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Abstract
This article investigates the forced pendulum equations of variable length

x ′′ + kx ′ + a(t) sin x = e(t),

where a(t), e(t) are continuous T -periodic functions, k ∈ R is a constant. Under
suitable assumptions on the a(t), e(t) and T , we prove the existence of T -periodic
solutions to the forced pendulum equations using Mawhin’s continuation theorem.
Finally, some specific examples and numerical simulations are given to illustrate the
applicability of the conclusions of this paper.

Keywords Forced pendulum of variable length · Periodic solution · Second order
differential equation · Mawhin’s continuation theorem.

Mathematics Subject Classification 34L30 · 34C25

1 Introduction

In 1922 Hamel [9] used the variational method to obtain the existence of 2π -periodic
solutions of forced pendulum equations

y′′ + a sin y = b sin t, (1.1)
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where a, b are constants. It is worth noting that this is the first result of the existence
of periodic solutions for the forced pendulum equation. Similar research methods can
be extended to study the existence of T -periodic solutions of general forced pendulum
equations y′′ +a sin y = f (t),where f : R → R is a continuous T -periodic function
with

∫ T
0 f (t)dt = 0, see [17, 18].

If there is friction, then the forced pendulum Eq. (1.1) becomes the equations

x ′′ + kx ′ + A sin x = e(t), (1.2)

where k, A are constants, external force e(t) is a continuous T -periodic function with∫ T
0 e(t)dt = 0. When k �= 0, then variational methods are not applicable to estab-
lish the existence of periodic solutions of Eq. (1.2). Therefore, many scholars used
some classical tools such as fixed point theorems in cones, topological degree the-
ory and the upper and lower solutions methods to study the existence, multiplicity
and stability of the periodic solution for the forced pendulum equations. For instance,
Amster and Mariani in [1, 2] investigated the existence of periodic solutions for the
forced pendulum equations in the presence of friction by shooting type argument and
Lyapunov-Schmidt reduction; Cid in [4] studied the existence of periodic solutions
for the φ-laplacian pendulum equation by using continuation theorem; Mawhin and
Fournier in [6] considered the existence and multiplicity of periodic solutions for the
forced pendulum equation by using topological degree theory and the upper and lower
solutions methods; Lomtatidze and S̆remr in [15] studied the existence and unique-
ness of positive periodic solution to the forced pendulum equation by using method of
lower-upper functions; Torres in [24] proved the existence of periodic solution for the
forced pendulum equation with friction and a singular φ-Laplacian operator of rela-
tivistic type by using Schauder’s fixed point theorem; Yu in [27] studied the existence
or nonexistence of periodic solutions with prescribed minimal periods to the classical
forced pendulum equation by using critical point theory. Some scholars have also stud-
ied the conclusion that the nonexistence of periodic solution to the forced pendulum
Eq. (1.2), see [3, 21]. To know more about the forced pendulum equations, we recom-
mend to readers Mawhin’s survey papers [19, 20]. At the same time, many scholars
also pay attention to the periodic solutions of second order differential equations, see
[8, 12, 16, 25].

Most of the early studies on the forced pendulum equation considered the case
where the pendulum length is constant. In recent years, some scholars began to pay
attention to the forced pendulum equation with periodic change of pendulum length,
see [5, 22, 23, 26, 28], because this kind of equations can describe many physical
phenomena, for instance, the pendulum equation of the pendulum length variation can
describe particle motion on a pulsating circle under the action of gravity and motion
of satellites in orbit around the earth, see [11, 13, 29]. In particular, it can describe a
swing model we played as children, the authors in [21, 28] discussed the adequacy of
the pendulum with periodically varying length as a swing model. Therefore, the issue
concerning existence of periodic solutions for the forced pendulum equations with
periodically varying of pendulum length should be interesting and be of considerable
significance.
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The motivation of the current article is to investigate the existence of periodic solu-
tions of forced pendulum equations with friction and periodically varying of pendulum
length

x ′′ + kx ′ + a(t) sin x = e(t), (1.3)

where k ∈ R is a constant, a(t), e(t) are continuous T -periodic functions. It is worth
noting that in Eq. (1.3), when periodic function a(t) is constant, then Eq. (1.3) reduces
to Eq. (1.2), and in the study of periodic solutions of forced pendulum equations, most
literatures consider the case of

∫ T
0 e(t)dt = 0, in this paper, we only need e(t) �≡ 0

(see assumption (H1) in Sect. 2). Obviously, the situation we consider is more general.
At the end of this paper, we give some specific examples and numerical simulations
to illustrate the applicability of the conclusions obtained in this paper.

