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Abstract
By considering the radial solutions for a semi-linear elliptic equation model of gyres
and introducing exponential transformation, we derive a second-order ordinary differ-
ential equation, which acts as a new model for the ocean flow in arctic gyres. Then we
investigate the solutions for constant vorticity, linear vorticity and nonlinear vorticity
in this model.
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1 Introduction

Large areas spiraling circulations of water in ocean are called gyres, which are mainly
driven by the winds and the Coriolis force (due the rotations of the Earth). Gyres
are widely existing all over the world’s major ocean regions and controlled by land
masses and bottom topography (see [1]). The winds mostly only act on the surface
of the water, while the landmasses and the Coriolis force act beneath the surface (see
[22]). Due to Coriolis force, gyres in the Northern Hemisphere rotate predominantly
clockwise and gyres in the Southern Hemisphere rotate anticlockwise. Note that, due
to the vanishing of the meridional component of the Coriolis force, gyres are not cross
the equator (see [6, 16, 17]). There are three types of gyres. Tropical gyres are near the
Equator but confined strictly to the Northern or Southern hemispheres (see [9–11, 20,
21]). Subtropical gyres are situated between polar and equatorial regions, where exists
a gigantic ocean areas with thousands of kilometers of diameter (see [8]). Subpolar
gyres are the smallest ones on the Earth and are situated in the polar regions (see
[18]). In this paper, we will set our eyes on arctic gyres, which are distributed in the
Arctic ocean. Arctic ocean is a semi-enclosed ocean almost completely surrounded
by landmasses and is covered by permanent ice with thickness exceeding 2m. The
permanent ice floats on the ocean, slowly rotating clockwise, roughly centered on the
North Pole (see [1–5, 24]). It is worth mentioning that the Antarctic is very different
from theArctic: the Antarctic is a single landmass encircled by a very powerful current
known as the Antarctic Circumpolar Current (ACC).We refer to [7, 14, 18–20, 25–28]
for the ACC.

In order to study the related properties of gyres, some simplifications are made to
reduce its complexity. The horizontal velocity of gyres is 104 larger than the verti-
cal velocity (see [23]). Ignoring the vertical velocity, a model of gyres in spherical
coordinates as shallow-water flow on a rotating sphere is obtained (see [8]). In [2],
this model is transformed into a plane semi-linear elliptic equation boundary value
problem by stereographic projection, and then it is reduced to second-order ordinary
differential equation by neglecting the change of azimuthal variations. Haziot replaces
the stereographic projection by the Mercator projection, which reduces the model in
[8] to a semi-linear elliptic equation that is simpler than the equation obtained recently
in [2] (see [15]). Then Haziot uses a conformal map to map the semi-linear elliptic
equation from the unbounded strip into the unit circle and considers the existence of
solutions for constant vorticity and linear vorticity (see [14]).

In this paper, inspired by Haziot’s work in [14], we derive a second-order ordinary
differential equation by considering the radial solutions for the semi-linear elliptic
equation model of gyres and introducing exponential transformation, which acts as a
new model for the ocean flow in arctic gyres. With the suitable asymptotic conditions
and boundary conditions, we study the solutions of constant vorticity, linear vorticity
and nonlinear vorticity in this model.
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2 Preliminaries

As we know, the classical model of arctic gyres is derived by Constantin and Johnson,
which is a model of gyres in spherical coordinates as shallow-water flow on a rotating
sphere (see [8]). One can set θ ∈ [0, π) the polar angle and θ = 0 corresponds to the
South Pole. Let ϕ ∈ [0, 2π) be the azimuthal angle. Considering the model for gyres
in spherical coordinates, the polar and azimuthal velocity components of the flow on
the Earth are given by

1

sin(θ)
ψϕ, − ψθ,

respectively, where ψ(θ, ϕ) represents the stream function in spherical coordinates.
Furthermore, the governing equation for gyres is given by

1

sin(θ)
�ϕϕ + �θ cot(θ) + �θθ = F(� − ω cos(θ)), (1)

where�(θ, ϕ) = ψ(θ, ϕ)+ω cos(θ) is associated with the vorticity of the underlying
motion of the ocean relative to the Earth’s surface, 2ω cos(θ) represents the spin
vorticity due the rotation of the Earth and F(� − ω cos(θ)) represents the ocean
vorticity.

Using Mercator projection (see [13]), the change of variables are given by

x̃ = − ln

[
tan

(
θ

2

)]
, ỹ = ϕ. (2)

Then the North Pole (θ = π) corresponds to x̃ = −∞ and the equator θ = π
2

corresponds to x̃ = 0, where x̃ < 0 is in the Northern Hemisphere. SettingU (x̃, ỹ) =
ψ(θ, ϕ), one can reformulate the governing equation (1) as the following semi-linear
elliptic equation

�U (x̃, ỹ) = F(U (x̃, ỹ))

cosh2(x̃)
+ 2ω

sinh(x̃)

cosh3(x̃)
(3)

with boundary condition

U (x̃0, ỹ) = U0(ỹ), (4)

where x̃0 < 0 is a constant. In the North Pole, the asymptotic conditions are given by

lim
x̃→−∞

U (x̃, ỹ) = ψ0, lim
x̃→−∞

{(Ux̃ (x̃, ỹ),Uỹ(x̃, ỹ)} cosh(x̃) = (0, 0), (5)

where ψ0 ∈ R is a constant, which is the value of the stream function ψ at the North
Pole. In fact, the second asymptotic condition of (5) means that the flow is stagnant
at the North Pole.
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Haziot uses a conformal map to project (3) into a unit circle (see [6]). In order to
map from the unbounded strip on the plane into the unit circle, setting ξ = x̃− x̃0+ı ỹ,
and then one can use the conformal map � = exp(ξ) to get it into the unit circle. Let
x and y be the new variables in the unit circle, which are defined by

x = ex̃−x̃0 cos(ỹ), y = ex̃−x̃0 sin(ỹ), (6)

and u(x, y) in the circle, such that u(x, y) = U (x̃, ỹ). Therefore, we have by (3) that

�u(x, y) = 4F(u)(x2 + y2)

[ex̃0(x2 + y2) + e−x̃0 ]2

+8ω
[ex̃0(x2 + y2) − e−x̃0 ](x2 + y2)

[ex̃0(x2 + y2) + e−x̃0 ]3 , 0 < x2 + y2 ≤ 1, (7)

and boundary condition (4) becomes

u0(x, y) = u
(
arctan

( y

x

))
, (8)

where x2 + y2 = 1.
Consider u0(x, y) = u0, where u0 is a constant that the boundary is a streamline.

