, 2 + 4s
N ), we derive N (q − 2)/4s < 1 and N (p − 2)/4s < 1, which

imply that the functional Iε is coercive and bounded from below on S(a). ��
Lemma 2.2 Assume that (F1)−(F3) and (h1)−(h2) hold, for any a > 0, the following
statements hold true:

(i) mε,a2 < 0;
(i i) let {un} ⊂ S(a) be a minimizing sequence for mε,a2 , then there exist a constant

η̃ > 0 and n0 ∈ N such that

∫
RN

F(un)dx > η̃

for all n > n0.

Proof (i) Given u ∈ S(a), we define

H(u, τ )(x) := e
Nτ
2 u(eτ x) for x ∈ R

N and τ ∈ R.

A direct computation provides

∫
RN

|H(u, τ )(x)|2dx = a2

and
∫
RN

F(H(u, τ )(x))dx = e−Nτ

∫
RN

F(e
Nτ
2 u(x))dx .

It follows from the assumption (F1) that limt→0
qF(t)
tq = α > 0, then there is a δ > 0

such that
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qF(t)

tq
≥ α

2
, ∀t ∈ [0, δ]. (2.3)

Note that Hs(RN ) is continuously embedded into Lq(RN ) for q ∈ (2, 2+ 4s
N ). Thus,

in view of (2.3), for τ � −1, we have

Iε(H(u, τ )) = 1

2

∫
RN

|(−�)
s
2 H(u, τ )|2dx −

∫
RN

h(εx)F(e
Nτ
2 u(eτ x))dx

≤ 1

2
e2sτ

∫
RN

|(−�)
s
2 u|2dx − h0e

−Nτ

∫
RN

F(e
Nτ
2 u(x))dx

≤ 1

2
e2sτ

∫
RN

|(−�)
s
2 u|2dx − αh0

2q
e

(q−2)Nτ
2

∫
RN

|u|qdx
< 0,

which shows that mε,a2 < 0.
(i i) Arguing by contradiction suppose that there exists a subsequence of {un} with

respect to mε,a2 , still denoted by itself, such that

∫
RN

F(un)dx → 0 as n → ∞.

By (i), we conclude that

0 > mε,a2 + on(1) = Iε(un) ≥ −
∫
RN

h(εx)F(un)dx ≥ −hmax

∫
RN

F(un)dx,

which is a contradiction. Thus, the proof is completed. ��
Lemma 2.3 Assume that (F1) − (F3) and (h1) − (h2) hold, then mε,a2 is continuous
on (0,∞) with regard to a.

Proof For any a > 0, let an > 0 and an → a. Let {un} ⊂ S(an) such that Iε(un) <

mε,a2n
+ 1

n for every n ∈ N. Then Lemma 2.1 implies that {un} is bounded in Hs(RN ).
Moreover, the fact { a

an
un} ⊂ S(a) that

mε,a2 ≤ Iε

(
a

an
un

)

= a2

2a2n

∫
RN

|(−�)
s
2 un|2dx −

∫
RN

h(εx)F

(
a

an
un

)
dx

= Iε(un) + on(1) ≤ mε,a2n
+ on(1).

Analogously, considering a minimizing sequence {vn} ⊂ S(a), we have { ana vn} ⊂
S(an) and

mε,a2n
≤ Iε

(an
a

vn

)
= Iε(vn) + on(1) ≤ mε,a2 + on(1).
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Therefore, mε,a2 is continuous on (0,∞) with regard to a. ��

Lemma 2.4 Assume that (F1) − (F3) and (h1) − (h2) hold, then for 0 < a1 < a2,

a21
a22

mε,a22
< mε,a21

.

Proof Let {un} ⊂ S(a1) be a minimizing sequence for mε,a21
and let ξ = a2

a1
. Then

ξ > 1 and {ξun} ⊂ S(a2). Obviously, from (F3), the function t �→ F(t)
tq1 is increasing

on (0,∞). Therefore, we have

F(r t) ≥ rq1F(t) for all t > 0 and r ≥ 1.

Moreover, we conclude that

mε,a22
≤ Iε(ξun) = ξ2 Iε(un) + ξ2

∫
RN

h(εx)F(un)dx −
∫
RN

h(εx)F(ξun)dx

≤ ξ2 Iε(un) + (ξ2 − ξq1)

∫
RN

h(εx)F(un)dx

≤ ξ2 Iε(un) + (ξ2 − ξq1)h0

∫
RN

F(un)dx .