The remainder part of this paper is organized as follows. In Sect. 2, for the con-
venience of the readers we collect some general results, given some notations and
assumptions. In Sect. 3, under suitable hypotheses, we apply the Mawhin’s continua-
tion theorem to obtain the existence of periodic solutions for the Eq. (1.3). In Sect. 4,
we apply the previous results to some examples to demonstrate the applicability of
our main results.

2 Preliminaries

In this section, we first introduce some mathematical settings where we settle the
problem. Then, we given some assumptions and recall some known results.

Throughout this paper, let Banach spaces CT = {x ∈ C(R,R) : x(t + T ) =
x(t) f or all t ∈ R} with the norm ‖x‖ = maxt∈[0,T ]|x(t)|. For a given continuous
function g : [0, T ] → R, when g(t) does not change the sign on [0, T ], we denote

g+ = max
t∈[0,T ] |g(t)|, g− = min

t∈[0,T ] |g(t)|,

we clearly have g− > 0 and g+ > 0. When g(t) changes sign on [0, T ], we represent

g∗ = max{g(t) : t ∈ [0, T ]}, g∗ = min{g(t) : t ∈ [0, T ]},

then we have g∗ ≤ 0, g∗ ≥ 0 and g∗, g∗ are not zero at the same time.
Now we give expressions of constants C1 and C2. Let

C1 :=
(

R1

a+ sin R1 + e+

) 1
2

,
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where R1 = 2 arcsin( e
+

a− + ε) is a constant, here ε > 0 is small enough such that
e+
a− + ε ≤

√
2
2 . Let

C2 := min

{(
R2

a+ sin R2 + e∗

) 1
2

,

(
R2

a+ sin R2 − e∗

) 1
2
}

,

where R2 = max
{
2 arcsin( e∗

a− + ε), 2 arcsin(−e∗
a− + ε)

}
is a constant and ε > 0 is

small enough such that max{ e∗
a− + ε, −e∗

a− + ε} ≤
√
2
2 .

In order to study the existence of T -periodic solutions of Eq. (1.3), we list the
following assumptions.

(H1) Suppose a(t) is a continuous T -periodic function and does not change the sign on
[0, T ], e(t) is a continuous T -periodic function with e(t) �≡ 0.

(H2) When both functions a(t) and e(t) does not change the sign on [0, T ],assume that
functions a(t), e(t) satisfy e+

a− <
√
2
2 ;when functions a(t) does not change the sign

on [0, T ] and e(t) changes sign on [0, T ], assume that functions a(t), e(t)satisfy

max{ e∗
a− , −e∗

a− } <
√
2
2 .

(H3) Suppose period T satisfy 0 < T < C , where C = min{C1,C2}.
For convenience, we introduce some notations and an abstract existence theorem

about coincidence degree theory. For more details see [7].
Let X ,Y be two Banach spaces, L : Dom L ⊂ X → Y be a linear mapping and

N : X → Y be a continuous mapping. The mapping L is said to be a Fredholm
mapping of index zero if Im L is closed in Y and dimKerL = codim Im L < +∞.
If L is a Fredholm mapping of index zero, then there exist continuous projectors
P : X → X and Q : Y → Y such that Im P = KerL andKerQ = Im L = Im(I−Q).
It follows that the restriction LP of L to Dom L ∩ KerP : (I − P)X → Im L is
invertible, then we denote the inverse of LP by KP . If � is a bounded open subset of
X , N is called L-compact on � if QN (�) is bounded and KP (I − Q)N : � → X is
compact.