Similarly as in (5), the asymptotic conditions can be given by

lim
x2+y2→0

u(x, y) = ψ0, lim
x2+y2→0

{ux , uy} = {0, 0}. (9)

Note that the second condition of (9) is necessary and sufficient for the North Pole
to be a stagnation point. Now we turn to consider the radial solutions of (7) and set

r = (x2 + y2)
1
2 . From (7), we have

urr + ur
r

= 4F(u)r2

(ex̃0r2 + e−x̃0)2
+ 8ω

(ex̃0r2 − e−x̃0)r2

(ex̃0r2 + e−x̃0)3
, 0 < r ≤ 1. (10)

Setting r = et , we obtain by (10) that

u′′(t) = 4F(u)e4t

(ex̃0e2t + e−x̃0)2
+ 8ω

(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3
, −∞ < t ≤ 0. (11)

Meanwhile, the boundary condition (8) becomes

u(0) = u0, (12)

and (9) reduces to

lim
r→0

u(r) = lim
t→−∞ u(t) = ψ0, lim

r→0
u′(r) = lim

t→−∞ e−t u′(t) = 0. (13)
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In addition, we consider

u′(0) = 0, (14)

which represents no jet flow phenomenon.

3 Constant Vorticity Case

Constant vorticity represents specific gyres. In particular, the case of F = 0 is cor-
responding to precisely with the classical irrotational flow in two-dimensional (see
[8]).

3.1 F = 0

Considering (11) with F = 0 and (12) and the second equation of (13), one has
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′(t) = 8ω
(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3
, −∞ < t ≤ 0,

lim
t→−∞ e−t u′(t) = 0,

u(0) = u0.

(15)

Now we are ready to state the first result.

Theorem 3.1 The explicit solution of (15) is written as

u(t) = −2ωe−2x̃0
[ 1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

]

+ u0 + 2ωe−2x̃0
[ 1

e2x̃0 + 1
+ 2 ln(e2x̃0 + 1) + dilog(e2x̃0 + 1)

]
,

− ∞ < t ≤ 0,

(16)

where dilog(x) = ∫ x
1

ln(s)
1−s ds.

Proof Integrating the first equation of (15), we obtain

u′(t) = 8ω

[
3
2e

2t + e−2x̃0

(e2t e2x̃0 + 1)2
+ 1

2
e−2x̃0 ln(e2t e2x̃0 + 1)

]
+ c0. (17)

Using (17) and the second equation of (15), we have

c0 = −8ωe−2x̃0 . (18)

Then putting (18) into (17) and integrating it, we have

u(t) = − 2ωe−2x̃0
[

1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

]
+ c1. (19)



77 Page 6 of 26 F. Chen et al.

By (19) and the third equation of (15), we obtain

c1 =u0 + 2ωe−2x̃0

[
1

e2x̃0 + 1
+ 2 ln(e2x̃0 + 1) + dilog(e2x̃0 + 1)

]
. (20)

Linking (19) and (20), one can obtain (16). This proof is completed. �	

Considering (11) with F = 0 and (12) and (14), one has

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′(t) = 8ω
(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3
, −∞ < t ≤ 0,

u′(0) = 0,

u(0) = u0.

(21)

Now we are ready to state the second result.

Theorem 3.2 The explicit solution of (21) is written as

u(t) = −2ωe−2x̃0

[
2 ln(e2x̃0e2t + 1) + 1

e2x̃0e2t + 1
+ dilog(e2x̃0e2t + 1)

]

+ 8ωe−2x̃0

[
1 −

3
2 + e−2x̃0

e−2x̃0(e2x̃0 + 1)2
− 1

2
ln(e2x̃0 + 1)

]
t + u0

+ 2ωe−2x̃0

[
1

e2x̃0 +1
+2 ln(e2x̃0 +1)+dilog(e2x̃0 + 1)

]
,

− ∞ < t ≤ 0.

The calculation is similar to that of Theorem 3.1. Here, we omit it.

3.2 F = c (c �= 0)

Considering (11) with F = c and (12) and the second equation of (13), one has

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u′′(t) = 4ce4t

(ex̃0e2t + e−x̃0)2
+ 8ω

(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3
, −∞ < t ≤ 0,

lim
t→−∞ e−t u′(t) = 0,

u(0) = u0.

(22)

Now we are ready to state the third result.
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Theorem 3.3 The explicit solution of (22) is written as

u(t) = −(2ω + c)e−2x̃0
[
dilog(e2x̃0e2t + 1) + 2 ln(e2x̃0e2t + 1)

]
− 2ω

e−2x̃0

e2x̃0e2t + 1

+ u0 + (2ω + c)e−2x̃0
[
dilog(e2x̃0 + 1) + 2 ln(e2x̃0 + 1)

]

+ 2ω
e−2x̃0

e2x̃0 + 1
, − ∞ < t ≤ 0.

The calculation is similar to that of Theorem 3.1. Here, we omit it.
Considering (11) with F = c and (12) and (14), one has

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′′(t) = 4ce4t

(ex̃0e2t + e−x̃0)2
+ 8ω

(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3
, −∞ < t ≤ 0,

u′(0) = 0,

u(0) = u0.

(23)

Now we are ready to state the fourth result.

Theorem 3.4 The explicit solution of (23) is written as

u(t) = −(2ω + c)e−2x̃0
[
dilog(e2x̃0e2t + 1) + 2 ln(e2x̃0e2t + 1)

]

− 2ω
e−2x̃0

e2x̃0e2t + 1
+ 2ce−2x̃0

[
1 − ln(e2x̃0 + 1) − 1

e2x̃0 + 1

]
t

+ 8ωe−2x̃0

[
1 −

3
2 + e−2x̃0

e−2x̃0(e2x̃0 + 1)2
− 1

2
ln(e2x̃0 + 1)

]
t + u0

+ 2ω
e−2x̃0

e2x̃0 + 1
+ (2ω + c)e−2x̃0 [dilog(e2x̃0 + 1) + 2 ln(e2x̃0 + 1)],

− ∞ < t ≤ 0.

The calculation is similar to that of Theorem 3.1. Here, we omit it.
To end this section, we apply our results to deal with the arctic gyres, which are

located between the North Pole and 84◦ N (which is approximately equal to 14
15π ).

From the Mercator projection, we have x̃0 = − ln(tan( 14π30 )) ≈ −2.253. In particular,
we can take a typical approximation of ω that is 4650 (see [8]). Without lose of
generality, we can set u0 = 0. In terms of the original spherical variables (θ, ϕ), we
have by (2) and (6) that

x = tan θ0
2

tan θ
2

cos(ϕ), y = tan θ0
2

tan θ
2

sin(ϕ).

Recalling t = ln(r) = ln(x2 + y2)
1
2 , we have

t = ln

[
tan θ0

2

tan θ
2

(cos2(ϕ) + sin2(ϕ))
1
2

]
.
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Fig. 1 Under F = 0 and the asymptotic conditions specified by (5), the change trend of stream function ψ

is monotonic increasing with respect to variable θ from 84◦ N to the North Pole and independent of ϕ. It
shows that the North Pole is a stagnation point and the center for the arctic gyres

Then ψ(θ, ϕ) = u(t) = ψ(θ) is independent of ϕ. Fixed θ = θ1, ψ(θ1, ϕ) is a
streamline, where θ ∈ [ 1415π, π) and ϕ ∈ [0, 2π) (see Fig. 1).