Using Lemma 2.2−(i i) and the fact ξ2 − ξq < 0, we obtain

mε,a22
≤ ξ2 Iε(un) + (ξ2 − ξq1)h0η̃

for n � 1. Letting n → ∞, it follows that

mε,a22
≤ ξ2mε,a21

+ (ξ2 − ξq1)h0η̃ < ξ2mε,a21
,

that is,

a21
a22

mε,a22
< mε,a21

.

��

Corollary 2.5 For 0 < a1 < a2, the strong subadditivity inequality

mε,a22
< mε,a21

+ mε,(a22−a21 )

holds.
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Proof According to Lemma 2.4, it is clear that

a21
a22

mε,a22
< mε,a21

and
a22 − a21

a22
mε,a22

< mε,(a22−a21 )
,

which imply

mε,a22
= a21

a22
mε,a22

+ a22 − a21
a22

mε,a22
< mε,a21

+ mε,(a22−a21 )
.

��
In what follows, we need to consider the following two functionals:

Imax (u)= 1

2

∫
RN

(|(−�)
s
2 u|2dx − hmax

∫
RN

F(u)dx

and

I∞(u)= 1

2

∫
RN

(|(−�)
s
2 u|2dx − h∞

∫
RN

F(u)dx, ∀u ∈ Hs(RN ).

Obviously, Imax , I∞ ∈ C1(Hs(RN ), R). Moreover, Imax (u) and I∞(u) correspond
to the energy functional of problem (1.1) when h = hmax and h = h∞, respectively.
Then, we define

mmax,a2 := inf
u∈S(a)

Imax (u)

and

m∞,a2 := inf
u∈S(a)

I∞(u).

According to the above arguments, if h = hmax and h = h∞, Lemmas 2.1–2.4 still
hold. Moreover, using standard arguments or similar to Proposition 2.7, it is easy to
prove that mmax,a2 < 0 and m∞,a2 < 0 are achieved.

Lemma 2.6 Assume that (F1)− (F3), (h1)− (h2) and (1.4) hold, then mε,a2 ≤ m∞,a2

for any a > 0.

Proof Let a > 0 and {un} ⊂ S(a) such that I∞(un) → m∞,a2 . From (1.4), it follows
that

mε,a2 ≤ Iε(un) ≤ I∞(un) = m∞,a2 + on(1),

which shows that mε,a2 ≤ m∞,a2 for any a > 0. ��
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Proposition 2.7 Assume that (F1)− (F3), (h1)− (h2) and (1.4) hold. Let {un} ⊂ S(a)

such that Iε(un) → mε,a2 , then the sequence {un} is relatively compact in Hs(RN )

up to translations and mε,a2 < 0 is achieved for each a > 0.

Proof In view of Lemma 2.1, the sequence {un} is bounded. Then there exists u ∈
Hs(RN ) such that, up to a subsequence,

un⇀u in Hs(RN ), un → u in Lr
loc(R

N ) for 1 ≤ r < 2∗
s and un → u a.e. in R

N .

(2.4)

Now, we claim that

Iε(un) = Iε(un − u) + Iε(u) + on(1). (2.5)

It follows from (2.4) that

∫
R2N

(−�)
s
2 un(−�)

s
2 udxdy =

∫
R2N

|(−�)
s
2 u|2dxdy + on(1).

Thus, we conclude that

∫
R2N

|(−�)
s
2 un|2dxdy −

∫
R2N

|(−�)
s
2 (un − u)|2dxdy −

∫
R2N

|(−�)
s
2 u|2dxdy

= 2
∫
R2N

(−�)
s
2 un(−�)

s
2 udxdy − 2

∫
R2N

|(−�)
s
2 u|2dx=on(1).

On the other hand, in view of (2.4), Brézis-Lieb Lemma [7] and [33, Lemma 2.2], we
know that

|un|22 = |un − u|22 − |u|22 + on(1)

and
∫
RN

h(εx)F(un)dx =
∫
RN

h(εx)F(un − u)dx +
∫
RN

h(εx)F(u)dx + on(1).

Hence the claim is true. In what follows, it is necessary to consider the following two
cases:

Case 1 |u|2 = b ∈ (0, a]. If b ∈ (0, a), let vn = un − u, dn = |vn|2 and supposing
that dn → d, we get a2 = b2 + d2. From dn ∈ (0, a) and (2.5), we have

mε,a2 + on(1) = Iε(un) = Iε(vn) + Iε(u) + on(1) ≥ mε,d2n
+ mε,b2 + on(1).

