
Qualitative Theory of Dynamical Systems (2023) 22:10
https://doi.org/10.1007/s12346-022-00717-4

The Controllability for Second-Order Semilinear Impulsive
Systems
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Abstract
This paper studies the controllability of the initial value problems of linear and
semilinear second-order impulsive systems. Necessary and sufficient conditions of
controllability for linear problems are obtained, and a new rank criterion is presented.
We also show semilinear problems are controllable via Krasnoselskii’s fixed point
theorem. Finally, two examples are provided to verify the theoretically results.

Keywords Controllability · Second-order · Impulsive differential equations · Rank
criterion · Semilinear

1 Introduction

Many evolution processes in science and technology, such as mechanics, population
dynamics, pharmacokinetics, industrial robotics, biotechnology, economics and so

This work is partially supported by the National Natural Science Foundation of China (12161015),
Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Guizhou Data
Driven Modeling Learning and Optimization Innovation Team ([2020]5016), the Slovak Research and
Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No.
1/0358/20 and No. 2/0127/20.

B JinRong Wang
jrwang@gzu.edu.cn

Qian Wen
wq69375@163.com

Michal Fečkan
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on, may change their state rapidly, or the duration of the change is negligible. We
describe these processes with impulsive effects by impulsive differential equations
and the theory of impulsive differential equations is an important branch of differential
equation theory; see [1] and the references therein.

Control theory is an important branch in applied mathematics and engineering and
modern control theorywas developed byKalman.Roughly speaking, the object of con-
trol theory is to find a control function that can steer the state function to the desired
result at the end (terminal). Numerous papers are devoted to the controllability of dif-
ferential equations in Banach space [2–22], such as exact controllability, approximate
controllability and null controllability, and the main techniques are based on fixed
point theorems [3, 4, 14, 18, 23], variational methods [5, 24], semigroup theory [2, 8],
and so on.

Second-order systems capture the dynamic behavior of many natural phenomena
and have applications in many fields such as mathematical physics, electrical power
systems, quantum mechanics, biology, long transmission lines and finance [25, 26].
Numerous papers focus on the controllability of second-order impulsive systems (see
[2, 3, 6, 7, 11, 27] for cosine family theory and [2, 8, 10, 28] where the corresponding
operators of the cosine family are compact). However, as noted by Travis and Webb
[29], some of these results work only to finite-dimensional spaces. We refer the reader
also to [3, 30] for other results on the controllability of second-order impulsive systems.

For the controllability of initial value problems for second-order differential equa-
tions {

x ′′(t) = Ax(t) + Bu(t), t ∈ [0, b],
x(0) = x0, x ′(0) = y0,

(1.1)

many authors consider the controllability of the solution x(t) i.e., one finds a control
u which makes the state function x(t) arrive at the value that we wish at the terminal.
As mentioned in [7], it is unreasonable to regard the damped term x ′(t) in the con-
trollability. Recently, the authors in [7, 10, 11, 27] consider the controllability of x(t)
and x ′(t).

In [7], Li et al. consider the approximate controllability of system (1.1). Let J =
[0, b], the state x(·) takes values in a Banach space X , u(·) ∈ L2(J ,U ) is the control
functionwhereU is a Banach space, the definition of controllability defined as follows:
Systems (1.1) are said to be approximately controllable on J if D = X ×
X , where D = {(x(b, x0, y0, u), y(b, x0, y0, u)) : u ∈ L2(J ,U )}, y(·, x0, y0, u) =
x ′(·, x0, y0, u) and x(·, x0, y0, u) is a mild solution of (1.1).

Their aim is to pick a control function u which controls both x(t) and x ′(t). In [10,
11, 27], the following two assumptions are used,

(A1) The linear operator G1 : L2(J ,U ) → X , defined by

G1u :=
∫ b

0
S(b − s)Bu(s)ds,
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has an invertible operator G−1
1 which takes the values in L2(J ,U )/ ker G1 and there

exists positive constant M1 such that ‖G−1
1 ‖ ≤ M1.

(A2) The linear operator G2 : L2(J ,U ) → X , defined by

G2u :=
∫ b

0
C(b − s)Bu(s)ds,

has an invertible operator G−1
2 which takes the values in L2(J ,U )/ ker G2 and there

exists positive constant M2 such that ‖G−1
2 ‖ ≤ M2.

As pointed by Balachandran and Kim [31] the control function defined in [11, 27]
can not steer the value of the state function to what we want at the terminal unless the
condition

(H) G1G
−1
2 = G2G

−1
1 = 0 is satisfied.

For the second-order systems in finite dimensional space, (A1) or (A2) will lead
to a contradiction with the definition of controllability. Since if we assume system
(1.1) is controllable. Then for any (x1, y1) ∈ X × X , there exists a control u1 such
that x(b) = x1, and x ′(b) = y1 under the control u1. For another point (x1, y2), since
y1 �= y2, there exists a control u2 such that x(b) = x1, and x ′(b) = y2 under the
control u2 as well. Then if u1 = u2, we have y1 = y2, a contradiction; if u1 �= u2,
since A is the infinitesimal generator of a strongly continuous cosine family C(t) on
X , hence, the Cauchy problem (1.1) is well posed. Then from the expression of the
solution for (1.1),

x(t) = C(t)x0 + S(t)y0 +
∫ t

0
S(t − s)Bu(s)ds,

and we get

x1 = C(b)x0 + S(b)y0 +
∫ b

0
S(b − s)Bu1(s)ds,

and

x1 = C(b)x0 + S(b)y0 +
∫ b

0
S(b − s)Bu2(s)ds.

Combining these two equalities with conditions (A1), we find

u1 = G−1
1 (x1 − C(b)x0 − S(b)y0) = u2,

a contradiction to the assumption u1 �= u2. Hence, if assumptions (A1) or (A2)
hold, we cannot obtain the controllability result of system (1.1) under the definition
of controllability defined in [7]. In view of this, we introduce a weaker definition of
controllability in Sect. 2.