4 Linear Vorticity Case

Linking (13), we assume

lim
t→−∞ u(t) = u(−N ) = ψ0, lim

t→−∞ e−t u′(t) = eNu′(−N ) = 0, (24)

where N > 0 is chosen large enough.
Now considering (11) with F = au + b (where a, b ∈ R) and (24), one has

⎧⎪⎨
⎪⎩
u′′(t) = A(t)u + B(t), −N ≤ t ≤ 0,

u(−N ) = ψ0,

u′(−N ) = 0,

(25)

where

A(t) : = 4ae4t

(ex̃0e2t + e−x̃0)2
,

B(t) : = 4be4t

(ex̃0e2t + e−x̃0)2
+ 8ω

(ex̃0e2t − e−x̃0)2e4t

(ex̃0e2t + e−x̃0)3
, − N ≤ t ≤ 0.

Set U (t) = (u′(t), u(t))T, then U (−N ) = (u′(−N ), u(−N ))T = (0, ψ0)
T.
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Therefore, (25) can be written as the following form

U ′(t) = Ã(t)U (t) + B̃(t), − N ≤ t ≤ 0, (26)

with the constraint condition U (−N ), where

Ã(t) =
(
0 A(t)
1 0

)
, B̃(t) =

(
B(t)
0

)
.

From [20], the following matrix function


(t,−N ) = I +
∫ t

−N
Ã(τ )dτ +

∫ t

−N
Ã(τ1)

[∫ τ1

−N
Ã(τ2)dτ2

]
dτ1 + · · ·,

solves 
′(t,−N ) = Ã(t)
(t,−N ), − N ≤ t ≤ 0, 
(−N ,−N ) = I , where I
denotes the identity matrix.

Therefore, the solution of (26) can be written as (see [29])

U (t) = 
(t,−N )U (−N ) +
∫ t

−N

(t, τ )B̃(τ )dτ, t ∈ [−N , 0].

Finally, the solution of (25) can be derived

u(t) =
(
1 +

∫ t

−N

∫ τ1

−N
A(τ2)dτ2dτ1

+
∫ t

−N

∫ τ1

−N
A(τ2)

∫ τ2

−N

∫ τ3

−N
A(τ4)dτ4dτ3dτ2dτ1 + · · ·

)
ψ0

+
∫ t

−N

[
(t − τ) +

∫ t

τ

∫ τ1

τ

A(τ2)(τ2 − τ)dτ2dτ1 + · · ·
]

× B(τ )dτ, t ∈ [−N , 0].
Considering (11) with (13), we have

u(t) = ψ0 +
∫ t

−∞
(t − s)

(
4F(u(s))e4s

(ex̃0e2s + e−x̃0)2
+ 8ω

(ex̃0e2s − e−x̃0)e4s

(ex̃0e2s + e−x̃0)3

)
ds

= ψ0 − 2ωe2x̃0
[
dilog

(
e2x̃0e2t + 1

)
+ 1

e2x̃0e2t + 1
+ 2 ln

(
e2x̃0e2t + 1

)
− 1

]

+
∫ t

−∞
4(t − s)e4s

(ex̃0e2s + e−x̃0)2
F(u(s))ds. (27)

We consider again the linear case F(u) = au + b. Then (27) has a form

u(t) = aAu(t) + bh1(t) + ωh2(t) + ψ0, (28)
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for

Au(t) =
∫ t

−∞
4(t − s)e4s

(ex̃0e2s + e−x̃0)2
u(s)ds,

h1(t) =
∫ t

−∞
4(t − s)e4s

(ex̃0e2s + e−x̃0)2
ds = −e2x̃0 [dilog

(
e2x̃0e2t + 1

)

+2 ln
(
e2x̃0e2t + 1

)
],

h2(t) = −2e2x̃0
[
dilog

(
e2x̃0e2t + 1

)
+ 1

e2x̃0e2t + 1
+ 2 ln

(
e2x̃0e2t + 1

)
− 1

]
.

We solve (28) on a Banach space X = Cb(R−) of all bounded functions u : R− → R

with a norm ‖u‖ = supt∈R− |u(t)|. Note

|Au(t)| ≤ ‖u‖
∫ t

−∞
4(t − s)e4sds = e4t

4
‖u‖ ≤ 1

4
‖u‖,

|(Au)′(t)| ≤ ‖u‖
∫ t

−∞
4e4sds = e4t‖u‖ ≤ ‖u‖,

|h1(t)| ≤
∫ t

−∞
4(t − s)e4sds = e4t

4
≤ 1

4
, |h′

1(t)| ≤
∫ t

−∞
4e4sds = e4t ≤ 1,

|h2(t)| ≤
∫ t

−∞
8(t − s)(1 + e−x̃0)e4sds = (1 + e−x̃0)

e4t

2
≤ 1 + e−x̃0

2
,

|h′
2(t)| ≤

∫ t

−∞
8(1 + e−x̃0)e4sds = 2(1 + e−x̃0)e4t ≤ 2(1 + e−x̃0).

We see that any solution u ∈ X of (28) satisfies limt→−∞ u(t) = ψ0 and
limt→−∞ e−t u′(t) = 0 with a rate e4t . Moreover, A : X → X is a bounded lin-
ear operator mapping the unit ball {u ∈ X : ‖u‖ ≤ 1} into the set

A({u ∈ X : ‖u‖ ≤ 1}) ⊂ {v ∈ X : ‖v(t)‖ ≤ e4t , ∀t ∈ R−, ‖v′‖ ≤ 1}.

Applying the Arzelà-Ascoli theorem, we can see that the set

{v ∈ X : ‖v(t)‖ ≤ e4t , ∀t ∈ R−, ‖v′‖ ≤ 1}

is precompact in X . Thus A is compact. Next, if λ �= 0 is an eigenvalue of A with an
eigenfunction u, then for any t0 < 0, we have

|λ| sup
t≤t0

|u(t)| = sup
t≤t0

|Au(t)| ≤ e4t0

4
sup
t≤t0

|u(t)|.
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So, if |λ| > e4t0
4 , then supt≤t0 |u(t)| = 0, and noting

λu′′(t) = 4e4t

(ex̃0e2t + e−x̃0)2
u(t),

we have u(t) = 0 onR−. This leads, since A is compact, to the fact that the spectrum of
A is {0} and thus the spectral radius of A is 0. Consequently, (28) is uniquely solvable

u(t) = [(I − aA)−1(bh1 + ωh2 + ψ0)](t)
= b[(I − aA)−1h1](t) + ω[(I − aA)−1h2](t) + ψ0[(I − aA)−1](t). (29)

Moreover, the Neumann lemma gives

(I − aA)−1 = I + aA + a2A2 + · · · , (30)

sowe can solve (29) approximately. An alternative way is to use an iteration procedure

un+1(t) = aAun(t) + bh1(t) + ωh2(t) + ψ0, n ≥ 1, u1(t) = 0. (31)

In summary, we have the following result.