Lemma 2.1 (Mawhin’s Continuation Theorem) Let X and Y be two Banach spaces,
L be a Fredholm mapping of index zero, � ⊂ X is an open bounded set and N is
L-compact on �. If all the following conditions hold:

(1) Lx �= λNx for all x ∈ ∂� ∩ Dom L, and all λ ∈ (0, 1);
(2) QNx �= 0, for all x ∈ ∂� ∩ Ker L;
(3) deg{J QN ,� ∩ Ker L, 0} �= 0, where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has at least one solution in Dom L ∩ �.

Lemma 2.2 ([10, Lemma 5.2]) Let x : [0, T ] → R be an arbitrary absolutely
continuous function with x(0) = x(T ). Then the inequality

(

max
t∈[0,T ] x(t) − min

t∈[0,T ] x(t)
)2

≤ T

4

∫ T

0
|x ′(t)|2dt

holds.
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3 Main Results

In this section, we can state and prove the main results of this article.

Theorem 3.1 Suppose that assumptions (H1)–(H3) hold. Then Eq. (1.3) has at least
one T -periodic solution.

Remark 3.1 Conditions (H2) and (H3) are all related to the signs of e(t) and a(t),

for instance, if a(t) > 0, e(t) > 0, we suppose functions a(t), e(t) satisfy e+
a− <

√
2
2

and take C = C1; if a(t) > 0, e(t) changes sign, we suppose functions a(t), e(t)

satisfy max{ e∗
a− , −e∗

a− } <
√
2
2 and take C = C2, we will give the reasons in the proof

of Theorem 3.1.

Proof Let X = Y = CT . Define linear operator L : Dom L ⊂ X → Y by setting

Lx = x ′′ + kx ′, x ∈ Dom L,

where Dom L = {x |x ∈ X , x ′′ ∈ C(R,R)}. It is immediate to prove that Ker L = R

and Im L = {y | y ∈ Y ,
∫ T
0 y(s)ds = 0}, hencewe have dim Ker L = codim Im L =

1. It is not difficult to see that Im L is a closed set inY . Thus the operator L is a Fredholm
operator with index zero.

Define nonlinear operator N : X → Y

Nx = e(t) − a(t) sin x .

Further, we define the projectors P : X → Ker L and Q : Y → Y

Px(t) = 1

T

∫ T

0
x(s)ds,

Qx(t) = 1

T

∫ T

0
x(s)ds.

Clearly, Im P = Ker L , Ker Q = Im L . Then KP : Im L → Dom L ∩ Ker P can be
given by

KP y(t) =
∫ T

0
G(s, t)y(s)ds,

where G(t, s) is the Green’s function of

{
x ′′(t) + kx ′(t) = 0, t ∈ [0, T ],
∫ T
0 x(t)dt = 0, x (i)(0) = x (i)(T ), i = 0, 1.

It is immediate to prove that KP : Im L → Dom L ∩ Ker P is a linear completely
continuous operator and N : X → Y is continuous bounded operator, therefore N is
L-compact on � with any open bounded subset � ⊂ X .
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From the assumption (H1), we know that function a(t) has two cases: a(t) > 0 or
a(t) < 0, and function e(t) has three cases: e(t) > 0, e(t) < 0 or e(t) changes sign.
Without loss of generality, for the function a(t), we only discuss the case of a(t) > 0,
a(t) < 0 is similar. Next, we classify and discuss the three cases of function e(t).

Case 1: If e(t) > 0, in this case, Eq. (1.3) is equivalent to equation

x ′′ + kx ′ + a(t) sin x − e(t) = 0, (3.1)

where 0 < a− ≤ a(t) ≤ a+, 0 < e− ≤ e(t) ≤ e+.
Let

�1 := {x ∈ X | ‖x‖ < R1}, (3.2)

where R1 = 2 arcsin
( e+
a− + ε

)
is a constant, here ε > 0 is small enough such that

e+
a− + ε ≤

√
2
2 .