To the best of our knowledge, there are only a few articles on the controllability of
second-order linear systems, and we note that, for finite-dimensional linear systems,
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all the concepts of controllability are equivalent (exact controllability, approximate
controllability and null controllability). In this paper, we consider the controllability of
the following initial value problems for second-order impulsive differential equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ′′(t) = Ax(t) + Bu(t), t ∈ J = [0, b], t �= ti ,

�x(ti ) = B1x(t
−
i ), i = 1, 2, . . . ,m,

�x ′(ti ) = B2x
′(t−i ), i = 1, 2, . . . ,m,

x(0) = x0, x ′(0) = y0,

(1.2)

and semilinear second-order impulsive differential equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ′′(t) = Ax(t) + Bu(t) + f (t, x(t)), t ∈ J ′ = J\{ti }, i = 1, 2, . . . ,m,

x(t+i ) = x(t−i ) + B1x(t
−
i ), i = 1, 2, . . . ,m,

x ′(t+i ) = x ′(t−i ) + B2x
′(t−i ), i = 1, 2, . . . ,m,

x(0) = x0, x ′(0) = y0,

(1.3)

where A, B1 and B2 are constant n×n matrices satisfying AB1 = B1A, AB2 = B2A,
B1B2 = B2B1, 0 = t0 < t1 < · · · < tk < tk+1 = b are impulsive points, u ∈
L2(J ,Rn) is a control function, and f ∈ C(J × R

n;Rn).
The contributions of this paper are as follows:

(1) We introduce a weaker definition of controllability with respect to the state func-
tion x(t) and the damped term x ′(t).

(2) We present a new algebraic method to obtain a rank criterion, and a rank criterion
of controllability for second-order impulsive linear systems is given.

(3) Based on the controllability of the linear systems, we give a sufficient condition
to guarantee the controllability of the semilinear second-order impulsive systems.

The paper is structured in the following way. In Sect. 2, we give a weaker definition
of controllability and some associated notations and essential lemmas. In Sect. 3,
instead of converting a second-order system into a first order system, we obtain a
new rank criterion of controllability of system (1.2) by direct analysis of the second-
order system itself. In Sect. 4, we give a sufficient condition of the controllability
of the system (1.3). Finally, in Sect. 5, some examples are provided to illustrate the
suitability of our results.

2 Preliminaries

In this section, we modify the definition of controllability and list some notations and
properties needed to establish our main results.

LetPC(J ,Rn) denote the Banach space of piecewise continuous functions on
the interval J , that is PC(J ,Rn) = {v : J → R

n|u ∈ C((tk−1, tk],Rn) for
k ∈ {1, . . . ,m + 1} and there exists v(t−k ) and v(t+k ), k ∈ {1, . . . ,m} with v(tk) =
v(t−k )} equipped with the Chebyshev PC-norm ||v||PC := sup{||v(t)|| : t ∈ J }.
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Let PC1(J ,Rn) := {x ∈ PC(J ,Rn) : x ′ ∈ PC(J ,R)} equipped with the norm
‖x‖PC1 = max{‖x‖PC , ‖x ′‖PC }. Obviously, PC(I ,Rn) endowed with the norm
‖ · ‖PC1 is also a Banach space. We use the notation

A1 = I + B1 + B2

2
, A2 = B1 − B2

2
.

Let m = i(t, 0) denote the number of impulsive points on (0, t), and assume AB =
BA.

Definition 2.1 The system (1.2) is said to be exact controllability in R
n , if for each

pair (x0, y0) ∈ R
n × R

n , there exists a pair of control functions (u1(·), u2(·)) ∈
L2([0, b],Rn) × L2([0, b],Rn) such that for any (x1, y1) ∈ R

n × R
n ,

x(b) = x1, y′(b) = y1,

here x(·) is the solution of (1.2) under the control u1, y(·) is the solution of (1.2) under
the control u2, and y′(t) = dy(t)/dt .

Remark 2.2 In [4, 5, 9, 14, 18], the definition of controllability imply that one find a
control function which steer the state function x(·) to the target value, and in [7, 10, 11,
27], which imply that one find a control function which steer both the state function
x(·) and damped term x ′(·) to the value we wanted. However, Definition 2.1 indicates
that one pick a pair of control functions (u0, u1) such that u0 control the state function
x(t) and u1 control the damped term y′(t). Notice that at this moment except for a
constant difference, the antiderivative of damped term y′(t) may be different with the
state function x(t).

The following Lemmas is crucial to our proof of main results.

Lemma 2.3 (see [32]) Let | · | be a norm on R
n and B be an n × n matrix. Then for

any ε > 0 there exist TB,ε ≥ 1 such that ||Bk || ≤ TB,ε(ρ(B) + ε)k , where ρ(B) is
the spectral radius of B.

Lemma 2.4 (Krasnoselskii’s fixed point theorem) Let B be a bounded closed and
convex subset of a Banach space X and let F1, F2 be maps of B into X such that
F1x + F2y ∈ B for every x, y ∈ B. If F1 is a contraction and F2 is compact and
continuous, then the equation F1x + F2x = x has a solution on B.

Lemma 2.5 (PC-type Ascoli–Arzela theorem, see [33]) Let Q ⊂ PC(�, X) where
X is a Banach space. Then Q is a relatively compact subset of PC(�, X) if, (a)

Q is uniformly bounded subset of PC(�, X); (b) Q is equicontinuous in (ti , ti+1),
i = 0, 1, . . . , k; and (c) Q(t) = {v(t)|v ∈ Q, t ∈ �\{ti }, i = 0, 1, . . . , k}, Q(t+i ) =
{v(t+i )|v ∈ Q} and Q(t−i ) = {v(t−i )|v ∈ Q} are relatively compact subsets of X.
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Lemma 2.6 (see [34]) For t ∈ (tm, tm+1], m = 0, 1, . . . , k, the solution of (1.2) is
given by

x(t) =W (A, t, x0, y0) +
m−1∑
i=0

∫ ti+1

ti
Wi (A, t, s)Bu(s)ds

+ A− 1
2

∫ t

tm
sinh A

1
2 (t − s)Bu(s)ds,

where W (A, t, x0, y0) is the solution of the homogeneous initial value problem of
(1.2), and

Wi (A, t, s)

= Am−i
1 A− 1

2 sinh A
1
2 (t − s) − Am−i−1

1 A2A
− 1

2
∑

i+1≤i11≤m

sinh A
1
2 (t − 2ti11 + s)

+ Am−i−2
1 A2

2A
− 1

2
∑

i+1≤i21<i22≤m

sinh A
1
2 (t − 2ti22 + 2ti21 − s)

+ · · · + (−1)m−i−1A1A
m−i−1
2 A− 1

2 ·∑
i+1≤im−i−1,1<im−i−1,2<···<im−i−1,m−i−1≤m

sinh A
1
2 (t − 2tim−i−1,m−i−1

2tim−i−1,m−i−2 − · · · ± 2tim−i−1,1 ∓ s) + (−1)m−i Am−i
2 A− 1

2 sinh A
1
2

(t − 2tm + 2tm−1 − · · · ± 2ti+1 ∓ s), i = 0, 1, . . . ,m − 1.