Theorem 4.1 (11) with (13) for F(u) = au + b, a, b ∈ R has a unique solution given
by (29). Moreover, (12) or (14) hold if and only if

b[(I − aA)−1h1](0) + ω[(I − aA)−1h2](0) + ψ0[(I − aA)−1](0) − u0 = 0,

(32)

or

b[(I−aA)−1h1]′(0) + ω[(I − aA)−1h2]′(0) + ψ0[(I − aA)−1]′(0)= 0, (33)

respectively.

Remark 4.2 (32) and (33) are linear in (b, ω,ψ0, u0) while nonlinear but analytic
in a. They give surfaces in the parametric space (a, b, ω,ψ0, u0) that the unique
solution from Theorem 4.1 satisfies also either (12) or (14). These surfaces can be
approximately computed for a concrete value of x̃0 by using either (30) or (31).
Applying (31), we have approximated surfaces un(0) − u0 = 0 and u′

n(0) = 0,
respectively. For fixed (ω,ψ0, u0), we have functions

b = �1(a) = u0 − ω[(I − aA)−1h2](0) − ψ0[(I − aA)−1](0)
ω[(I − aA)−1h2](0) + ψ0[(I − aA)−1](0) ,

and

b = �2(a) = −ω[(I − aA)−1h2]′(0) + ψ0[(I − aA)−1]′(0)
[(I − aA)−1h1]′(0) ,

respectively.
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5 Nonlinear Vorticity Case

In this section, we study the existence and uniqueness of continuous solutions for (11)
with suitable asymptotic conditions and boundary conditions.

5.1 Lipschitz-Type Nonlinear Vorticity Case

Firstly, we show the existence and uniqueness of continuous solution for (11) with
asymptotic conditions by the Banach’s fixed-point theorem. Linking the second con-
dition in (13) and integrating (11), we obtain

u′(t) = 8ω
[ 3

2e
2t + e−2x̃0

(e2t e2x̃0 + 1)2
+ 1

2
e−2x̃0 ln(e2t e2x̃0 + 1)

]
− 8ωe−2x̃0

+
∫ t

−∞
4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds, t ≤ 0.

(34)

Integrating (34), we have

u(t) = ψ0 + 2ωe−2x̃0 − 2ωe−2x̃0

×
[

1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

]

+
∫ t

−∞
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds, t ≤ 0,

(35)

in view of the first condition in (13). Linking (34) and the second condition in (13),
by L’Hospital rule, we have

lim
t→−∞

{
e−t

∫ t

−∞
4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds

}
= lim

t→−∞

4e4t F(u(t))
(ex̃0 e2t+e−x̃0 )2

et

= lim
t→−∞

4F(u(t))

e−3t (ex̃0e2t + e−x̃0)2
= 0,

(36)

which implies that u(t) is a bounded function on (−∞, 0] (see (38)).
Next,we investigate the existence and uniqueness of continuous solution for integral

equation (35).

Theorem 5.1 Assume that F : R → R is Lipschitz continuous, i.e., there exists a
constant M > 0 such that

|F(u) − F(v)| ≤ M |u − v|, u, v ∈ R, (37)

then integral equation (35) has a unique continuous solution u : (−∞, 0] → R, which
is a unique solution of (11) with (13).
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Proof Choose t0 ≤ 0 such that e2x̃0
dilog(e2x̃0 e2t0+1)+2 ln(e2x̃0 e2t0+1)

> M . For all bounded

functions u ∈ X , we consider the Banach space X defined above.
Consider the operator T : X → X as follows

(T u)(t) = ψ0 + 2ωe−2x̃0 − 2ωe−2x̃0

×
[ 1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

]

+
∫ t

−∞
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds, t ≤ 0.

Firstly, we check that T is well-defined with X . For each t ∈ (−∞, 0], linking
(36), we have

∫ t

−∞
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds ≤

∫ t

−∞
−4e4ss|F(u(s))|
(ex̃0e2s + e−x̃0)2

ds

≤
∫ t

−∞
−4s

e−s
ds = 4et − 4tet ≤ 4, (38)

which shows that T : X → X .
Then for any u, v ∈ X , we obtain that

‖T u − T v‖ ≤ sup
t≤t0

∫ t

−∞
(t − s)

4e4s |F(u(s)) − F(v(s))|
(ex̃0e2s + e−x̃0)2

ds

≤ sup
t≤t0

∫ t

−∞
(t − s)

4e4sM |u(s) − v(s)|
(ex̃0e2s + e−x̃0)2

ds

≤ M‖u − v‖ sup
t≤t0

∫ t

−∞
4e4s(t − s)

(ex̃0e2s + e−x̃0)2
ds

= e−2x̃0 [dilog(e2x̃0e2t0 + 1) + 2 ln(e2x̃0e2t0 + 1)]M‖u − v‖
< ‖u − v‖,

where we use the fact

∫ t

−∞
4e4s(t − s)

(ex̃0e2s + e−x̃0)2
ds =

∫ t

−∞

∫ s

−∞
4e4τ

(ex̃0e2τ + e−x̃0)2
dτds

=
∫ t

−∞
2e−2x̃0

[
ln(e2se2x̃0 + 1) − e2se2x̃0

e2se2x̃0 + 1

]
ds

= e−2x̃0 [dilog(e2x̃0e2t + 1) + 2 ln(e2x̃0e2t + 1)].

By using the contraction principle, T has a unique fixed-point on X . This fixed-point
is the unique solution to (35) on (−∞, t0]. If t0 = 0, then result holds. If t0 < 0, then
the linear growth rate of F(·) prevents blow-up in finite time, so that we may extend
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the solution from (−∞, t0] to (−∞, 0]. Assume that F(·) is Lipschitz continuous, we
obtain the uniqueness of solution to (35) on (−∞, 0]. The proof is completed. �	
Theorem 5.2 In the sense of supremum norm, the solution of Theorem 5.1 (on the
infinite interval (−∞, 0]) is stable with respect to variations of ψ0.

Proof Let u ∈ X and ũ ∈ X be two solutions of (35) with limt→−∞ u(t) = ψ0 and
limt→−∞ ũ(t) = ψ̃0, respectively. Choose t0 ≤ 0 such that

e−2x̃0 [dilog(e2x̃0e2t0 + 1) + 2 ln(e2x̃0e2t0 + 1)] ≤ 1

1 + M
. (39)

Setting ‖u‖ = supt≤t0 |u(t)|, we have

|u(t) − ũ(t)| ≤ |ψ0 − ψ̃0| +
∣∣∣
∫ t

−∞
(t − s)

4e4s(F(u(s)) − F(ũ(s)))

(ex̃0e2s + e−x̃0)2
ds

∣∣∣
≤ |ψ0 − ψ̃0| + sup

t≤t0

∫ t

−∞
(t − s)

4e4s |F(u(s)) − F(ũ(s))|
(ex̃0e2s + e−x̃0)2

ds

≤ |ψ0 − ψ̃0| + M sup
t≤t0

∫ t

−∞
(t − s)

4e4s |u(s) − ũ(s)|
(ex̃0e2s + e−x̃0)2

ds

≤ |ψ0 − ψ̃0| + M‖u − ũ‖ sup
t≤t0

∫ t

−∞
4(t − s)e4s

(ex̃0e2s + e−x̃0)2
ds

= |ψ0 − ψ̃0| + M‖u − ũ‖e−2x̃0 [dilog(e2x̃0e2t0 + 1)

+ 2 ln(e2x̃0e2t0 + 1)], t ≤ t0.