Now we prove that condition (1) of Lemma 2.1 hold. Suppose the converse: there
exist 0 < λ < 1 and ∀x ∈ ∂�1 ∩ Dom L such that condition (1) of Lemma 2.1 hold,
that is

x ′′ + kx ′ + λa(t) sin x − λe(t) = 0. (3.3)

Multiplying (3.3) by x and integrating from 0 to T

∫ T

0
[(x ′)2 − λxa(t) sin x + λe(t)x]dt = 0. (3.4)

From (3.2) we know that for ∀x ∈ ∂�1, there is ‖x‖ = R1. For ‖x‖ = R1, we
have |xmax − xmin| ≥ R1

2 or |xmax − xmin| < R1
2 . Further, when ‖x‖ = R1 and

|xmax − xmin| < R1
2 , by ‖x‖ = max

t∈[0,T ]|x(t)|, we also have R1
2 < x ≤ R1 or −R1 ≤

x < − R1
2 . Next, we will discuss these situations in categories.

When R1
2 < x ≤ R1, according to e+

a− + ε ≤
√
2
2 we know that sin R1 ≥ sin x >

sin R1
2 > 0, then integrating (3.3) from 0 to T

0 =
∫ T

0
[λa(t) sin x − λe(t)]dt

>

∫ T

0

(

a− sin
R1

2
− e+

)

dt

> 0.
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When −R1 ≤ x < − R1
2 , by e+

a− + ε ≤
√
2
2 we know that sin(−R1) ≤ sin x <

sin(− R1
2 ) < 0, integrating (3.3) from 0 to T

0 =
∫ T

0
[λa(t) sin x − λe(t)]dt < 0.

If |xmax − xmin| ≥ R1
2 , from (3.4), sin R1 ≥ sin x and Lemma 2.2, we obtain

0 =
∫ T

0
[(x ′)2 − λxa(t) sin x + λe(t)x]dt

≥ 4

T
|xmax − xmin|2 −

∫ T

0
[xa(t) sin x − e(t)x]dt

≥ R2
1

T
− T (a+R1 sin R1 + e+R1)

= R1T

(
R1

T 2 − (a+ sin R1 + e+)

)

> 0.

All of the above situations are contradictory to the facts, so the condition (1) of Lemma
2.1 hold.

Next we prove that condition (2) of Lemma 2.1 hold. By simple calculation, we
have

e(t) − a(t) sin(−R1) = e(t) + a(t) sin R1 > 0,

e(t) − a(t) sin R1 ≤ e+ − a− sin R1 < 0.

That is, for ∀t ∈ [0, T ], we get

e(t) − a(t) sin(−R1) > 0, (3.5)

e(t) − a(t) sin R1 < 0. (3.6)

Take x ∈ ∂�1 ∩ Ker L , we have x = −R1 or x = R1. From (3.5) and (3.6), for
∀x ∈ ∂�1 ∩ Ker L , we obtain

QNx = 1

T

∫ T

0
(e(t) − a(t) sin x)dt �= 0.

Hence condition (2) of Lemma 2.1 hold.
Now, we prove that condition (3) of Lemma 2.1 hold. We define a continuous

function

H(x, μ) = −(1 − μ)x + μ
1

T

∫ T

0
(e(t) − a(t) sin x)dt, μ ∈ [0, 1].
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Obviously, we have

H(x, μ) �= 0, ∀x ∈ ∂�1 ∩ Ker L.

By using the homotopy invariance theorem

deg(QN ,�1 ∩ Ker L, 0) = deg (H(x, 1),�1 ∩ Ker L, 0)

= deg (H(x, 0),�1 ∩ Ker L, 0)

= − 1 �= 0.

Therefore condition (3) of Lemma 2.1 hold.
So we conclude from Lemma 2.1 that Eq. (3.1) has at least one T -periodic solution

in �1.

Case 2: If e(t) changes sign, in this case, Eq. (1.3) is equivalent to equation

x ′′ + kx ′ + a(t) sin x − e(t) = 0, (3.7)

where 0 < a− ≤ a(t) ≤ a+, e∗ ≤ e(t) ≤ e∗. Obviously, e∗ ≤ 0, e∗ ≥ 0 and e∗, e∗
are not zero at the same time.

Let

�2 := {x ∈ X | ‖X‖ < R2}, (3.8)

where R2 = max
{
2 arcsin( e∗

a− + ε), 2 arcsin(−e∗
a− + ε)

}
is a constant and ε > 0 is

small enough such that max{ e∗
a− + ε, −e∗

a− + ε} ≤
√
2
2 .