Consider the notation

Qm(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

W0(A, t, s), t0 ≤ s ≤ t1,

W1(A, t, s), t1 < s ≤ t2,

· · ·
Wm−1(A, t, s), tm−1 < s ≤ tm,

A− 1
2 sinh A

1
2 (t − s), tm < s ≤ t,

then the solution of (1.2) can be expressed by

x(t) = W (A, t, x0, y0) +
∫ t

0
Qm(t, s)Bu(s)ds. (2.1)

Lemma 2.7 For any tm < τ1 ≤ τ2 ≤ b, and tm < t ≤ tm+1 ≤ b, we have

∥∥∥ ∫ t

0

(
Qm(τ2, s) − Qm(τ1, s)

)
ds

∥∥∥ ≤ θ1|τ2 − τ1|,
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and

∥∥∥ ∫ t

0

(
Q′

m(τ2, s) − Q′
m(τ1, s)

)
ds

∥∥∥ ≤ θ2|τ2 − τ1|,

where θ1 and θ2 are positive constants, and Q′
m(t, s) denotes the function that takes

derivative with respect to t .

Proof Since

A
1
2 sinh A

1
2 t = A

∞∑
n=0

Ant2n+1

(2n + 1)! ,

cosh A
1
2 t =

∞∑
n=0

Ant2n

(2n)! ,

combining this with the Lemma 2.3, we have

‖A 1
2 sinh A

1
2 t‖ ≤ TA,ε

√
ρ(A) + εe

√
ρ(A)+εt , (2.2)

and

‖ cosh A
1
2 t‖ ≤ TA,εe

√
ρ(A)+εt . (2.3)

According to the definition of Qm , inequality (2.3), and the mean value theorem, we
find

∥∥∥ ∫ t

0

(
Qm(τ2, s) − Qm(τ1, s)

)
ds

∥∥∥
≤

m∑
i=0

∫ ti+1

ti
‖Wi (A, τ2, s) − Wi (A, τ1, s)‖ds

≤
m∑
i=0

∫ ti+1

ti
‖Am−i

1 cosh A
1
2 ς0‖ + ‖Am−i−1

1 A2

C1
m−i∑
j=1

cosh A
1
2 ς1, j‖

+ · · · + ‖A1A
m−i−1
2

Cm−i−1
m−i∑
j=1

cosh A
1
2 ςm−i−1, j‖

+ ‖Am−i
2 cosh A

1
2 ςm−i‖ds · |τ2 − τ1|

≤ TA,εe
√

ρ(A)+εb
m∑
i=0

∫ ti+1

ti
T 2

ε (ρ(A1) + ρ(A2) + 2ε)m−i ds

· |τ2 − τ1|
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≤
m∑
i=0

(
ρ(A1) + ρ(A2) + 2ε

)m−i
bT 3

ε e
√

ρ(A)+εb|τ2 − τ1|

=: θ1|τ2 − τ1|,

where ς0, ς1, j , . . . , ςm−i−1, j , ςm−i are selected by the mean value theorem located
in [−b, b], Tε = max{TA,ε, TA1,ε, TA2,ε}. Similarly, by virtue of the definition of Qm ,
inequality (2.2), and the mean value theorem, we have

∥∥∥ ∫ t

0

(
Q′

m(τ2, s) − Q′
m(τ1, s)

)
ds

∥∥∥
≤

m∑
i=0

∫ ti+1

ti
‖W ′

i (A, τ2, s) − W ′
i (A, τ1, s)‖ds

≤
m∑
i=0

∫ ti+1

ti
‖Am−i

1 A
1
2 sinh A

1
2 ξ0‖ + ‖Am−i−1

1 A2A
1
2

C1
m−i∑
j=1

sinh A
1
2 ξ1, j‖

+ · · · + ‖A1A
m−i−1
2 A

1
2

Cm−i−1
m−i∑
j=1

sinh A
1
2 ξm−i−1, j‖

+ ‖Am−i
2 A

1
2 sinh A

1
2 ξm−i‖ds · |τ2 − τ1|

≤ TA,ε

√
ρ(A) + εe

√
ρ(A)+εb

m∑
i=0

∫ ti+1

ti
T 2

ε (ρ(A1) + ρ(A2) + 2ε)m−i ds

· |τ2 − τ1|

≤
m∑
i=0

(
ρ(A1) + ρ(A2) + 2ε

)m−i
bT 3

ε

√
ρ(A) + εe

√
ρ(A)+εb|τ2 − τ1|

=: θ2|τ2 − τ1|,

where ξ0, ξ1, j , . . . , ξm−i−1, j , ξm−i are selected by the mean value theorem located in
[−b, b]. 
�

3 The controllability of linear systems

In this section, we present some controllability criteria for systems (1.2) by using an
algebraic method.

Theorem 3.1 The following statements are equivalent: 1◦The system (1.2) is exact
controllability; 2◦ The matrix 
b

0 = ∫ b
0 Qk(b, s)BB∗Q∗

k(b, s)ds and �b
0 =∫ b

0 Q′
k(b, s)BB

∗Q′∗
k (b, s)ds are nonsingular; 3◦ There at least exists a pair of inte-

gers 0 ≤ i ≤ k, 0 ≤ j ≤ k such that both
∫ ti+1
ti

Wi (b, s)BB∗W ∗
i (b, s)ds and∫ t j+1

t j
W ′

j (b, s)BB
∗W ′∗

j (b, s)ds are nonsingular.
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Proof First, we show the equivalence of 1◦ and 2◦. Assume the systems are exact
controllability. We show that the matrix 
b

0 and �b
0 both are nonsingular. If the result

is not true, then at least one of matrices 
b
0 and �b

0 is singular. Suppose 
b
0 is singular.

Then there exists a nonzero vector x0 ∈ R
n such that

∫ b

0
xT0 Qk(b, s)BB

∗Q∗
k(b, s)x0ds = 0.

Hence we have

∫ b

0
‖B∗Q∗

k(b, s)x0‖2ds = 0,

that is

B∗Q∗
k(b, s)x0 = 0, ∀s ∈ (0, b]. (3.1)

On the other hand, since the systems are exact controllability, then because of the
definition of exactly controllability, there exists a pair of control functions (u1, u2)
such that for x0 + W (A, b, x0, y0) ∈ R

n , the solution x(·) of systems (1.2) under the
control u1(·) arrives at x0 + W (A, b, x0, y0) ∈ R

n at the terminal b, i.e.

x0 + W (A, b, x0, y0) = W (A, b, x0, y0) +
∫ b

0
Qk(b, s)Bu1ds. (3.2)

Now (3.1) with (3.2) allows us to affirm that

‖x0‖2 = xT0 x0 =
∫ b

0
uT1 B

∗Q∗
k(b, s)x0ds = 0,

which implies x0 = 0 and this contradicts the hypothesis. Hence 
b
0 is nonsingular.