Moreover, Lemma 2.4 indicates that

mε,a2 + on(1) ≥ d2n
a2

mε,a2 + mε,b2 + on(1).
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Letting n → ∞, we deduce that

mε,a2 ≥ d2

a2
mε,a2 + mε,b2 >

d2

a2
mε,a2 + b2

a2
mε,a2 = mε,a2 ,

which is absurd. This shows that |u|2 = a. In addition, (F1) − (F2), (h1) and the
Lebesgue’s dominated convergence theorem ensure that

∫
RN

h(εx)F(un)dx →
∫
RN

h(εx)F(u)dx as n → ∞.

Therefore,

mε,a2 = lim
n→∞ Iε(un) ≥ Iε(u) ≥ mε,a2 ,

i.e., Iε(u) = mε,a2 and |(−�)
s
2 un|22 → |(−�)

s
2 u|22 as n → ∞. Thus, mε,a2 is

achieved by u ∈ S(a).
Case 2 u = 0. Namely, un⇀0 in Hs(RN ), then un → 0 in Lw

loc(R
N ) for 1 ≤ w <

2∗
s and un → 0 a.e. in R

N . Combining with (F1) − (F2) and (h1), it is easy to check
that

∫
RN

[h(εx) − h∞]F(un)dx = on(1). (2.6)

Hence,

Iε(un) = I∞(un) + on(1) = mε,a2 + on(1). (2.7)

Next, we claim that there is a constant δ > 0 such that

lim
n→∞ sup

y∈RN

∫
Br (y)

|un|2dx > δ. (2.8)

Otherwise, by using [12, Lemma 2.2], one has un → 0 in Lr (RN ) for 2 < r < 2∗
s and

(2.1) ensures that
∫
RN F(un)dx → 0, which contradicts Lemma 2.2-(i i). Therefore,

there exists |yn| → ∞ such that

∫
Br (yn)

|un|2dx > δ.

In view of (2.8), letting the sequence of translations ũn(x) := un(x + yn), we may
assume that there exists ũ ∈ Hs(RN )\{0} such that, up to a subsequence,

⎧⎪⎨
⎪⎩

ũn⇀ũ in Hs(RN );
ũn → ũ in Lw

loc(R
N ), ∀w ∈ [1, 2∗

s );
ũn → ũ a.e. in R

N .

(2.9)
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Noting that |yn| → ∞ implies (2.6) holds, then it is obvious that

I∞(ũn) = mε,a2 + on(1). (2.10)

In addition, similar to (2.5), we have limn→∞ I∞(ũn) = I∞(ũ)+limn→∞ I∞(ũn−ũ).
Then it follows from (2.9), (2.10), Lemma 2.3 and Lemma 2.6 that

m∞,a2 ≥ mε,a2 = lim
n→∞ I∞(ũn)

= I∞(ũ) + lim
n→∞ I∞(ũn − ũ)

≥ m∞,(|ũ|22) + lim
n→∞m∞,(|ũn−ũ|22)

= m∞,(|ũ|22) + m∞,(a2−|ũ|22).

(2.11)

This proves |ũ|22 = a2. In fact, if |ũ|22 < a2, in accordance with Corollary 2.5, we have

m∞,(|ũ|22) + m∞,(a2−|ũ|22) > m∞,a2 ,

which contradicts (2.11). Hence, we have ũn → ũ in Lw(RN ) for 2 ≤ w < 2∗
s .

Moreover, from the weakly lower semicontinuous, we conclude

mε,a2 = lim
n→∞ Iε(ũn) ≥ Iε(ũ) ≥ mε,a2 ,

which verifies mε,a2 is achieved. ��
Proof of Theorem 1.2 In view of Lemma 2.1, there exists a bounded minimizing
sequence {un} ⊂ S(a) with respect to mε,a2 , that is Iε(un) → mε,a2 as n → ∞.
Then, by using Proposition 2.7, there exists ũ ∈ S(a) such that Iε(ũ) = mε,a2 . Now,
we prove that ũ can be chosen to be positive. Indeed, by formula (A.11) in [23], we
have ∫

RN
|(−�)

s
2 |ũ||2dx ≤

∫
RN

|(−�)
s
2 ũ|2dx .

Hence, we infer that |ũ| ∈ S(a) and Iε(|ũ|) = mε,a2 , i.e., ũ can be replaced by |ũ|.
For the convenience, it is still denoted by ũ. Moreover, the strong maximum principle
[9] yields that ũ(x) > 0 for all x ∈ R

N . Corresponding to ũ, in view of (F3) and
mε,a2 < 0, there exists a Lagrange multiplier λ̃ ∈ R such that

λ̃a2 =
∫
RN

|(−�)
s
2 ũ|2dx −

∫
RN

h(εx) f (ũ)ũdx

= 2mε,a2 + 2
∫
RN

h(εx)F(ũ)dx −
∫
RN

h(εx) f (ũ)ũdx

< 2mε,a2 < 0.

