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Abstract
Let f : M → M be a diffeomorphism of compact smooth Riemannian manifold
M, an let � ⊂ M be a closed f -invariant set. We obtain conditions for � to be
topologically stable which is called �-topologically stable. Moreover, we prove that
if f is C1 robustly �-topologically stable then � satisfies star condition for f . Then
in the above, if a closed f -invariant set � is chain transitive (or transitive) then it is
hyperbolic for f .

Keywords Locally topologically stable · Local star · Chain transitive set · Transitive
set · Hyperbolic
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1 Introduction

In this paper, we assume that M is a compact smooth Riemannian manifold with
dimM ≥ 2. Denote by Diff(M) the space of diffeomorphisms of M endowed with
the C1-topology. Let d be the distance on M induced from a Riemannian metric ‖ · ‖
on the tangent bundle T M . A closed f -invariant set � ⊂ M is hyperbolic for f if the
tangent bundle T�M has a Df -invariant splitting Es ⊕ Eu and there exist constants
C > 0 and 0 < λ < 1 such that

‖Df n|Esx ‖ ≤ Cλn and ‖Df −n
|Eux

‖ ≤ Cλn

for all x ∈ � and n ≥ 0. If � = M then we say that f is Anosov. For any homeomor-
phisms f , g : M → M , we defined by the C0 metric

d0( f , g) = sup{x ∈ M : d( f (x), g(x)), d( f −1(x), g−1(x))}.
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Walters [17, 18] studies topologically stable, that is, a diffeomorphism f is topo-
logically stable if for any ε > 0, there is δ > 0 such that for any homeomorphism
g : M → M with d0( f , g) < δ there is a continuous map h : M → M such that
h ◦ g = f ◦ h and d(h(x), x) < ε for any x ∈ M, where d0 is the C0 metric.

We say that a diffeomorphism f is expansive if there is δ > 0 such that for any
x, y ∈ M , if d( f i (x), f i (y)) ≤ δ for all i ∈ Z then x = y. Given d > 0, a sequence
{xi }i∈Z of points in M is called a d-pseudo orbit of f if the following is satisfied

d( f (xk), xk+1) < d,

for all k ∈ Z. We say that a diffeomorphism f has the shadowing property if for any
ε > 0 there is d > 0 such that any d-pseudo orbit {xi }i∈Z of points in M of f there
is a point y ∈ M such that

d( f i (y), xi ) < ε

for all i ∈ Z.

Walters [18] proved that if an expansive diffeomorphism f has the shadowing
property then f is topologically stable. Also, he [17] proved that if a diffeomorphism
f isAnosov then f is topologically stable.Denote by P( f ) the set of all periodic points
of f .We say that a diffeomorphism f satisfiesAxiom A if the non-wandering set�( f )
is hyperbolic and it is the closure of P( f ). For any diffeomorphisms f , g : M → M ,
we defined by the C1 metric

d1( f , g) = d0( f , g) + max
x∈M max(‖Df (x) − Dg(x)‖, ‖Df −1(x) − Dg−1(x)‖).

A diffeomorphism f is �-stable if there is a C1 neighborhood U of f such that for
any g ∈ U there is a homeomorphism h : �( f ) → �(g) such that f ◦ h = h ◦ g,
where �(g) is the non-wandering set of g. Smale [16] and Palis [13] proved that a
diffeomorphism f satisfies Axiom A and the no-cycle condition if and only if f is
�-stable. The following notion was introduced by Gan and Wen [5]. We say that a
diffeomorphism f is star if there is a C1 neighborhood U of f such that for any
g ∈ U , every p ∈ P(g) is hyperbolic, where P(g) is the set of all periodic point of g.
Denote by F(M) the set of all star diffeomorphisms. By Aoki [1] and Hayashi [6], if
a diffeomorphism f ∈ F(M) then f is �-stable.

We say that a diffeomorphism f is �-topologically stable if for any ε > 0 there is
δ > 0 such that for any homeomorphism g : M → M with d0( f , g) < δ there is a
continuous map h : �(g) → �( f ) such that

(a) f ◦ h = h ◦ g on �(g), and
(b) d(h(x), x) < ε for x ∈ �(g).