In a similar way, we obtain that �b
0 is nonsingular,

If both the matrices 
b
0 and �b

0 are nonsingular, we prove that systems (1.2) are
exactly controllability, that is for any fixed (x1, y1) ∈ R

n × R
n , we show that there

exists a pair of control functions (u1(·), u2(·)) ∈ L2([0, b],Rn)× L2([0, b],Rn) such
that the solution x(t) of systems (1.2) satisfies x(b) = x1 under the control u1(·) and
y′(b) = y1 under the control u2(·). We choose the control functions by

u1(t) = B∗Q∗
k(b, t)(


b
0)

−1(x1 − W (A, b, x0, y0)), (3.3)

and

u2(t) = B∗Q′∗
k (b, t)(�b

0)
−1(y1 − W ′(A, b, x0, y0)). (3.4)
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Then we have

x(t) = W (A, t, x0, y0) +
∫ t

0
Qk(t, s)BB

∗Q∗
k (b, s)(


b
0)−1(x1 − W (A, b, x0, y0))ds.

Obviously, x(b) = x1. Similarly, under the control function u2(t), y′(t) satisfies

y′(t) = W ′(A, t, x0, y0) +
∫ t

0
Q′
k(t, s)BB

∗Q′∗
k (b, s)(�b

0)
−1(y1 − W ′(A, b, x0, y0))ds,

and we have y′(b) = y1. Hence the systems (1.2) are exact controllability.
Next, we show the equivalence of 2◦ and 3◦. Assume the matrix 
b

0 is singular.
Then there exists a nonzero vector x0 ∈ R

n such that

∫ b

0
xT0 Qk(b, s)BB

∗Q∗
k(b, s)x0ds = 0,

that is

∫ t1

0
xT0 W0(b, s)BB

∗W ∗
0 (b, s)x0ds +

∫ t2

t1
xT0 W1(b, s)BB

∗W ∗
1 (b, s)x0ds

+ · · · +
∫ tk

tk−1

xT0 Wk−1(b, s)BB
∗W ∗

k−1(b, s)x0ds

+
∫ b

tk
xT0 A

− 1
2 sinh A

1
2 (b − s)BB∗(sinh A

1
2 (b − s))∗(A− 1

2 )∗x0ds = 0,

which is equivalent to

∫ ti+1

ti
xT0 Wi (b, s)BB

∗W ∗
i (b, s)x0ds = 0, ∀0 ≤ i ≤ k,

that is
∫ ti+1
ti

Wi (b, s)BB∗W ∗
i (b, s)ds is singular for all 0 ≤ i ≤ k. Hence


b
0 is nonsingular iff there at least exists a constant 0 ≤ i ≤ k such that∫ ti+1
ti

Wi (b, s)BB∗W ∗
i (b, s)ds is nonsingular.

By the same argument, we also can show that �b
0 is nonsingular iff there at least

exists a constant 0 ≤ j ≤ k such that the matrix
∫ t j+1
t j

W ′
j (b, s)BB

∗W ′∗
j (b, s)ds is

nonsingular. 
�
Remark 3.2 Theorem 3.1 shows that initial value problems of second-order linear
impulsive systems (1.2) are controllable iff there exist constants λ > 0 and γ > 0
such that for all x ∈ R

n ,

(
b
0x, x) ≥ γ ‖x‖2,
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and

(�b
0x, x) ≥ λ‖x‖2.

Then

‖(
b
0)

−1‖ ≤ 1

γ
, ‖(�b

0)
−1‖ ≤ 1

λ
. (3.5)

Since the conditions which guarantee the controllability in Theorem 3.1 are formal
and are hard to verify. In what follows, we give a new rank criterion of controllability
of systems (1.2). For convenience in writing, in what follows, we use the notation

�(t) = A− 1
2 sinh A

1
2 t .

Theorem 3.3 Systems (1.2) are exact controllability iff there exists a pair of integers
l1, l2 ∈ {0, 1, 2, . . . , k} such that

Rank
(
Al1
1 B · · · Al1−i

1 Ai
2B · · · Al1

2 B
)

= n,

and

Rank
(
Al2
1 B · · · Al2−i

1 Ai
2B · · · Al2

2 B
)

= n.

Proof Theorem 3.1 shows that systems (1.2) are exact controllability iff there is a pair
of integers 0 ≤ i ≤ k, 0 ≤ j ≤ k such that both

∫ ti+1
ti

Wi (b, s)BB∗W ∗
i (b, s)ds and∫ t j+1

t j
W ′

j (b, s)BB
∗W ′∗

j (b, s)ds are nonsingular. We subdivide the proof into several
cases.

Case 1 If i = j = k, that is both
∫ b
tk
Wk(b, s)BB∗W ∗

k (b, s)ds and
∫ b
tk
W ′

k(b, s)BB
∗

W ′∗
k (b, s)ds are nonsingular. Now

∫ b
tk
Wk(b, s)BB∗W ∗

k (b, s)ds is singular iff there

exists a nonzero vector x0 ∈ R
n such that xT0 Wk(b, s)B = 0 for all tk ≤ s < b. Since

A is a nonsingular matrix, we have RankWk(b, s) = n, hence Rank B < n. Likewise,
we can show that

∫ b
tk
W ′

k(b, s)BB
∗W ′∗

k (b, s)ds is singular iff Rank B < n. Hence

both
∫ b
tk
Wk(b, s)BB∗W ∗

k (b, s)ds and
∫ b
tk
W ′

k(b, s)BB
∗W ′∗

k (b, s)ds are nonsingular
iff Rank B = n.

Case 2 If i = j = k−1, we show that both
∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)ds and∫ tk

tk−1
W ′

k−1(b, s)BB
∗W ′∗

k−1(b, s)ds are nonsingular iff

Rank
(
A1B A2B

) = n.

Assume
∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)ds is nonsingular. Then we show that

Rank
(
A1B A2B

) = n.
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If this is not true, that is Rank
(
A1B A2B

)
< n, then there exists a nonzero vector

x0 ∈ R
n such that

xT0
(
A1B A2B

) = 01×2n,

i.e.,

xT0 A1B = 0, xT0 A2B = 0.