(40)

By (39) and (40), we have

‖u − ũ‖ ≤ |ψ0 − ψ̃0| + M

M + 1
‖u − ũ‖,

so that

‖u − ũ‖ ≤ (1 + M)|ψ0 − ψ̃0|. (41)

Using (40) and (41), we obtain that

|u′(t) − ũ′(t)| ≤
∫ t

−∞
4e4s |F(u(s)) − F(ũ(s))|

(ex̃0e2s + e−x̃0)2
ds

≤
∫ t

−∞
4e4sM |u(s) − ũ(s)|
(ex̃0e2s + e−x̃0)2

ds

≤ M‖u − ũ‖
∫ t

−∞
4e4s

(ex̃0e2s + e−x̃0)2
ds

≤ M(1 + M)|ψ0 − ψ̃0|
∫ t

−∞
4e4s

(ex̃0e2s + e−x̃0)2
ds
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= M(1+M)|ψ0 − ψ̃0|2e−2x̃0
[
ln(e2t e2x̃0 + 1) − e2t

e2t e2x̃0 + 1

]
, t≤ t0.

Then, by (39), we have

|u′(t0) − ũ′(t0)| ≤ M |ψ0 − ψ̃0|, (42)

since

0 ≤ 2e−2x̃0
[
ln(e2t e2x̃0 + 1) − e2t

e2t e2x̃0 + 1

]

≤ 2e−2x̃0 ln(e2t e2x̃0 + 1)

≤ 2e−2x̃0 ln(e2t0e2x̃0 + 1)

≤ 1

1 + M
, t ≤ t0.

Due to |u(t0) − ũ(t0)| ≤ ‖u − ũ‖, from (41), we have

|u(t0) − ũ(t0)| ≤ (1 + M)|ψ0 − ψ̃0|. (43)

If t0 = 0, then the proof is completed. Otherwise, for t0 < 0, we see that u(t0) is
the value for (35) at t = t0, starting with data u(t0) and u′(t0) at t = t0. Let

s = t − t0, v(s) = u(s + t0), t0 ≤ t ≤ 0, (44)

then we have

v′′(s) = 4e4(s+t0)F(v(s))

(ex̃0e2(s+t0) + e−x̃0)2
+ 8ω

(ex̃0e2(s+t0) − e−x̃0)e4(s+t0)

(ex̃0e2(s+t0) + e−x̃0)3
, 0 ≤ s ≤ −t0,

(45)

with initial data

v(0) = u(t0), v′(0) = u′(t0). (46)

Linking the second condition of (46) and integrating (45) on [0, s], we obtain

v′(s) = v′(0) +
∫ s

0

4e4(τ+t0)F(v(s))

(ex̃0e2(τ+t0) + e−x̃0)2
dτ

+
∫ s

0
8ω

(ex̃0e2(τ+t0) − e−x̃0)e4(τ+t0)

(ex̃0e2(τ+t0) + e−x̃0)3
dτ, 0 ≤ s ≤ −t0. (47)
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Using the first condition of (46), then integrating both sides of (47) on [0, s], which
yields

v(s) = v(0) + v′(0)s +
∫ s

0
(s − τ)

4e4(τ+t0)F(v(τ ))

(ex̃0e2(τ+t0) + e−x̃0)2
dτ

+
∫ s

0
8ω(s − τ)

(ex̃0e2(τ+t0) − e−x̃0)e4(τ+t0)

(ex̃0e2(τ+t0) + e−x̃0)3
dτ, 0 ≤ s ≤ −t0. (48)

Let ṽ ∈ X also be a solution of the integral equation (48), then we have

|v(s) − ṽ(s)| ≤ |v(0) − ṽ(0)| + s|(v′(0) − ṽ′(0)|

+
∣∣∣
∫ s

0
(s − τ)

4e4(τ+t0)(F(v(τ )) − F(ṽ(τ )))

(ex̃0e2(τ+t0) + e−x̃0)2
dτ

∣∣∣
≤ |v(0) − ṽ(0)| − t0|v′(0) − ṽ′(0)| +

∫ s

0
(s − τ)

4e4(τ+t0)|F(v(τ )) − F(ṽ(τ ))|
(ex̃0e2(τ+t0) + e−x̃0)2

dτ

≤ |v(0) − ṽ(0)| − t0|v′(0) − ṽ′(0)|

+ M
∫ s

0
(s − τ)

4e4(τ+t0)|v(τ) − ṽ(τ )|
(ex̃0e2(τ+t0) + e−x̃0)2

dτ, 0 ≤ s ≤ −t0.

Taking (42) and (43) into account, we obtain that

|v(s) − ṽ(s)| ≤ (1 + M − t0M)|ψ0 − ψ̃0| + M
∫ s
0 (s − τ)

× 4e4(τ+t0)|v(τ)−ṽ(τ )|
(ex̃0 e2(τ+t0)+e−x̃0 )2

dτ, 0 ≤ s ≤ −t0.

By the Gronwall’s inequality (see [12]), we have

|v(s) − ṽ(s)| ≤ (1 + M − t0M)|ψ0 − ψ̃0| exp(4M
∫ s

0

(s − τ)e4(τ+t0)

(ex̃0e2(τ+t0) + e−x̃0)2
dτ),

(49)

where

∫ s

0

4(s − τ)e4(τ+t0)

(ex̃0e2(τ+t0) + e−x̃0)2
dτ =

∫ s

0

∫ τ

0

4e4(σ+t0)

(ex̃0e2(σ+t0) + e−x̃0)2
dσdτ

=
∫ s

0
2e−2x̃0

[
ln

(e2(t0+τ)e2x̃0 + 1)

e2t0e2x̃0 + 1

+ e2(t0+τ)e2x̃0 − e2t0e2x̃0

(e2(t0+τ)e2x̃0 + 1)(e2t0e2x̃0 + 1)

]
dτ

= γ1(s) − γ2, 0 ≤ s ≤ −t0,
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and

γ1(s) = e−2x̃0 [dilog(e2x̃0e2(s+t0) + 1) + 2 ln(e2x̃0e2(s+t0) + 1)],
γ2 = e−2x̃0 [dilog(e2x̃0e2t0 + 1) + 2 ln(e2x̃0e2t0 + 1)].