��
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Up to now, we are in the position to establish the proof of Theorem 1.4. Indeed, if
h0 ≤ h∞, the preview Lemma 2.6 cannot hold, which depends heavily on h0 = h∞.
In this regard, we can overcome this difficulty by choosing ε small enough such that
the following strict inequality

mε,a2 < m∞,a2

holds. Once the inequality above is established, repeating the process in the proof of
Proposition 2.7 and Theorem 1.2, the proof of Theorem 1.4 is complete.

Proof of Theorem 1.4 According to the description above Lemma 2.6, there exists
u∞ ∈ S(a) satisfying I∞(u∞) = m∞,a2 . In view of (h2), we have

mmax,a2 ≤ Imax (u∞) < I∞(u∞) = m∞,a2 . (2.12)

On the other hand, there exists umax ∈ S(a) with Imax (umax ) = mmax,a2 . Then,

mε,a2 ≤ Iε(umax ) = 1

2

∫
RN

|(−�)
s
2 umax |2dx −

∫
RN

h(εx)F(umax )dx . (2.13)

Now, we claim that there exists ε0 > 0 such that

mε,a2 < m∞,a2 (2.14)

for all ε ∈ (0, ε0). Indeed, letting ε → 0+ in (2.13) and using (h3), (2.12), we deduce

lim
ε→0+ supmε,a2 ≤ lim

ε→0+ Iε(umax ) = Imax (umax ) = mmax,a2 < m∞,a2 .

Hence, the claim is true and the proof is complete. ��

3 Multiple Normalized Solutions

In this section, we establish the existence of multiple normalized solutions based on
the (h3) condition, and prove Theorem 1.5. Meanwhile, decreasing if necessary ε0, we
always assume that ε ∈ (0, ε0), which not only to ensure that (2.14) holds. Moreover,
by (2.12), we have

mmax,a2 < m∞,a2 < 0.

Then, we fix 0 < ρ1 = 1
2 (m∞,a2 −mmax,a2) and establish the following two lemmas

that will be used to prove the (PS)c condition for Iε restricted to S(a) at some levels.

Lemma 3.1 Assume that (F1) − (F3) and (h1) − (h3) hold. Let {un} ⊂ S(a) with
Iε(un) → mε,a2 and mε,a2 < mmax,a2 + ρ1 < 0. If un⇀u in Hs(RN ), then u 
= 0.
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Proof Assume by contradiction that u = 0. By (h2), for any given ζ > 0, there exists
R > 0 such that

h∞ ≥ h(x) − ζ for all |x | > R. (3.1)

Thus,

mε,a2 + on(1) = Iε(un)

= I∞(un) +
∫
RN

(h∞ − h(εx))F(un)dx

= I∞(un) +
∫
BR/ε(0)

(h∞ − h(εx))F(un)dx +
∫
Bc
R/ε(0)

(h∞ − h(εx))F(un)dx

≥ I∞(un) +
∫
BR/ε(0)

(h∞ − h(εx))F(un)dx − ζ

∫
Bc
R/ε(0)

F(un)dx .

It follows from Lemma 2.1 that {un} is bounded in Hs(RN ) and un → 0 in
Lw(BR/ε(0)) for all w ∈ [1, 2∗

s ), by using (2.1), we deduce that

mε,a2 + on(1) ≥ I∞(un) − ζC

for some C > 0. Since ζ > 0 is arbitrary, we conclude that

mε,a2 ≥ m∞,a2 ,

which contradicts (2.14). Hence, u 
= 0. ��
Lemma 3.2 Assume that (F1) − (F3) and (h1) − (h3) hold. Let {un} be a (PS)c
sequence for Iε restricted to S(a)with c < mmax,a2 +ρ1 < 0 and un⇀uε in Hs(RN ),
that is,

Iε(un) → c, ‖Iε|′S(a)(un)‖ → 0 as n → ∞.

If un � uε in Hs(RN ), there is β > 0 independent of ε ∈ (0, ε0) such that

lim
n→∞ inf |un − uε|22 ≥ β.