Moriyasu [10] proved that if a diffeomorphism f belongs to the C1 interior of the
set of all topologically stable then it is structurally stable. Moreover, he proved that if
a diffeomorphism f belongs to the C1 interior of the set of all �-topologically stable
then it satisfies Axiom A and the no-cycle condition.



Local Topological Stability… Page 3 of 8 51

In this paper we generalize Moriyasu result. We say that� ⊆ M is locally maximal
with respect to some f : M → M if there is a compact neighborhood U (called an
isolating block) such that

� = U f =
⋂

n∈Z
f n(U ).

Every locally maximal invariant set is clearly a compact invariant set of f .

Definition 1.1 Let f : M → M be a diffeomorphism and � be a locally maximal
invariant set of f . We say that f is �-topologically stable if for any ε > 0 there are
an isolating block U of � and a C0 neighborhood U of f such that for any g ∈ U
there is a continuous map h : Ug → � such that d(h(x), x) ≤ ε for every x ∈ Ug

and f ◦ h = h ◦ g on Ug , where Ug = ⋂
n∈Z gn(U ) is the continuation of �.

Note that we introduce another definition of the topological stability of a set �

which is corresponding to the notion of the C0 lower semistability of the germ of
�(see [11]).

Definition 1.2 Let f : M → M be a diffeomorphism and � be a locally maximal
invariant set of f . We say that f is C1 robustly �-topologically stable if there are an
isolated block U of � and a C1 neighborhood U of f such that g is Ug-topologically
stable, for every g ∈ U .

A closed f -invariant set � ⊂ M satisfies a local star condition for f (or f is local
star on �) if there are an isolated block U of � and a C1 neighborhood U of f such
that for any g ∈ U , every p ∈ Ug ∩ P(g) is hyperbolic, where P(g) is the set of all
periodic points of g. The notion is a generalization of star diffeomorpisms, because if
� = M then it satisfies star condition. For the notion, a remarkable result is Lee [8].
In [8], the author showed that if a transitive set � satisfies a local star condition for f
then � is hyperbolic for f . From the local star condition, we will show the following
Theorem.

Theorem A Let � ⊂ M be a closed f -invariant set for f . If a diffeomorphism f is
C1 robustly �-topologically stable, then � satisfies a local star condition for f .

A closed f -invariant set C is called chain transitive if for any δ > 0 and x, y ∈ C,
there is a δ-pseudo orbit {xi }ni=0(n ≥ 1) ⊂ C such that x0 = x and xn = y. For
any hyperbolic periodic point p, we denote index(p) = dimWs(p), where Ws(p) =
{x ∈ M : f i (x) → p for i → ∞} which is called the stable manifold of x . A closed
f -invariant set � with index(p) = i(p ∈ � ∩ P( f )) is robustly homogenous index
if there are an isolating block U of � and a C1 neighborhood U of f such that for
any g ∈ U every hyperbolic q ∈ Ug ∩ P(g) has index(q) = i . Lee [9] proved that if
every periodic points in C is robustly homogenous index then the set is hyperbolic. In
the paper, we consider the chain transitive set C under a type of a locally topological
stability. We prove the following.

Theorem B Let f : M → M be a diffeomorphism and C ⊂ M be a locally maximal
chain transitive set. If f is C1 robustly C-topologically stable, then C is a hyperbolic
set of f .
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2 Proof of Theorem A

Let f : M → M be a diffeomorphism. A closed f -invariant set � is called transitive
if there is a point x ∈ � such that ω(x) = �. It is known that according to C1 closing
lemma, if � is transitive and locally maximal, then for every isolating block U there
is g C1 close to f such that g has a periodic point in Ug = ⋂

n∈Z gn(U ). Then, we
have the following lemma.

Lemma 2.1 Let � be a locally maximal invariant set of f . If a diffeomorphism f is
�-topologically stable, then � ∩ P( f ) 
= ∅.