Nowwe prove that condition (1) of Lemma 2.1 hold. Suppose there exist 0 < λ < 1
and ∀x ∈ ∂�2 ∩ Dom L such that condition (1) of Lemma 2.1 hold, that is

x ′′ + kx ′ + λa(t) sin x − λe(t) = 0. (3.9)

Multiplying (3.9) by x and integrating from 0 to T

∫ T

0
[(x ′)2 − λxa(t) sin x + λe(t)x]dt = 0. (3.10)

By (3.8) we know that for ∀x ∈ ∂�2, we have ‖x‖ = R2, at this time we have
|xmax − xmin| ≥ R2

2 or |xmax − xmin| < R2
2 . If ‖x‖ = R2 and |xmax − xmin| < R2

2 , by

‖x‖ = max
t∈[0,T ]|x(t)|, we also have R2

2 < x ≤ R2 or −R2 ≤ x < − R2
2 . Next, we will

discuss these situations in categories.

When R2
2 < x ≤ R2, by 0 < max{ e∗

a− + ε, −e∗
a− + ε} ≤

√
2
2 we know that sin R2 ≥

sin x > sin R2
2 > 0, then integrating (3.9) from 0 to T

0 =
∫ T

0
[λa(t) sin x − λe(t)] dt
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>

∫ T

0

(

a− sin
R2

2
− e∗

)

dt

> 0.

When −R2 ≤ x < − R2
2 , by 0 < max{ e∗

a− + ε, −e∗
a− + ε} ≤

√
2
2 we know that

sin(−R2) ≤ sin x < sin(− R2
2 ) < 0, then integrating (3.9) from 0 to T

0 =
∫ T

0
[λa(t) sin x − λe(t)]dt

≤
∫ T

0

[

a− sin

(

− R2

2

)

− e∗
]

dt < 0.

If |xmax − xmin| ≥ R2
2 and e∗ ≥ |e∗|, from (3.10), sin R2 ≥ sin x and Lemma 2.2, we

obtain

0 =
∫ T

0
[(x ′)2 − λxa(t) sin x + λe(t)x]dt

≥ 4

T
|xmax − xmin|2 −

∫ T

0
[xa(t) sin x − e(t)x]dt

≥ R2
2

T
− T (a+R2 sin R2 + e∗R2)

= R2T

(
R2

T 2 − (a+ sin R2 + e∗)
)

> 0.

If |xmax − xmin| ≥ R2
2 and e∗ < |e∗|, from (3.10), sin R2 ≥ sin x and Lemma 2.2, we

have

0 =
∫ T

0
[(x ′)2 − λxa(t) sin x + λe(t)x]dt

≥ 4

T
|xmax − xmin|2 −

∫ T

0
[xa(t) sin x − e(t)x]dt

≥ R2
2

T
− T (a+R2 sin R2 − e∗R2)

= R2T

(
R2

T 2 − (a+ sin R2 − e∗)
)

> 0.

Through some simple calculations, for ∀t ∈ [0, T ], we get

e(t) − a(t) sin(−R2) > 0,

e(t) − a(t) sin R2 < 0.

The following proof is similar to the proof of case 1, and so we omit it.
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So we conclude from Lemma 2.1 that Eq. (3.7) has at least one T -periodic solution
in �2.

Case 3: If e(t) < 0, in this case, let ẽ(t) = −e(t), then Eq. (1.3) is equivalent to
equation

x ′′ + kx ′ + a(t) sin x + ẽ(t) = 0, (3.11)

where 0 < a− ≤ a(t) ≤ a+, e− ≤ ẽ(t) ≤ e+.
Let

�3 := {x ∈ X | ‖x‖ < R3},

where R3 = R1 = 2 arcsin( e
+

a− + ε) are constants, here ε > 0 is small enough such

that e+
a− + ε ≤

√
2
2 .