Hence, for all tk−1 < s ≤ tk ,

xT0 Wk−1(b, s)B = xT0 [A1A
− 1

2 sinh A
1
2 (b − s)B − A2A

− 1
2 sinh A

1
2 (b − 2tk + s)B]

= xT0 [A1BA− 1
2 sinh A

1
2 (b − s) − A2BA− 1

2 sinh A
1
2 (b − 2tk + s)]

= 0,

which implies
∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)ds is singular. This contradicts the

hypothesis. Therefore, Rank
(
A1B A2B

) = n.
AssumeRank

(
A1B A2B

) = n.Wewill show that
∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)

ds is nonsingular. Assume
∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)ds is singular. First, we

prove that there exists a number sequence (λ1, λ2) ∈ (tk−1, tk]2, where λ1 �= λ2, such
that the matrix

(
�(b − λ1) �(b − λ2)

�(b − 2tk + λ1) �(b − 2tk + λ2)

)
(3.6)

is nonsingular. Suppose for every (λ1, λ2) ∈ (tk−1, tk]2, we have
∣∣∣∣ �(b − λ1) �(b − λ2)

�(b − 2tk + λ1) �(b − 2tk + λ2)

∣∣∣∣ = 0. (3.7)

Take λ2 = tk in (3.7), since |�(b − λ2)| �= 0, we find

|�(b − 2tk + λ1) − �(b − λ1)| = 0, (3.8)

however, by the Jordan decomposition, we find zero is not an eigenvalue of �(b −
2tk +λ1)−�(b−λ1), hence, (3.8) is not valid, that is there exists a number sequence
(λ1, λ2) ∈ (tk−1, tk]2 such that (3.6) is nonsingular.

Suppose
∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)ds is singular. Then there exists a nonzero

vector x0 ∈ R
n such that

∫ tk

tk−1

xT0 Wk−1(b, s)BB
∗W ∗

k−1(b, s)x0ds = 0,
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that is

∫ tk

tk−1

‖xT0 Wk−1(b, s)B‖2ds = 0,

which implies

xT0

[
A1A

− 1
2 sinh A

1
2 (b − s)B − A2A

− 1
2 sinh A

1
2 (b − 2tk + s)B

]
= 0, ∀tk−1 < s ≤ tk . (3.9)

Take (λ1, λ2) ∈ (tk−1, tk]2 such that (3.6) is nonsingular, and then by (3.9), we find

xT0
(
A1B −A2B

) (
�(b − λ1) �(b − λ2)

�(b − 2tk + λ1) �(b − 2tk + λ2)

)
= 01×2n,

therefore,

xT0
(
A1B −A2B

) = 01×2n,

that is

Rank
(
A1B −A2B

)
< n,

which contradict the hypothesis.
Thus

∫ tk
tk−1

Wk−1(b, s)BB∗W ∗
k−1(b, s)ds is nonsingular iff

Rank
(
A1B A2B

) = n.

Using the same argument we can establish that
∫ tk
tk−1

W ′
k−1(b, s)BB

∗W ′∗
k−1(b, s)ds is

nonsingular iff

Rank
(
A1B A2B

) = n.

Case 3 If i = j = k − 2, we show that both
∫ tk−1
tk−2

Wk−2(b, s)BB∗W ∗
k−2(b, s)ds

and
∫ tk−1
tk−2

W ′
k−2(b, s)BB

∗W ′∗
k−2(b, s)ds are nonsingular iff

Rank
(
A2
1B A1A2B A2

2B
) = n.

To do this, we first show an auxiliary result. For s1, s2, s3 ∈ (tk−2, tk−1], let

�3 =
⎛
⎜⎝

�(b − s1) �(b − s2) �(b − s3)∑
k−1≤i11≤k

�(b − 2ti11 + s1)
∑

k−1≤i11≤k
�(b − 2ti11 + s2)

∑
k−1≤i11≤k

�(b − 2ti11 + s3)

�(b − 2tk + 2tk−1 − s1) �(b − 2tk + 2tk−1 − s2) �(b − 2tk + 2tk−1 − s3)

⎞
⎟⎠ ,
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and

�′
3 =

⎛
⎜⎝

� ′(b − s1) � ′(b − s2) � ′(b − s3)∑
k−1≤i11≤k

� ′(b − 2ti11 + s1)
∑

k−1≤i11≤k
� ′(b − 2ti11 + s2)

∑
k−1≤i11≤k

� ′(b − 2ti11 + s3)

� ′(b − 2tk + 2tk−1 − s1) � ′(b − 2tk + 2tk−1 − s2) � ′(b − 2tk + 2tk−1 − s3)

⎞
⎟⎠ .

We claim that

�3x0 = 03n×n, ∀(s1, s2, s3) ∈ (tk−2, tk−1)
3, (3.10)

or

�′
3x0 = 03n×n, ∀(s1, s2, s3) ∈ (tk−2, tk−1)

3, (3.11)

where x0 = (λ1 I , λ2 I , λ3 I )T ∈ R
3n×n , implies x0 = 03n×n . We only show that

(3.10) implies that x0 = 03n×n , and the other case can be treated similarly. For any
s ∈ (tk−2, tk−1) and ε1, ε2 > 0 small enough, let

s1 = s, s2 = (1 + ε1)s, s3 = (1 + ε2)s.

By the first row of equality (3.10), we have

λ1�(b − s) + λ2�(b − (1 + ε1)s) + λ3�(b − (1 + ε2)s) = 0n×n, (3.12)

take the second and fourth derivatives with respect to s in (3.12) respectively and we
have

λ1A�(b − s) + λ2A(1 + ε1)
2�(b − (1 + ε1)s) + λ3A(1 + ε2)

2�(b − (1 + ε2)s)

= 0n×n, (3.13)
λ1A

2�(b − s) + λ2A
2(1 + ε1)

4�(b − (1 + ε1)s) + λ3A
2(1 + ε2)

4�(b − (1 + ε2)s)

= 0n×n .

(3.14)

Combine (3.12), (3.13) and (3.14) to obtain

⎛
⎝ λ1 λ2 λ3

λ1A λ2A(1 + ε1)
2 λ3A(1 + ε2)

2

λ1A2 λ2A2(1 + ε1)
4 λ3A2(1 + ε2)

4

⎞
⎠

⎛
⎝ �(b − s)

�(b − (1 + ε1)s)
�(b − (1 + ε2)s)

⎞
⎠ = 03n×n,

and since (�(b−s),�(b−(1+ε1)s),�(b−(1+ε2)s))T is a nonzero vector therefore

∣∣∣∣∣∣
λ1 λ2 λ3

λ1A λ2A(1 + ε1)
2 λ3A(1 + ε2)

2

λ1A2 λ2A2(1 + ε1)
4 λ3A2(1 + ε2)

4

∣∣∣∣∣∣ = 0,
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which implies that at least one of λ1, λ2, and λ3 is zero.
Let λ1 = 0, then by the second row of (3.10), we find

λ2
∑

k−1≤i11≤k

�(b − 2ti11 + (1 + ε1)s) + λ3
∑

k−1≤i11≤k

�(b − 2ti11 + (1 + ε2)s)

= 0n×n . (3.15)

Take the second derivative with respect to s in (3.15) to get

λ2A(1 + ε1)
2

∑
k−1≤i11≤k

�(b − 2ti11 + (1 + ε1)s)