Proof Let ε > 0 be given. For this ε take the isolating block U of � and a C0

neighborhood U of f from the �-topological stability of f . Take any x ∈ �. We
have ω(x) ⊂ �. By C0 closing lemma, we can find g ∈ U and a periodic orbit
Orb(pg) such that the orbit of Orb(pg) close to ω(x) (Hausdorff arbitrarily close).
This implies pg ∈ Ug . Now let h : Ug → � be the continuous map given in the
definition of �-topological stability. It follows that h(pg) is well defined and belongs
to �. Since h ◦ g = f ◦ h on Ug ,

h(gn(pg)) = f n(h(pg))

for all n ∈ Z. So, if k is the period of pg with respect to g,

f k(h(pg)) = h(gk(pg)) = h(pg),

proving that h(pg) is the periodic point of f in �. ��
The following is called Franks’ lemma [4] which is a very useful lemma for the C1

perturbation property.

Lemma 2.2 Let U( f ) be any given C1 neighborhood of f . Then there exist ε > 0
and a C1 neighborhood U0( f ) ⊂ U( f ) of f such that for given g ∈ U0( f ), a
finite set {x1, x2, · · · , xN }, a neighborhood W of {x1, x2, · · · , xN } and linear maps
Li : Txi M → Tg(xi )M satisfying ‖Li − Dxi g‖ ≤ ε for all 1 ≤ i ≤ N, there exists
ĝ ∈ U( f ) such that ĝ(x) = g(x) if x ∈ {x1, x2, · · · , xN } ∪ (M \ W ) and Dxi ĝ = Li

for all 1 ≤ i ≤ N.

According to Lemma 2.1, if f is �-topologically stable then there is a periodic
point p which contained in �. From this we can see the following fact.

Proposition 2.3 Let f : M → M be a diffeomorphism and � be a locally maximal
invariant set of f . Suppose that f isC1 robustly�-topologically stable. Then, there are
an isolating blockU of� and aC1 neighborhoodU of f such that every p ∈ Ug∩P(g)
is hyperbolic, for any g ∈ U .
Proof Let U be the isolating block of � and U be the C1 neighborhood of f given
in the definition of C1 robustly �-topological stability. Put U( f ) = U in Lemma 2.2
to get ε and the neighborhood U0( f ) ⊂ U . Suppose that there are g ∈ U0( f ) and
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p ∈ P(g) ∩ Ug such that p is not hyperbolic for g. Since p ∈ P(g) ∩ Ug is not
hyperbolic, there is an eigenvalue λ of Dpgπ(p) such that |λ| = 1, where π(p) is the
period of p. For simplicity, we may assume that π(p) = 1. Since p is not hyperbolic
for g, we assume that TpM = Ec

p ⊕ Es
p ⊕ Eu

p is the Dpg-invariant splitting of TpM ,
where Eσ

p , σ = c, s, u, are subspaces TpM corresponding to eigenvalues λ of Dpg
for |λ| = 1, |λ| < 1 and |λ| > 1, respectively.

Ifλ ∈ R thenwe considerλ = 1. In Lemma 2.2we put N = 1, x1 = p,W = Bα(p)
in a way thatW ⊆ U and L = L1 : TpM → TpM such that L|E∗

p
= Dpg|E∗

p
+ε I |E∗

p

for ∗ = s, u and L|Ec
p

= I . Then, ‖L − Dpg‖ ≤ ε and so, by Lemma 2.2, we can
choose ϕ = ĝ ∈ U( f ) such that ϕ(p) = g(p), ϕ(x) = g(x) for x ∈ M \ W and
Dpϕ = L . We can assume that the exponential map expp : TpM → W is a well
defined diffeomorphisms.

Take a non-zero vector u ∈ Ec
p such that ‖u‖ ≤ α/2. Then we have

ϕ(expp(u)) = expp ◦ L ◦ exp−1
p (expp(u)) = expp(u).

Denoting by Ec
p(α/4) the ball of radius α/4, centered in

−→
O p and inside Ec

p, we have
an invariant small arc Ip ⊂ Bα(p) ∩ expp(E

c
p(α/4)) with center at p which satisfies

the following:

(1) Ip ⊂ Uϕ = ⋂
n∈Z ϕn(U );

(2) ϕ(Ip) = Ip;
(3) ϕ|Ip : Ip → Ip is the identity map;
(4) Ip is a normally hyperbolic set of ϕ (see proof of Proposition A p. 730 in [19]).