Proof Define the functional � : Hs(RN ) → R given by

�(u) = 1

2

∫
RN

|u|2dx,

we infer that S(a) = �−1
({
a2/2

})
. Then, by [27, Proposition 5.12], there exists

{λn} ⊂ R such that

‖I ′
ε(un) − λn�

′(un)‖H−s (RN ) → 0 as n → ∞. (3.2)
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It is clear that {un} is bounded in Hs(RN ). Then, we get {λn} is bounded. Thus, we
can assume that λn → λε as n → ∞. Together with (3.2), we get

I ′
ε(uε) − λε�

′(uε) = 0 in H−s(RN )

and

‖I ′
ε(vn) − λε�

′(vn)‖H−s (RN ) → 0 as n → ∞, (3.3)

where vn = un − uε. Using (F3), then

0 > mmax,a2 + ρ1 ≥ lim
n→∞ inf Iε(un)

= lim
n→∞ inf

[
Iε(un) − 1

2
I ′
ε(un)un + λna

2 + on(1)

]
≥ λεa

2,

which implies that

lim
ε→0+ sup λε ≤ ρ1 + mmax,a2

a2
< 0.

Thus, there exists λ∗ < 0 independent of ε such that

λε ≤ λ∗ < 0 for all ε ∈ (0, ε0). (3.4)

It follows from (3.3) and (3.4) that

∫
RN

|(−�)
s
2 vn|2dx − λε

∫
RN

|vn|2dx =
∫
RN

f (vn)vndx + on(1)

and

∫
RN

|(−�)
s
2 vn|2dx − λ∗

∫
RN

|vn|2dx ≤
∫
RN

f (vn)vndx + on(1).

Combining (F1) − (F2) with Young’s inequality, for any ε > 0, there exists Cε > 0
such that

∫
RN

f (vn)vndx ≤ ε

∫
RN

|vn|2dx + Cε

∫
RN

|vn|pdx .

This yields that

∫
RN

|(−�)
s
2 vn|2dx + (−λ∗ − ε)

∫
RN

|vn|2dx ≤ Cε

∫
RN

|vn|pdx + on(1).
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Since un � uε in Hs(RN ), namely, vn � 0 in Hs(RN ), the inequality above verifies
that there is C > 0 independent of ε such that

lim
n→∞ inf

∫
RN

|vn|pdx ≥ C .

Since {un} is bounded in Hs(RN ), {vn} is also bounded in Hs(RN ). Then we assume
that ||vn|| ≤ κ for all n ∈ N, where κ > 0 is a constant independent of ε ∈ (0, ε0).
From (2.2), we see that

C ≤ lim
n→∞ inf |vn|pp ≤ Cs,N ,pκ

N (p−2)
2s

(
lim
n→∞ inf |vn|2

)p− N (p−2)
2s

.

Hence, the proof is complete. ��
Lemma 3.3 Assume that (F1) − (F3) and (h1) − (h3) hold. Let

0 < ρ2 < min

{
1

2
,

β

a2

}
(m∞,a2 − mmax,a2) ≤ ρ1, (3.5)

then the functional Iε satisfies the (PS)c condition restricted to S(a) for c < mmax,a2+
ρ2.

Proof We assume that {un} ⊂ S(a) is a (PS)c sequence for Iε restricted to S(a)

with c < mmax,a2 + ρ2. From Lemma 2.1, {un} is bounded in Hs(RN ) and let
un⇀uε in Hs(RN ). Then we know uε 
= 0 by Lemma 3.1. Let vn = un − uε. If
vn → 0 in Hs(RN ), the proof is complete. On the contrary, vn � 0 in Hs(RN ), then
|uε|2 = b ∈ (0, a) and it follows from Lemma 3.2 that there is β > 0 independent of
ε such that

lim
n→∞ inf |vn|22 ≥ β.

Setting dn = |vn|2 ∈ (0, a) and supposing that dn → d > 0, we get d2 ≥ β and
a2 = b2 + d2. Then, in view of (2.5), we deduce

c + on(1) = Iε(un) = Iε(vn) + Iε(uε) + on(1) ≥ m∞,d2n
+ mmax,b2 + on(1).

Arguing as in the proof of Lemma 2.4, we obtain

ρ2 + mmax,a2 ≥ d2n
a2

m∞,a2 + b2

a2
mmax,a2 .

Letting n → ∞, we can infer that

ρ2 ≥ d2

a2
(m∞,a2 − mmax,a2) ≥ β

a2
(m∞,a2 − mmax,a2),

which contradicts (3.5). ��
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In the following, let us fix ρ0, r0 > 0 satisfying:

(1) Bρ0(ai )
⋂

Bρ0(a j ) = ∅ for i 
= j and i , j ∈ {1, 2, · · · , l};
(2)

⋃l
i=1 Bρ0(ai ) ⊂ Br0(0);

(3) K ρ0
2

= ⋃l
i=1 B ρ0

2
(ai ).