Thus, (49) reduces to

|u(t) − ũ(t)| ≤ (1 + M − t0M)|ψ0 − ψ̃0| exp(M(γ1(s) − γ2)). (50)

Then linking (44) and (50), we obtain

|u(t) − ũ(t)| ≤ (1 + M − t0M)|ψ0 − ψ̃0| exp(M(γ̃1(t) − γ2)), t0 ≤ t ≤ 0,

(51)

where γ̃1(t) = e−2x̃0 [dilog(e2x̃0e2t +1)+2 ln(e2x̃0e2t +1)], t0 ≤ t ≤ 0. Linking (43)
and (51), u(t), which is the solution obtained in Theorem 5.1, continuously depends
on the variations of ψ0. The proof is completed. �	

5.2 General Nonlinear Vorticity Case

Next, we will focus on studying the existence a continuous solution for the non-
linear second-order ordinary differential equation (11) with boundary conditions by
Schauder’s fixed-point theorem (see [21]). Using (14) and integrating (11) on [t, 0],
then we obtain

− u′(t) =
∫ 0

t
q(s)F(s, u(s))ds +

∫ 0

t
p(s)ds, t ≤ 0, (52)

where

q(t) := 4e4t

(ex̃0e2t + e−x̃0)2
, p(t) := 8ω

(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3
, t ≤ 0.

Integrating both sides of (52) on [t, 0] and using (12), we have

u(t) = u0 +
∫ 0

t
(s − t)q(s)F(s, u(s))ds +

∫ 0

t
(s − t)p(s)ds, t ≤ 0, (53)

Next, we show the existence a continuous solution for integral equation (53).

Theorem 5.3 Assume that q(·), p(·) : (−∞, 0] → R and F(·) : R → R are contin-
uous. Denoted by

C1 =
∫ 0

−T
q(s)ds, C2 =

∫ 0

−T
|p(s)|ds, for some T ≥ 0,
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we suppose that there exists a constant h > 0 such that for

Mh = max
u(t)∈[u0−h,u0+h] |F(u(t))|, t ∈ [−T , 0],

it holds Mh ≤ h
2TC1

, C2 ≤ h
2T . Then (53) has at least one continuous solution u on

[−T , 0].
Proof Consider the Banach space

U0 = {u | u ∈ C2([−T , 0],R)}

endowed with the maximum norm

‖u‖ = max
t∈[−T ,0] |u(t)|.

Set

K = {u | u ∈ U0 : u0 − h ≤ u(t) ≤ u0 + h, t ∈ [−T , 0]}

and the operator F : K → K is defined by

(Fu)(t) = u0 +
∫ 0

t
(s − t)q(s)F(u(s))ds +

∫ 0

t
(s − t)p(s)ds. (54)

Then we prove that F defined in (54) has a fixed-point on K by the following four
steps.

Step 1. Let un(t) ∈ K , n = 1, 2, ..., and un(t) → u∗(t) ∈ U0, n → ∞. We have

|u∗(t) − u0| ≤ |u∗(t) − un(t)| + |un(t) − u0| ≤ h, n → ∞,

which shows that K is closed. Let ui (t) ∈ K , i = 1, 2, ...,m, m ∈ N
∗ and

∑m
i=1 λi =

1, λi ≥ 0. Then we obtain

∣∣∣∣∣
m∑
i=1

λi ui (t) − u0

∣∣∣∣∣ =
∣∣∣∣∣
m∑
i=1

λi (ui (t) − u0)

∣∣∣∣∣ ≤
m∑
i=1

λi |ui (t) − u0| ≤
m∑
i=1

λi h = h,

so that

m∑
i=1

λi ui (t) ∈ K ,

which means that K is convex. Obviously, K is a closed and convex subset on U0.



Study on a Second-Order Ordinary Differential... Page 19 of 26 77

Step 2. We check that F is well-defined with K . For each t ∈ [−T , 0], we have

|(Fu)(t) − u0| ≤
∫ 0

t
(s − t)|q(s)F(u(s)) + p(s)|ds

≤
∫ 0

−T
(s − t)q(s)|F(u(s))|ds +

∫ 0

−T
(s − t)|p(s)|ds

≤
∫ 0

−T
(s + T )q(s)|F(u(s))|ds +

∫ 0

−T
(s + T )|p(s)|ds

≤ T Mh

∫ 0

−T
q(s)ds + T

∫ 0

−T
|p(s)|ds

≤ h,

which shows that F(K ) ⊂ K .
Step 3. Let us now prove that F(K ) is relatively compact in U0. Differentiating

both sides of (54) with respect to t , we have

(Fu)′(t) =
∫ 0

t
q(s)F(u(s))ds +

∫ 0

t
p(s)ds, t ∈ [−T , 0].

For all t ∈ [−T , 0], we obtain

|(Fu)′(t)| ≤
∣∣∣
∫ 0

t
q(s)F(u(s))ds

∣∣∣ +
∣∣∣
∫ 0

t
p(s)ds

∣∣∣
≤

∫ 0

t
|q(s)F(u(s))|ds +

∫ 0

t
|p(s)|ds

≤
∫ 0

−T
q(s)|F(u(s))|ds +

∫ 0

−T
|p(s)|ds

≤ Mh

∫ 0

−T
q(s)ds +

∫ 0

−T
|p(s)|ds

≤ h

T
.

Then let {un} be an arbitrary sequence in K , by the mean value theorem yields

|(Fun)(t1) − (Fun)(t2)| ≤ h

T
|t1 − t2|, ∀t1, t2 ∈ [−T , 0], n ∈ N

∗,

which implies that {Fun} is equicontinuous function in U0. Linking Step 2, {Fu} is
uniformly bounded inU0. Therefore the Arzelà-Ascoli theorem guarantees that {Fu}
is relatively compact in U0.

Step 4. We confirm that F : K → K is continuous. Given a fixed ε > 0, due to
F : [u0 − h, u0 + h] → R is uniformly continuous, therefore there exists a constant
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such that if u, ū ∈ [u0 − h, u0 + h] with |u − ū| < δ, then

|F(u) − F(ū)| ≤ 2ε

q∗T 2 ,

where q∗ = maxt∈[−T ,0] q(t). For arbitrary u1, u2 ∈ K with ‖u1−u2‖ < δ, we have

|(Fu1)(t1)−(Fu2)(t1)|=
∣∣∣∣
∫ 0

t
(s − t)q(s)F(u1(s))ds −

∫ 0

t
(s − t)q(s)F(u2(s))ds

∣∣∣∣
≤

∫ 0

t
(s − t)q(s)|F(u1(s)) − F(u2(s))|ds

≤ q∗
2ε

q∗T 2

∫ 0

−T
(s − t)ds

≤ 2ε

T 2

∫ 0

−T
(s + T )ds

= 2ε

T 2 · T
2

2
= ε.

Therefore, we have ‖Fu1 −Fu2‖ ≤ ε. Then the operator F : K → K is continuous.
We have verified that all assumptions of the Schauder’s fixed-point theorem are

satisfied. There exists at least one u ∈ K such that Fu = u, which corresponds to a
continuous solution of (53) on [−T , 0]. �	

Remark 5.4 Applying our results to deal with the arctic gyres, one can determine
uniform upper bounds for C1 and C2 as follow

∫ 0

−∞
q(s)ds =

∫ 0

−∞
4e4s

(ex̃0e2s + e−x̃0)2
ds

= 2e−2x̃0
[
ln(e2x̃0 + 1) − e2x̃0

e2x̃0 + 1

]
≈ 181.118,

∫ 0

−∞
|p(s)|ds =

∫ 0

−∞
8ω

∣∣∣ (ex̃0e2s − e−x̃0)e4s

(ex̃0e2s + e−x̃0)3

∣∣∣ds

= 8ωe−2x̃0
∣∣∣

3
2e

2x̃0 + 1

(e2x̃0 + 1)2
+ 1

2
ln(e2x̃0 + 1) − 1

∣∣∣ ≈ 0.021ω,

where x̃0 ≈ −2.253.