Since f is C1 robustly �-topologically stable, ϕ is Uϕ-topologically stable. How-
ever, we shall prove that ϕ is not Uϕ-topologically stable as follows.

Let diam(Jp) be the diameter of Jp. By Item (4) above we can choose 0 < ρ <

diam(Jp) so that

Jp =
⋂

n∈Z
ϕn(O) (1)

where O is the ρ-ball centered at Jp. Choose δ from theUϕ-topological stability of ϕ

for ρ/4. Now take φ C1 δ-close to ϕ so that φ(Jp) = Jp and the dynamics of φ|Jp is
Pole North-South one namely we identify Jp = [0, 1] with φ(0) = 0, φ(1) = 1 and
φn(y) → 0 or 1 as n → ∞ respectively for y ∈]0, 1[.

It follows that there is a continuous map h : Uφ → Uϕ so that d(h(y), y) < ρ/4
and ϕ ◦ h = h ◦ φ. Since φ(Jp) = Jp, we have Jp ⊆ Uφ . Therefore h is defined on
Jp.

Note if y ∈ Jp then ϕ(h(y)) = h(φ(y)) ∈ h(Jp) proving that h(Jp) is ϕ-invariant.
By (1) we get h(Jp) ⊆ Jp.

If y ∈]0, 1[ thenφn(y) → 1 as n → ∞ thus h(y) = ϕn(h(y)) = h(φn(y)) → h(1)
proving h(y) = 1 for every y ∈]0, 1[. Then, h(y) = h(1) for every y by continuity. It
follows that
d(y, w) ≤ d(h(y), y) + d(h(y), h(w)) + d(h(w),w) < ρ/2 < diam(Jp), ∀y, w ∈ Jp.

This is a contradiction proving the result.
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If the eigenvalue λ ∈ C, then to avoid notational complexity, we consider only the
case g(p) = p. As in the above case, there are α > 0 and g1 C1 close to g (h ∈ U)

such that g1(p) = g(p) = p and

g1(x) = expp ◦ Dpg ◦ exp−1
p (x) if x ∈ Bα(p).

Then there is k > 0 such that Dpgk1(v) = v for any non-zero vector v ∈ Ec
p. As in

the above argument, we can get a contradiction. ��
Denote by F(�) the set of all diffeomorphisms satisfying the local star condition

on �. To prove Theorem A, it is enough to show that a diffeomorphism f ∈ F(�).

Proof of TheoremA Since a diffeomorphism f is �-topologically stable, according
to Lemma 2.1, P( f ) ∩ � 
= ∅. Since f is C1 robustly �-topologically stable, by
Proposition 2.3, f ∈ F(�). This ends proof of Theorem A. �� .

3 Proof of Theorem B

Let M be as before and let f ∈ Diff(M).

Lemma 3.1 Let f : M → M be a diffeomorphism and let � ⊂ M be a closed f -
invariant set. Let k > 0 be an integer and ε > 0, η > 0 be given. Then for any
sequence {x0, x1, . . . , xk} ⊂ � with d( f (xi ), xi+1) < ε for i ∈ {0, 1, . . . , k − 1},
there exists a sequence {y0, y1, . . . , yk} ⊂ � such that

(i) d(xi , yi ) < η, for i ∈ {0, 1, . . . , k},
(ii) d( f (yi ), yi+1) < 2ε, for i ∈ {0, 1, . . . , k − 1}, and
(iii) yi 
= y j (i 
= j), for 0 ≤ i, j ≤ k.

Proof The proof is similar to [2, Lemma 2.4.10]. ��
For any δ > 0, a sequence {xi }i∈Z is said to be δ pseudo orbit of f if

d( f (xi ), xi+1) < δ for all i ∈ Z. We say that a diffeomorphism f has the shad-
owing property on � if for any ε > 0 there is δ > 0 such that for any δ pseudo orbit
{xi }i∈Z ⊂ � we can take a point z ∈ M satisfying d( f i (z), xi ) < ε for all i ∈ Z.

Theorem 3.2 Let � ⊂ M be a closed f -invariant set. If a diffeomorphism f is �-
topological stable then f has the shadowing property on �.