We define the function Qε : Hs(RN )\{0} → R
N by

Qε(u) =
∫
RN χ(εx)|u|2dx∫

RN |u|2dx ,

where χ : R
N → R

N is given by

χ(x) =
{
x, if |x | ≤ r0,

r0
x
|x | , if |x | > r0.

(3.6)

Lemma 3.4 Assume that (F1)− (F3) and (h1)− (h3) hold. There is ρ3 ∈ (0, ρ2) such
that if u ∈ S(a) and Iε(u) ≤ mmax,a2 + ρ3, then

Qε(u) ∈ K ρ0
2
, ∀ε ∈ (0, ε0).

Proof Assume by contradiction that there exist ρn → 0, εn → 0 and {un} ⊂ S(a)

such that

Iεn (un) ≤ mmax,a2 + ρn (3.7)

and

Qε(un) /∈ K ρ0
2
.

This gives

mmax,a2 ≤ Imax (un) ≤ Iεn (un) ≤ mmax,a2 + ρn,

which shows that

{un} ⊂ S(a) and Imax (un) → mmax,a2 as n → ∞.

In view of Proposition 2.7, we have the following cases:

(i) un → u in Hs(RN ) for u ∈ S(a);
(i i) there exists {yn} ⊂ R

N with |yn| → ∞ such that vn = u(·+yn) is convergence
to v ∈ S(a) in Hs(RN ).
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If case (i) holds, by Lebesgue’s dominated convergence theorem,

Qεn (un) =
∫
RN χ(εnx)|un|2dx∫

RN |un|2dx →
∫
RN χ(0)|u|2dx∫

RN |u|2dx = 0 ∈ K ρ0
2
as n → ∞,

which is a contradiction.
If case (i i) holds, we need to consider |εn yn| → y0 for some y0 ∈ R

N or |εn yn| →
∞. Provided that |εn yn| → y0 for some y0 ∈ R

N , the vn⇀v in Hs(RN ) states that

Iεn (un) = 1

2

∫
RN

|(−�)
s
2 un|2 −

∫
RN

h(εnx)F(un)dx

= 1

2

∫
RN

|(−�)
s
2 vn|2 −

∫
RN

h(εnx + εn yn)F(vn)dx

→ Ih(y0)(v) as n → ∞.

Combining (3.7), we find that

mmax,a2 ≥ Ih(y0)(v) ≥ mh(y0),a2 . (3.8)

Next, we verify that h(y0)=hmax , namely, y0=ai for some i =1, 2,· · ·, l. Supposing
h(y0) < hmax , it is obvious that mh(y0),a2 > mmax,a2 , which contradicts (3.8). From
this,

Qεn (un) =
∫
RN χ(εnx)|un|2dx∫

RN |un|2dx =
∫
RN χ(εnx + εn yn)|vn|2dx∫

RN |vn|2dx

→
∫
RN χ(y0)|v|2dx∫

RN |v|2dx = χ(y0) = ai ∈ K ρ0
2
as n → ∞,

which is absurd.
For |εn yn| → ∞, the similar argument yields that

m∞,a2 ≤ mmax,a2 ,

which contradicts (2.12). Based on the above discussion, the proof is complete. ��
Now, we define the notations as follows:

θ iε := {u ∈ S(a) : |Qε(u) − ai | ≤ ρ0}, ∂θ iε = {u ∈ S(a) : |Qε(u) − ai | = ρ0}

and

ηiε := inf
u∈θ iε

Iε(u), η̂iε := inf
u∈∂θ iε

Iε(u).
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Lemma 3.5 Assume that (F1) − (F3) and (h1) − (h3) hold. Then

ηiε < mmax,a2 + ρ3 and ηiε < η̂iε for all ε ∈ (0, ε0)

Proof Let u ∈ Hs(RN ) satisfy Imax (u) = mmax,a2 . For 1 ≤ i ≤ l, we define the
function ûiε : R

N → R by

ûiε := u
(
x − ai

ε

)
.

It is clear that ûiε ∈ S(a) for all ε > 0, 1 ≤ i ≤ l. By a direct calculation, we deduce
that

Iε(û
i
ε) = 1

2

∫
RN

|(−�)
s
2 u|2dx −

∫
RN

h(εx + ai )F(u)dx,

which, together with (h3), signifies that

lim
ε→0+ Iε(û

i
ε) = Ih(ai )(u) = Imax (u) = mmax,a2 . (3.9)

In light of definition of Qε, we have Qε(ûiε) → ai as ε → 0+. It follows that ûiε ∈ θ iε
for ε sufficiently small. Combining with (3.9), there is ε ∈ (0, ε0) such that

mmax,a2 + ρ3 > Iε(û
i
ε)

and

mmax,a2 + ρ3 > ηiε, (3.10)

the first conclusion is reached immediately. Therefore, it suffices to verify the
remaining one. Notice that if u ∈ ∂θ iε , then

u ∈ S(a) and |Qε(u) − ai | = ρ0 >
ρ0

2
,

which indicates that Qε(u) /∈ K ρ0
2
. Therefore, by Lemma 3.4, for all u ∈ ∂θ iε and

ε ∈ (0, ε0), we obtain

Iε(u) > mmax,a2 + ρ3.