To end this section, we present a simple but rather general existence and uniqueness
result.
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Theorem 5.5 Set

ζ+(x̃0) = sup
t≤0

(
2e−2x̃0 − 2e−2x̃0

[ 1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

])
,

ζ−(x̃0) = inf
t≤0

(
2e−2x̃0 − 2e−2x̃0

[ 1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

])
,

ξ(x̃0) = sup
t≤0

e−2x̃0 [dilog(e2x̃0e2t + 1) + 2 ln(e2x̃0e2t + 1)].

If there are constants κ1 < κ2 such that

ψ0 + ωζ+(x̃0) + ξ(x̃0)max

{
0, max

u∈[κ1,κ2]
|F(u)|

}
≤ κ2,

ψ0 + ωζ−(x̃0) + ξ(x̃0)min

{
0, min

u∈[κ1,κ2]
|F(u)|

}
≥ κ1,

(55)

then (11) with (13) has a solution with κ1 ≤ u(t) ≤ κ2 for all t ≤ 0. In addition, if
F(·) is Lipschitz continuous on [κ1, κ2], i.e.

sup
u1,u2∈[κ1,κ2],u1 �=u2

|F(u1) − F(u2)|
|u1 − u2| < ∞,

then this solution is unique.

Proof We consider the above operator

(T u)(t) = ψ0 + 2ωe−2x̃0 − 2ωe−2x̃0

×
[ 1

e2x̃0e2t + 1
+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1)

]

+
∫ t

−∞
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds, t ≤ 0.

It is to check, that inequalities of (55) implies

T (Wκ1,κ2) ⊂ Wκ1,κ2 = {u|u ∈ κ1 ≤ u(t) ≤ κ2, ∀t ≤ 0}.
Clearly Wκ1,κ2 is a convex, bounded and closed subset of X . Since we already know
that T is a compact mapping, we can apply the Schauder’s fixed-point theorem for the
existence part of our theorem. The uniqueness follows from the proof Theorem 5.1.
This proof is finished. �	
Remark 5.6 (55) is equivalent to

max

{
0, max

u∈[κ1,κ2]
|F(u)|

}
≤ κ2 − ψ0 − ωζ+(x̃0)

ξ(x̃0)
,

min

{
0, min

u∈[κ1,κ2]
|F(u)|

}
≥ κ1 − ψ0 − ωζ−(x̃0)

ξ(x̃0)
.

(56)
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Since always it holds

min{0, min
u∈[κ1,κ2]

|F(u)|} ≤ max{0, max
u∈[κ1,κ2]

|F(u)|},

(56) implies that we need

ω(ζ+(x̃0) − ζ+(x̃0)) ≤ κ2 − κ1. (57)

On the other hand, if (57) is satisfied, then (55) is equivalent to

κ1 − ψ0 − ωζ−(x̃0)

ξ(x̃0)
≤ min

{
0, min

u∈[κ1,κ2]
|F(u)|

}

≤ max

{
0, max

u∈[κ1,κ2]
|F(u)|

}

≤ κ2 − ψ0 − ωζ+(x̃0)

ξ(x̃0)
.

(58)

Clearly (58) is more readable and applicable than (55).

6 Ulam–Hyers Type Stability

In this section, we consider the Ulam–Hyers type stability of the equation (11) with
asymptotic conditions (13).

Let ε, λμ be two positive real numbers and let μ : (−∞, t0] → [0,+∞), t0 ≤ 0
be a continuous and nondecreasing function satisfying

∫ t

−∞
(t − s)μ(s)ds ≤ λμμ(t), t ∈ (−∞, t0]. (59)

For example, we set μ(t) = ρeαt , −∞ < t ≤ 0, where ρ > 0 and α ≥ 1. Then (59)
holds. In fact, ∫ t

−∞
(t − s)μ(s)ds =

∫ t

−∞

∫ s

−∞
ρeατdτds

= ρ

α

∫ t

−∞
eατ |s−∞ ds

= ρ

α

∫ t

−∞
eαsds = ρ

α2 e
αt .

Consider
∣∣∣u′′(t) − 4e4t F(u(t))

(ex̃0e2t + e−x̃0)2
− 8ω

(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3

∣∣∣ ≤ εμ(t), t ∈ (−∞, t0], t0 ≤ 0,

(60)
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and

∣∣∣u′′(t) − 4e4t F(u(t))

(ex̃0e2t + e−x̃0)2
− 8ω

(ex̃0e2t − e−x̃0)e4t

(ex̃0e2t + e−x̃0)3

∣∣∣ ≤ ε, t ∈ [t0, 0]. (61)

Definition 6.1 (see [30]) For ∀ ε > 0, if there exists a real numberC1 > 0 such that for
any solution û ∈ C2([t0, 0],R) of (61) with asymptotic conditions (13), there exists
a solution u ∈ C2([t0, 0],R) of (11) with asymptotic conditions (13) and

| û(t) − u(t) |≤ C1ε, ∀ t ∈ [t0, 0],

then the equation (11) with asymptotic conditions (13) is Ulam–Hyers stable.

Definition 6.2 (see [30]) For ∀ ε > 0, if there exists a real number Cμ > 0 such that
for any solution û ∈ C2((−∞, t0],R) of (60) with asymptotic conditions (13), there
exists a solution u ∈ C2((−∞, t0],R) of (11) with asymptotic conditions (13) and

| û(t) − u(t) |≤ Cμεμ(t), ∀ t ∈ (−∞, t0],

then the equation (11) with asymptotic conditions (13) is Ulam–Hyers–Rassias stable.