+ λ3A(1 + ε2)
2

∑
k−1≤i11≤k

�(b − 2ti11 + (1 + ε2)s) = 0n×n .
(3.16)

Combine (3.15) with (3.16) and we have

(
λ2 λ3

λ2A(1 + ε1)
2 λ3A(1 + ε2)

2

) ⎛
⎜⎝

∑
k−1≤i11≤k

�(b − 2ti11 + (1 + ε1)s)∑
k−1≤i11≤k

�(b − 2ti11 + (1 + ε2)s)

⎞
⎟⎠ = 02n×n,

since

⎛
⎜⎝

∑
k−1≤i11≤k

�(b − 2ti11 + (1 + ε1)s)∑
k−1≤i11≤k

�(b − 2ti11 + (1 + ε2)s)

⎞
⎟⎠ �= 0n×n,

hence,

∣∣∣∣ λ2 λ3
λ2A(1 + ε1)

2 λ3A(1 + ε2)
2

∣∣∣∣ = 0,

which implies that at least one of λ2 and λ3 is zero.
Let λ2 = 0, then by the third row of (3.10), we have

λ3�(b − 2tk + 2tk−1 − (1 + ε2)s) = 0n×n, (3.17)

obviously, (3.17) implies λ3 = 0. Thus, x0 = 03n×n .
Suppose

∫ tk−1
tk−2

Wk−2(b, s)BB∗W ∗
k−2(b, s)ds is nonsingular and assume Rank(

A2
1B A1A2B A2

2B
)

< n. Then there exists a nonzero vector x0 ∈ R
n such that

xT0
(
A2
1B A1A2B A2

2B
) = 0,
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that is, for all s ∈ (tk−2, tk−1],

xT0 Wk−2(b, s)B = xT0

(
A2
1B�(b − s) − A1A2B

(
�(b − 2tk + s)

+ A− 1
2 �(b − 2tk−1 + s)

) + A2
2BA− 1

2 �(b − 2tk + 2tk−1 − s)
)

= 0,

which contradicts the fact that
∫ tk−1
tk−2

Wk−2(b, s)BB∗W ∗
k−2(b, s)ds is nonsingular.

Suppose Rank
(
A2
1B A1A2B A2

2B
) = n and assume

∫ tk−1

tk−2

Wk−2(b, s)BB
∗W ∗

k−2(b, s)ds

is singular. There exists a nonzero vector x0 ∈ R
n such that

∫ tk−1

tk−2

xT0 Wk−2(b, s)BB
∗W ∗

k−2(b, s)x0ds = 0.

which implies

xT0 Wk−2(b, s)B = 0, ∀s ∈ (tk−2, tk−1]. (3.18)

For s1, s2, s3 selected in the auxiliary result, by equation (3.18), we have

xT0

(
A2
1BA− 1

2 �(b − s1) − A1A2B
(
A− 1

2 �(b − 2tk + s1)

+ A− 1
2 �(b − 2tk−1 + s1)

) + A2
2BA− 1

2 �(b − 2tk + 2tk−1 − s1)
)

= 0,

xT0

(
A2
1BA− 1

2 �(b − s2) − A1A2B
(
A− 1

2 �(b − 2tk + s2)

+ A− 1
2 �(b − 2tk−1 + s2)

) + A2
2BA− 1

2 �(b − 2tk + 2tk−1 − s2)
)

= 0,

xT0

(
A2
1BA− 1

2 �(b − s3) − A1A2B
(
A− 1

2 �(b − 2tk + s3)

+ A− 1
2 �(b − 2tk−1 + s3)

) + A2
2BA− 1

2 �(b − 2tk + 2tk−1 − s3)
)

= 0,

that is

xT0
(
A2
1B −A1A2B A2

2B
)
�3 = 0,

then by the auxiliary result, we find

xT0
(
A2
1B −A1A2B A2

2B
) = 0,
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which implies

Rank
(
A2
1B −A1A2B A2

2B
)

< n,

which contradict the hypothesis.
Thus

∫ tk−1
tk−2

Wk−2(b, s)BB∗W ∗
k−2(b, s)ds is nonsingular iff

Rank
(
A2
1B A1A2B A2

2B
) = n.

In similar way, we obtain
∫ tk−1
tk−2

W ′
k−2(b, s)BB

∗W ′∗
k−2(b, s)ds is nonsingular iff

Rank
(
A2
1B A1A2B A2

2B
) = n.

Thus, we have case 3.
Similarly, taking the proof method of auxiliary result in case 3, for any 0 ≤ m ≤

k − 2, we can show an auxiliary result for i = j = m, i.e.

�k−m+1x0 = 0(k−m+1)n×n,

or

�′
k−m+1x0 = 0(k−m+1)n×n

implies x0 = 0(k−m+1)n×n , where�k−m+1 is constructed the sameway as�3.Making
use of this auxiliary result and proceeding as the technique in case 3, we can show that
for i = j = 0, both

∫ t1
t0
W0(b, s)BB∗W ∗

0 (b, s)ds and
∫ t1
t0
W ′

0(b, s)BB
∗W ′∗

0 (b, s)ds
are nonsingular iff

Rank
(
Ak
1B · · · Ak−i

1 Ai
2B · · · Ak

2B
) = n.

By Theorem 3.1, obviously, if there exists an integer l ∈ {0, 1, 2, . . . , k} such that

Rank
(
Al
1B · · · Al−i

1 Ai
2B · · · Al

2B
) = n,

then system (1.2) is controllable.
On the other hand, if system (1.2) is controllable. Then, by Theorem 3.1, there

at least exists a pair of integers 0 ≤ i ≤ k, 0 ≤ j ≤ k such that both∫ ti+1
ti

Wi(b, s)BB∗W ∗
i (b, s)ds and

∫ tj+1
tj

W ′
j(b, s)BB

∗W ′∗
j (b, s)ds are nonsingular,

that is

Rank
(
Ak−i
1 B · · · Ak−i−i

1 Ai
2B · · · Ak−i

2 B
) = n,

and

Rank
(
Ak−j
1 B · · · Ak−j−i

1 Ai
2B · · · Ak−j

2 B
) = n. 
�
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4 The controllability of semilinear systems

In this section, we consider the controllability of the initial value problems of second-
order semilinear systems (1.3).

For convenience in writing, let us introduce the notation ‖B‖ = K , and the follow-
ing assumptions.

(H1) f : J ×R
n → R

n is a continuous function and there exist a positive constant
L such that

‖ f (t, x) − f (t, y)‖ ≤ L‖x − y‖,

for every x, y ∈ R
n , and N = maxt∈[0,b] ‖ f (t, 0)‖

(H2) The linear systems (1.2) are exactly controllable.
(H3) Let

ρ(A1) + ρ(A2) < 1.