Then

η̂iε = inf
u∈∂θ iε

Iε(u) ≥ mmax,a2 + ρ3. (3.11)

Consequently, together with (3.10) and (3.11), the desired result is reached. ��
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Proof of Theorem 1.5 For every i ∈ {1, 2, 3, · · · , l}, we can use the Ekeland’s
variational principle [18, Theorem 4.1] to find a sequence {uin} ⊂ S(a) satisfying

Iε(u
i
n) → ηiε

and

Iε(v) − Iε(u
i
n) ≥ −1

n
||v − uin||, ∀v ∈ θ iε with v 
= uin .

In view of Lemma 3.5, for all ε ∈ (0, ε0), we have ηiε < η̂iε. Hence, u
i
n ∈ θ iε\∂θ iε for

all n large enough.
Next, we consider the path γ : (−δ, δ) → S(a) defined by

γ (t) = a
uin + tv

|uin + tv|2
belongs toC1((−δ, δ), S(a)),wherev ∈ Tuin S(a) = {z ∈ Hs(RN ) : ∫

RN uinzdx = 0}.
Thus,

γ (t) ∈ θ iε\∂θ iε, ∀t ∈ (−δ, δ), γ (0) = uin, γ ′(0) = v

and

Iε(γ (t)) − Iε(u
i
n) ≥ −1

n

∥∥∥γ (t) − uin

∥∥∥ ,∀t ∈ (−δ, δ).

Then,

Iε(γ (t)) − Iε(γ (0))

t
= Iε(γ (t)) − Iε(uin)

t
≥ −1

n

∥∥∥∥γ (t) − uin
t

∥∥∥∥
= −1

n

∥∥∥∥γ (t) − γ (0)

t

∥∥∥∥ , ∀t ∈ (−δ, δ).

Since Iε ∈ C1(H1(RN ), R), letting the limit of t → 0+, we obtain

I ′
ε(u

i
n)v ≥ −1

n
‖v‖.

Furthermore, replacing v by −v, we have

sup
{
|I ′

ε(u
i
n)(v)| : ‖v‖ ≤ 1

}
≤ 1

n
,

which indicates that

Iε(un) → ηiε and ‖Iε|′S(a)(un)‖ → 0 as n → ∞,
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namely, {un} is a (PS)ηiε
for Iε restricted to S(a). From Lemma 3.5, we have ηiε <

mmax,a2 + ρ3. Then combining with Lemma 3.3, there exists ui such that uin → ui in
Hs(RN ). Consequently,

ui ∈ ηiε, Iε(u
i ) = ηiε and Iε|′S(a)(u

i ) = 0.

As

Qε(u
i ) ∈ Bρ0(ai ), Qε(u

j ) ∈ Bρ0(a j )

and

Bρ0(ai ) ∩ Bρ0(a j ) = ∅ for i 
= j,

we deduce that ui 
= u j for i 
= j , where 1 ≤ i, j ≤ l. Hence, Iε has at least l
nontrivial critical points for all ε ∈ (0, ε0). Then there exists a Lagrange multiplier λi

such that

λi a2 =
∫
RN

|(−�)
s
2 ui |2dx −

∫
RN

h(εx) f (ui )uidx .

In view of Iε(ui ) = ηiε < 0 and (F3), it is obvious that λi < 0 for i = 1, 2, · · · , l.
The proof is complete. ��
Acknowledgements This research is supported by National Natural Science Foundation of China
[No.11971393].

Author Contributions CY wrote the main manuscript text; SY provided the method of the second part; CT
studied the feasibility and modified the paper format. All authors reviewed the manuscript.

Funding Supported by National Natural Science Foundation of China [No.11971393].

Data Availability Not applicable.

Declarations

Conflict of interest Authors state no competing interests.