Theorem 6.3 Assume that the conditions of Theorem 5.1 hold, then the equation (11)
with asymptotic conditions (13) is Ulam–Hyers–Rassias stable on (−∞, t0].
Proof Let û ∈ C2((−∞, t0],R) be a solution of (60) with asymptotic conditions (13).
From (59) and (60), we have

|û(t) − u(t)| =
∣∣∣∣û(t) − g(t) −

∫ t

−∞
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0 )2
ds

∣∣∣∣
≤

∣∣∣∣û(t) − g(t) −
∫ t

−∞
(t − s)

4e4s F(û(s))

(ex̃0e2s + e−x̃0 )2
ds

∣∣∣∣
+

∣∣∣∣
∫ t

−∞
(t − s)

4e4s F(û(s))

(ex̃0e2s + e−x̃0 )2
ds −

∫ t

−∞
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0 )2
ds

∣∣∣∣
≤

∣∣∣∣û(t) − g(t) −
∫ t

−∞
(t − s)

4e4s F(û(s))

(ex̃0e2s + e−x̃0 )2
ds

∣∣∣∣
+

∫ t

−∞
(t − s)

4e4s |F(û(s) − F(u(s))|
(ex̃0e2s + e−x̃0 )2

ds

≤λμεμ(t) +
∫ t

−∞
(t − s)

4e4s |F(û(s) − F(u(s))|
(ex̃0e2s + e−x̃0 )2

ds

≤λμεμ(t) +
∫ t

−∞
(t − s)

4e4sM |û(s) − u(s)|
(ex̃0e2s + e−x̃0 )2

ds, − ∞ < t ≤ t0.

where g(t) = ψ0 + 2ωe−2x̃0
[

1
e2x̃0 e2t+1

+ 2 ln(e2x̃0e2t + 1) + dilog(e2x̃0e2t + 1) −
1
]
, − ∞ < t ≤ t0.
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By the Gronwall’s inequality, we obtain that

|û(t) − u(t)| ≤ λμεμ(t) exp
( ∫ t

−∞
4M(t − s)e4s

(ex̃0e2s + e−x̃0)2
ds

)

≤ λμεμ(t) exp
(
sup
t≤t0

∫ t

−∞
4M(t − s)e4s

(ex̃0e2s + e−x̃0)2
ds

)

= λμ exp
(
Me−2x̃0 [dilog(e2x̃0e2t0 + 1) + 2 ln(e2x̃0e2t0 + 1)]

)
εμ(t) := Cμεμ(t), − ∞ < t ≤ t0,

i.e., the equation (11) with asymptotic conditions (13) is Ulam–Hyers–Rassias stable.
The proof is completed. �	
Theorem 6.4 Assume that the conditions of Theorem 5.1 hold, then the equation (11)
with asymptotic conditions (13) is Ulam–Hyers stable on [t0, 0].
Proof Linking (44) and (48), we obtain that

u(t) = u(t0) + u′(t0)(t − t0) +
∫ t

t0
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds

+
∫ t

t0
(t − s)8ω

(ex̃0e2s − e−x̃0)e4s

(ex̃0e2s + e−x̃0)3
ds, t0 ≤ t ≤ 0.

(62)

Let û ∈ C2((−∞, t0],R) be a solution of (61) with asymptotic conditions (13).
From (61) and (62) we have

|û(t) − u(t)| =
∣∣∣∣û(t) − h(t) −

∫ t

t0
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds

∣∣∣∣
≤

∣∣∣∣û(t) − h(t) −
∫ t

t0
(t − s)

4e4s F(û(s))

(ex̃0e2s + e−x̃0)2
ds

∣∣∣∣
+

∣∣∣∣
∫ t

t0
(t − s)

4e4s F(û(s))

(ex̃0e2s + e−x̃0)2
ds −

∫ t

t0
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds

∣∣∣∣
≤

∣∣∣∣û(t) − h(t) −
∫ t

t0
(t − s)

4e4s F(u(s))

(ex̃0e2s + e−x̃0)2
ds

∣∣∣∣
+

∫ t

t0
(t − s)

4e4s |F(û(s)) − F(u(s))|
(ex̃0e2s + e−x̃0)2

ds

≤ (t − t0)2

2
ε +

∫ t

t0
(t − s)

4e4s |F(û(s)) − F(u(s))|
(ex̃0e2s + e−x̃0)2

ds

≤ t20
2

ε +
∫ t

t0
(t − s)

4e4sM |û(s) − u(s)|
(ex̃0e2s + e−x̃0)2

ds, t0 ≤ t ≤ 0,

where h(t) = u(t0) + u′(t0)(t − t0) + ∫ t
t0
(t − s)8ω(ex̃0 e2 s−e−x̃0 )e4 s

(ex̃0 e2 s+e−x̃0 )3
ds, t0 ≤ t ≤ 0.
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By the Gronwall’s inequality, we have

|û(t) − u(t)| ≤ t20
2
exp

(∫ t

t0

4M(t − s)e4s

(ex̃0e2s + e−x̃0)2
ds

)
ε

≤ t20
2
exp

(
sup

t0≤t≤0

∫ 0

t0

4M(t − s)e4s

(ex̃0e2s + e−x̃0)2
ds

)
ε := C1ε, t0 ≤ t ≤ 0,

i.e., the equation (11) with asymptotic conditions (13) is Ulam–Hyers stable. This
proof is finished. �	

Conclusion

We study a new second-order ordinary differential equation model of arctic gyres,
which is derived by considering the radial solutions for the semi-linear elliptic equa-
tion model of gyres in [15] and introducing exponential transformation. With the
suitable asymptotic conditions and boundary conditions, we provide explicit solutions
of constant vorticity and linear vorticity. Then we study the existence and uniqueness
of continuous solutions for the nonlinear vorticity with the fixed-point techniques.
Finally, we show that Lipschitz-type nonlinear vorticity with asymptotic conditions
for arctic gyres isUlam–Hyers stable on finite interval andUlam–Hyers–Rassias stable
on infinite interval.

Acknowledgements The authors are grateful to the referees for their careful reading of the manuscript and
valuable comments. The authors thank the help from the editor too.

Data Availibility Statement No data.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

References

1. Apel, J.: Principles of Ocean Physics. Academic Press, London (1987)
2. Chu, J.: On a differential equation arising in geophysics. Monatsh. Math. 187, 499–508 (2018)
3. Chu, J.: On a nonlinear model for arctic gyres. Ann. Mat. Pura. Appl. 197, 651–659 (2018)
4. Chu, J.: On a nonlinear integral equation for the ocean flow in arctic gyres. Q. Appl. Math. 76, 489–498

(2018)
5. Chu, J.: Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear

Anal. 166, 144–153 (2018)
6. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Conmmun. Math. Phys. 370, 1–48

(2019)
7. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic

Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)
8. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation

in spherical coordinates. Proc. R. Soc. Lond. Ser. A. 473, 20170063 (2017)
9. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface.

J. Phys. Oceanogr. 46, 1935–1945 (2016)



77 Page 26 of 26 F. Chen et al.

10. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow-water flows on a rotating sphere: a
new perspective on a classical problem. Phys. Fluids 31, 021401 (2019)

11. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent.
Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

12. Coppel,W.A.: Stability andAsymptotic Behavior of Differential Equations. D. C. Heath and Company,
Boston, Mass (1965)

13. Daners, D.: The Mercator and stereographic projections, and many in between. Am. Math. Mon. 119,
199–210 (2012)

14. Haziot, S.V.: Study of an elliptic partial differential equation modeling the ocean flow in Arctic gyres.
J. Math. Fluid Mech. 23, 1–9 (2021)

15. Haziot, S.V.: Explicit two-dimensional solutions for the ocean flow in Arctic gyres. Monatsh. Math.
189, 429–440 (2019)

16. Henry, D., Martin, C.I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with
stratification. J. Differ. Equ. 266, 6788–6808 (2019)
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