Theorem 4.1 Let x0, y0 ∈ R
n and assume the condition (H1)-(H3) are satisfied. Then

the initial value problems of semilinear second-order impulsive systems (1.3) are
exactly controllable provided that

L

(
K 2 T 9

ε

2γρ(A)5/2
e3

√
ρ(A)b + T 3

ε√
ρ(A)

e
√

ρ(A)b
)

< 1 (4.1)

and

L

(
K 2T 9

ε

1

2λ
μe3

√
ρ(A)b + T 3

ε e
√

ρ(A)b
)

< min{ρ(A)1/2, 1}, (4.2)

where μ = max{ 1
ρ(A)1/2

, 1
ρ(A)3/2

}.

Proof From Lemma 2.6, for t ∈ (tk, b], (1.3) are equivalent to the integral equation

x(t) = W (A, t, x0, y0) +
k−1∑
i=0

∫ ti+1

ti
Wi (A, t, s)(Bu(s) + f (s, x(s)))ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s)(Bu(s) + f (s, x(s)))ds

:= W (A, t, x0, y0) +
∫ t

0
Qk(t, s)(Bu(s) + f (s, x(s)))ds.

In light of (H3), we choose ε > 0 small enough such that

ρ(A1) + ρ(A2) + 2ε < 1.
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Combine with Lemma 2.3 and it follows that for t ∈ (tk, b],

‖Wi (A, t, s)‖ ≤ T 3
ε√

ρ(A) + ε
(ρ(A1) + ρ(A2) + 2ε)k−i e

√
ρ(A)+ε(t−s)

≤ T 3
ε√

ρ(A) + ε
e
√

ρ(A)+ε(t−s),

(4.3)

‖W ′
i (A, t, s)‖ ≤ T 3

A,ε(ρ(A1) + ρ(A2) + 2ε)k−i e
√

ρ(A)+ε(t−s)

≤ T 3
A,εe

√
ρ(A)+ε(t−s),

(4.4)

and

‖W (A, t, x0, y0)‖ ≤ �1e
√

ρ(A)+εb(ρ(A1) + ρ(A2) + 2ε)k

≤ �1e
√

ρ(A)+εb,
(4.5)

‖W ′(A, t, x0, y0)‖ ≤ �1e
√

ρ(A)+εb(ρ(A1) + ρ(A2) + 2ε)k

≤ �1e
√

ρ(A)+εb,
(4.6)

where

�1 = 2max{ 1√
ρ(A) + ε

,
√

ρ(A) + ε}T 3
ε ,

Tε = max{TA,ε, TA1,ε, TA2,ε} and ε > 0 small enough.
We show the controllability of the solutions of (1.3). Define the feedback control

function

u1x (t) = B∗Q∗
k(b, t)(


b
0)

−1
(
x1 − W (A, b, x0, x1) −

∫ b

0
Qk(b, s) f (s, x(s))ds

)
.

(4.7)

and the operator F : PC(J ,Rn) → PC(J ,Rn) as follows,

(Fx)(t) = W (A, t, x0, y0) +
∫ t

0
Qk(t, s)

(
Bu1x (s) + f (s, x(s))

)
ds, t ∈ (tk, b].

Let

Br = {v ∈ PC(J ,Rn)
∣∣‖v‖PC ≤ r},

and we use the notation

(F1x)(t) = W (A, t, x0, y0) +
∫ t

0
Qk(t, s)Bu1x (s)ds, t ∈ (tk, b],
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(F2x)(t) =
∫ t

0
Qk(t, s) f (s, x(s))ds, t ∈ (tk, b].

Now F = F1 + F2.
We subdivide the proof into several steps.
Step 1 We show that for every x, y ∈ Br , F1x + F2y ∈ Br . In fact, for every

x, y ∈ Br , from (4.3), (4.5), (4.7) and (H1), we have

‖F1x + F2y‖PC

≤ ‖W (A, t, x0, y0)‖ +
∥∥∥ ∫ t

0
Qk(t, s)Bu1x (s)ds

∥∥∥ +
∥∥∥ ∫ t

0
Qk(t, s) f (s, y(s))ds

∥∥∥
≤ ‖W (A, t, x0, y0)‖ + K 2 1

γ

∫ b

0

T 6
ε

ρ(A) + ε
e2

√
ρ(A)+ε(b−s)ds

·
(

‖x1‖ + ‖W (A, b, x0, y0)‖ + (N + Lr)
∫ b

0

T 3
ε√

ρ(A) + ε
e
√

ρ(A)+ε(b−s)ds

)

+ (N + Lr)
∫ b

0

T 3
ε√

ρ(A) + ε
e
√

ρ(A)+ε(b−s)ds

≤ ‖W (A, t, x0, y0)‖ + K 2 1

γ

T 6
ε

2(ρ(A) + ε)3/2
e2

√
ρ(A)+εb

·
(

‖x1‖ + ‖W (A, b, x0, y0)‖ + (N + Lr)
T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb
)

+ (N + Lr)
T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb

≤ �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + K 2 1

γ

T 6
ε

2(ρ(A) + ε)3/2
e2

√
ρ(A)+εb

·
(

‖x1‖ + �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + (N + Lr)
T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb
)

+ (N + Lr)
T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb

≤ � + L(K 2 1

γ

T 9
ε

2ρ(A)5/2
e3

√
ρ(A)+εb + T 3

ε

ρ(A)
e
√

ρ(A)+εb)r ,

where

� = �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + N

(
T 3
ε

ρ(A)
e
√

ρ(A)+εb + K 2 1

γ

T 9
ε

2ρ(A)5/2
e3

√
ρ(A)+εb

)

+ K 2 1

γ

T 6
ε

2ρ(A)3/2
e2

√
ρ(A)+εb(‖x1‖ + �1e

√
ρ(A)+εb(‖x0‖ + ‖y0‖)

)
.
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By inequality (4.1), we can pick

r ≥ �

1 − L(K 2 1
γ

T 9
ε

2ρ(A)5/2
e3

√
ρ(A)+εb + T 3

ε

ρ(A)
e
√

ρ(A)+εb)
, (4.8)

Then, we have

‖F1x + F2y‖PC ≤ r ,

that is

F1x + F2y ∈ Br .