Proof For any ε > 0, let U be a locally maximal neighborhood of � and let
δ > 0 be as corresponding to the definition of �-topologically stable. We assume
that {x0, x1, . . . , xk} ⊂ � be choosen such that d( f (xi ), xi+1) < δ/4π for i =
{0, 1, . . . , k − 1}. According to Lemma 3.1, there is {y0, y1, . . . , yk} ⊂ � such that

(i) d(xi , yi ) < ε, for i ∈ {0, 1, . . . , k},
(ii) d( f (yi ), yi+1) < δ/2π for i ∈ {0, 1, . . . , k − 1},
(iii) yi 
= y j (i 
= j) for 0 ≤ i, j ≤ k, and
(iv) f (yi ) 
= f (y j )(i 
= j) for 0 ≤ i, j ≤ k.
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According to [12, Lemma 13], there is a homeomorphism ζ : M → M such that
d(ζ(x), x) < δ for x ∈ M and ζ ◦ f (yi ) = yi+1 for i ∈ {0, 1, . . . , k − 1}. Let
g = ζ ◦ f . Then we have d(g(x), f (x)) < δ for x ∈ M and g(yi ) = yi+1 for
i ∈ {0, 1, . . . , k − 1}. Since f is �-topologically stable, there are a closed invariant
set Ug = ⋂

n∈Z gn(U ) and a continuous map h : Ug → � such that d(h(x), x) < ε

for x ∈ Ug and h ◦ g = f ◦ h on Ug. Then we have

d( f i ◦ h(y0), xi ) = d(h ◦ gi (y0), xi )

= d(h(yi ), xi ) ≤ d(h(yi ), yi ) + d(yi , xi )

< ε + ε = 2ε,

for i ∈ {0, 1, . . . , k}. Thus for each {xi }ki=0 ⊂ � with d( f (xi ), xi+k) < δ/4π for i ∈
{0, 1, . . . , k−1}, there is y ∈ � such that d( f i (y), xi ) < 2ε, for i ∈ {0, 1, . . . , k−1}.
Since � ⊂ M is a closed and invariant set for f , by [14, Lemma 1.1.1] f has the
shadowing property on �. ��

We say that a diffeomorpism f has the C1 robustly shadowing property on � if
there are a C1 neighborhood U( f ) of f and an isolating block U of � such that for
any g ∈ U( f ), g has the shadowing property on Ug.

Proof of Theorem B Since f isC1 robustly C-topologically stable, there are aC1 neigh-
borhood U( f ) of f and an isolated block U of C such that for any g ∈ U , g is
Ug-topologically stable, where Ug = ⋂

n∈Z gn(U ) is the continuation of �. Since
f is C-topologically stable, f has the shadowing property on C. Thus if f has the
C1 robustly C-topologically stable then it exactly is the notion of the C1 robustly
shadowing property on C. Thus as in the result of Sakai [15], C is hyperbolic. ��

We know that Diff(M) is a Baire space in the C1 topology. A residual subset of
Diff(M) is a countable intersection of open dense subsets. According to the Baire
category theorem, a residual set is dense. We say that a property holds for the C1

generic diffeomorphism f if it holds on a residual subset of Diff(M).

Theorem 3.3 There is a residual set G ⊂ Diff(M) such that for any f ∈ G and a
chain transitive set C for f , if f is C-topologically stable then C is hyperbolic for f .

Proof By Lemma 3.2, the diffeomorphism f is a C1 generic f having the shadowing
property on a locally maximal chain transitive set C. From the result of Lee and Wen
[7], we have C is hyperbolic for f . ��

For a chain transitive set C, it is easily show that if a diffeomorphism f has the
shadowing property on C then C is transitive. According to the above theorems, we
have the following results.

Corollary 3.4 Let � be a locally maximal transitive set of f . If a diffeomorphism f is
C1 robustly �-topologically stable then � is hyperbolic.

Proof By Theorem A, the transitive set� satisfies a local star condition for f . By Lee
[8], � is hyperbolic for f . ��
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According to Crovisier [3], a chain transitive set C is a transitive set. Thus by
Theorem 3.3, we have the following.

Corollary 3.5 There is a residual set G ⊂ Diff(M) such that for any f ∈ G and � is
transitive set for f , if f is �-topologically stable then � is hyperbolic for f .
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