Ethical Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

References

1. Alves, C.: On existence of multiple normalized solutions to a class of elliptic problems in whole R
N .

Z. Angew. Math. Phys. 73, 97 (2022)



Normalized Ground States and Multiple Solutions... Page 23 of 24 128

2. Alves, C., Ji, C., Miyagaki, O.: Normalized solutions for a Schrödinger equation with critical growth
in R

N . Calc. Var. Partial Differ. Equ. 61, 18 (2022)
3. Appolloni, L., Secchi, S.: Normalized solutions for the fractional NLS with mass supercritical

nonlinearity. J. Differ. Equ. 286, 248–283 (2021)
4. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Not. Am.Math. Soc.

51, 1336–1347 (2004)
5. Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with

at least mass critical growth. J. Funct. Anal. 280, 108989 (2020)
6. Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blowup for fractional NLS. J. Funct. Anal. 271,

2569–2603 (2016)
7. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of

functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)
8. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Springer International Publishing,

Switzerland (2016)
9. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians: I. regularity, maximum principles,

and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire. 31, 23-53 (2014)
10. Cao, D., Noussair, E.: Multiplicity of positive and nodal solutions for nonlinear elliptic problem in

R
N . Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 567–588 (1996)

11. Du, M., Tian, L., Wang, J., Zhang, F.: Existence of normalized solutions for nonlinear fractional
Schrödinger equations with trapping potentials. Proc. Roy. Soc. Edinb. Sect. A 149, 617–653 (2019)

12. Felmer, P., Quaas, A., Tan, J.: Positive solutions of nonlinear Schrödinger equation with the fractional
Laplacian. Proc. Roy. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

13. Guo, Z., Luo, S., Zou, W.: On critical systems involving fractional Laplacian. J. Math. Anal. Appl.
446, 681–706 (2017)

14. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear
Anal. 27, 1633–1659 (1997)

15. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math.
Ann. 384, 101–134 (2022)

16. Liu, L., Teng, K., Yang, J., Chen, H.: Concentration behaviour of normalized ground states of the mass
critical fractional Schrödinger equations with ring-shaped potentials. Proc. Roy. Soc. Edinb. Sect. A
(2022). https://doi.org/10.1017/prm.2022.81

17. Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined
nonlinearities. Calc. Var. Partial Differ. Equ. 59, 143 (2020)

18. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical
Sciences. New York Inc., Springer (1989)

19. Molle, R., Riey, G., Verzini, G.: Normalized solutions to mass supercritical Schrödinger equations
with negative potential. J. Differ. Equ. 333, 302–331 (2022)

20. Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci.
Math. 136, 521–573 (2012)

21. Peng, S., Xia, A.: Normalized solutions of supercritical nonlinear fractional schrödinger equation with
potential. Commun. Pure. Appl. Anal. 20, 3723–3744 (2021)

22. Pozrikidis, C.: The Fractional Laplacian. Taylor & Francis Group, LLC (2016)
23. Servadei, R., Raffaella, E.: Variationalmethods for non-local operators of elliptic type. Discrete Contin.

Dyn. Syst. 33, 2105–2137 (2013)
24. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ.

Equ. 279, 6941–6987 (2020)
25. Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: The Sobolev

critical case. J. Funct. Anal. 279, 108610 (2020)
26. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl.

49, 33–44 (2009)
27. Willem, M.: Minimax Theorems Birkhäuser, Boston, (1996)
28. Yang, J., Yang, J.: Normalized solutions andmass concentration for supercritical nonlinear Schrödinger

equations. Sci. China Math. 65, 1383–1412 (2022)
29. Yu, S., Tang, C., Zhang, Z.: Normalized solutions of mass subcritical fractional Schrödinger equations

in exterior domains. J. Geom. Anal. 33, 162 (2023)
30. Zhen, M., Zhang, B.: Normalized ground states for the critical fractional NLS equation with a

perturbation. Rev. Mat. Complut. 35, 89–132 (2022)

https://doi.org/10.1017/prm.2022.81


128 Page 24 of 24 C. Yang et al.

31. Zhang, Z., Zhang, Z.: Normalized solutions of mass subcritical Schrödinger equations in exterior
domains. NoDEA Nonlinear Differ. Equ. Appl. 29, 32 (2022)

32. Zhang, P., Han, Z.: Normalized solutions to a kind of fractional Schrödinger equation with a critical
nonlinearity. Z. Angew. Math. Phys. 73, 149 (2022)

33. Zhu, X., Cao, D.: The concentration-compactness principle in nonlinear elliptic equations. Acta Math.
Sci. 9, 307–328 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Normalized Ground States and Multiple Solutions for Nonautonomous Fractional Schrödinger Equations
	Abstract
	1 Introduction and Main Results
	2 Existence of Normalized Ground States
	3 Multiple Normalized Solutions
	Acknowledgements
	References