The following proof is similar to the proof of case 1, and so we omit it.
Sowe conclude fromLemma 2.1 that Eq. (3.11) has at least one T -periodic solution

in �3.
When a(t) < 0 and e(t) > 0 the proof is the same as when a(t) > 0 and e(t) < 0;

when a(t) < 0 and e(t) < 0 the proof is the same as when a(t) > 0, e(t) > 0; when
e(t) changes sign and a(t) < 0 the proof is the same as case 2.

In viewof all the abovediscussion,weknow thatEq. (1.3) has at least one T -periodic
solution. This completes the proof. ��

Similar to the proof of Theorem3.1,we can prove the existence of periodic solutions
to equation

x ′′ + kx ′ + a(t) tan x = e(t), (3.12)

where k ∈ R is a constant, a(t), e(t) are continuous T -periodic functions. Next, we
give expressions of constants K1 and K2.

Let

K1 :=
(

F1
a+ tan F1 + e+

) 1
2

,

where F1 > 2 arctan e+
a− is a constant. Let

K2 := min

{(
F2

a+ tan F2 + e∗

) 1
2

,

(
F2

a+ tan F2 − e∗

) 1
2
}

,

where F2 > max
{
2 arctan e∗

a− , 2 arctan −e∗
a−

}
is a constant.

Similarly, we list the following assumption.

(H4) Suppose period T satisfy 0 < T ≤ K , where K = min{K1, K2}.
Corollary 3.1 Suppose that assumptions (H1) and (H4) hold. Then Eq. (3.12) has at
least one T -periodic solution.
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Remark 3.2 In Corollary 3.1, the interpretation of the constant K is similar to the
interpretation of the constant C in Theorem 3.1.

4 Examples

In this section, we apply the main results of this paper to several specific examples to
obtain existence of periodic solutions of the equations, and verify the correctness of
the conclusions of this article through numerical simulations.

Example 4.1 Consider the following forced pendulum equation

x ′′ + 6x ′ + (
cos(20π t) + 6

)
sin x = cos(20π t) + 2. (4.1)

It is clear that Eq. (4.1) is the case of Eq. (1.3) when k = 6, a(t) = cos(20π t) +
6, e(t) = cos(20π t) + 2. It is easily seen that functions a(t) > 0, e(t) > 0 and
a− = 5, a+ = 7, e− = 1, e+ = 3, then functions a(t), e(t) satisfy assumption (H1)
and by simple calculation we know that functions a(t), e(t) satisfy assumption (H2).

Let ε = 1
100 , then we have e+

a− + ε = 0.601 ≤
√
2
2 . By some simple calculations, we

get R′
1 = 1.2976. It is easy to verify that T = 0.1 satisfy assumption (H3).

Then Theorem 3.1 guarantees that Eq. (4.1) has at least one periodic solutions in
�′

1, where�′
1 := {x ∈ X | ‖x‖ < R′

1}. At the same time, we use numerical simulation
to show the existence of periodic solution of Eq. (4.1), which further illustrates the cor-
rectness of the conclusions obtained in this paper. For the convenience of observation,
we draw the image of three periods (Fig. 1).

Example 4.2 Consider Eq. (1.3) with k = 2, a(t) = cos 5π t + 3, e(t) = sin 5π t ,
that is

x ′′ + 2x ′ + (cos 5π t + 3) sin x = sin 5π t . (4.2)

Fig. 1 Periodic solution of
Eq. (4.1)
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Fig. 2 Periodic solution of
Eq. (4.2)

Obviously, function e(t) changes sign and function a(t) > 0, and they are all con-
tinuous T -periodic functions, we have a− = 2, a+ = 4, e∗ = −1, e∗ = 1. It is
not difficult to see that functions a(t), e(t) satisfy assumptions (H1) and (H2). Let
ε = 1

100 , by simple calculation, we get R′
2 = 1.0704. Further, we can take the period

T = 0.4, which is easy to verify that the period T satisfy assumption (H3).
From Theorem 3.1 we conclude that Eq. (4.2) has at least one periodic solutions

in �′
2, where �′

2 := {x ∈ X | ‖x‖ < R′
2}. Next, we obtain the existence of periodic

solutions of Eq. (4.2) by numerical simulation. For the convenience of observation,
we draw the image of two periods (Fig. 2).
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