Step 2 We claim that F1 : Br → PC(J ,Rn) is a contraction mapping. For every
x, y ∈ Br , by (3.5), (4.1), (4.3), and (H1), we have

‖F1x − F1y‖PC =
∥∥∥ ∫ t

0
Qk(t, s)B(u1x (s) − u1y(s))ds

∥∥∥
≤ T 6

ε

ρ(A) + ε
K 2 1

γ

∫ t

0
e2

√
ρ(A)+ε(b−s)ds

·
∥∥∥ ∫ b

0
Qk(b, s)

(
f (s, x(s)) − f (s, y(s))

)
ds

∥∥∥
≤ T 9

ε K
2L

2(ρ(A) + ε)5/2

1

γ
e3

√
ρ(A)+εb‖x − y‖PC ,

so F1 is a contraction mapping.
Step 3 We show that F2 is compact and continuous. For any x, y ∈ Br , by the

inequality (4.3), we have

‖F2x − F2y‖PC ≤
∫ t

0
‖Qk(t, s)‖ · ‖ f (s, x(s)) − f (s, y(s))‖ds

≤ bLT 3
ε

ρ(A) + ε
e
√

ρ(A)+εb‖x − y‖PC ,

therefore, F2 : Br → PC(J ,R) is continuous. To check the compactness of F2, we
prove that F2 is uniformly bounded and equicontinuous. In fact, for any x ∈ Br , by
the inequality (4.3), we have

‖F2x‖PC =
∥∥∥ ∫ t

0
Qk(t, s) f (s, x(s))ds

∥∥∥
≤ T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb(N + Lr),
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that is F2Br = {F2x
∣∣x ∈ Br } is uniformly bounded. Next, we show that F2 is equicon-

tinuous. For any tk < τ1 ≤ τ2 ≤ b, by Lemma 2.7, and (4.3), we have

‖(F2x)(τ2) − (F2x)(τ1)‖ ≤
∥∥∥ ∫ τ2

0
Qk(τ2, s) f (s, x(s))ds −

∫ τ1

0
Qk(τ1, s) f (s, x(s))ds

∥∥∥
≤

∥∥∥ ∫ τ1

0

(
Qk(τ2, s) − Qk(τ1, s)

)
f (s, x(s))ds

∥∥∥
+

∥∥∥ ∫ τ2

τ1

Qk(τ2, s) f (s, x(s))ds
∥∥∥

≤ θ1(N + Lr)|τ2 − τ1| + T 3
ε√

ρ(A) + ε
e
√

ρ(A)+εb(N + Lr)

· |τ2 − τ1|,

therefore, F2Br is the equicontinuous family of functions in PC(J ,Rn). FromLemma
2.5, F2Br is relatively compact in PC(J ,Rn).

From Krasnoselskii’s fixed point theorem, we obtain that F has a fixed point x in
Br , which is the solution of (1.3) and satisfies x(b) = x1.

Inwhat follows,we show the controllability of the derivative of solutions for systems
(1.3). Define the feedback control function

u2x (t) = B∗Q′∗
k (b, t)(�b

0)
−1(y1 − W ′(A, b, x0, y0) −

∫ b

0
Q′

k(b, s) f (s, x(s))ds
)
.

and the operator H : PC1(J ,Rn) → PC1(J ,Rn) as follows,

(Hx)(t) = W (A, t, x0, y0) +
∫ t

0
Qk(t, s)

(
Bu2x (s) + f (s, x(s))

)
ds, t ∈ (tk, b].

Let

(H1x)(t) = W (A, t, x0, y0) +
∫ t

0
Qk(t, s)Bu2x (s)ds,

(H2x)(t) =
∫ t

0
Qk(t, s) f (s, x(s))ds,

and H = H1 + H2. Let

D� = {x ∈ PC1(J ,Rn)
∣∣‖x‖PC1 ≤ �}.

We show that H : D� → PC1(J ,Rn) has a fixed point. Proceeding as before, we
subdivide the proof into several steps.
Step 1 We show that H1x + H2y ∈ D�, for any x, y ∈ D�.

In fact, for any x, y ∈ D�, proceeding as in the proof for the operator F , and by
inequalities (3.5), (4.3)–(4.6) and condition (H1), we have
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‖H1x + H2y‖PC

≤ ‖W (A, t, x0, y0)‖ +
∥∥∥ ∫ t

0
Qk(t, s)Bu2x (s)ds

∥∥∥ +
∥∥∥ ∫ t

0
Qk(t, s) f (s, y(s))ds

∥∥∥
≤ ‖W (A, t, x0, y0)‖ + K 2 1

λ

∫ b

0

T 6
ε√

ρ(A) + ε
e2

√
ρ(A)+ε(b−s)ds

·
(

‖y1‖ + ‖W ′(A, b, x0, y0)‖ + (N + Lr)
∫ b

0
T 3

ε e
√

ρ(A)+ε(b−s)ds

)

+ (N + Lr)
∫ b

0

T 3
ε√

ρ(A) + ε
e
√

ρ(A)+ε(b−s)ds

≤ ‖W (A, t, x0, y0)‖ + K 2 1

λ

T 6
ε

2(ρ(A) + ε)
e2

√
ρ(A)+εb

·
(

‖y1‖ + ‖W ′(A, b, x0, y0)‖ + (N + Lr)
T 3

ε√
ρ(A) + ε

e
√

ρ(A)+εb
)

+ (N + Lr)
T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb

≤ �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + K 2 1

λ

T 6
ε

2(ρ(A) + ε)
e2

√
ρ(A)+εb

·
(

‖y1‖ + �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + (N + Lr)
T 3

ε√
ρ(A) + ε

e
√

ρ(A)+εb
)

+ (N + Lr)
T 3

ε

ρ(A) + ε
e
√

ρ(A)+εb

≤ � + L

(
K 2 1

λ

T 9
ε

2ρ(A)3/2
e3

√
ρ(A)+εb + T 3

ε

ρ(A)
e
√

ρ(A)+εb
)
r ,

where

� =�1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + N

(
T 3
ε

ρ(A)
e
√

ρ(A)+εb + K 2 1

λ

T 9
ε

2ρ(A)3/2
e3

√
ρ(A)+εb

)

+ K 2 1

λ

T 6
ε

2ρ(A)3/2
e2

√
ρ(A)+εb(‖y1‖ + �1e

√
ρ(A)+εb(‖x0‖ + ‖y0‖)

)
.

By inequality (4.2), we can pick

r ≥ �

1 − L
(
K 2 1

λ

T 9
ε

2ρ(A)3/2
e3

√
ρ(A)+εb + T 3

ε

ρ(A)
e
√

ρ(A)+εb
) , (4.9)

then, we have

‖H1x + H2y‖PC ≤ r .

It follows that for any x, y ∈ Dr , H1x + H2y ∈ Dr .
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Similarly, making use of (3.5), (4.4), (4.6), (4.7) and (H1), we get

‖(H1x)
′ + (H2y)

′‖PC

≤ ‖W ′(A, t, x0, y0)‖ +
∥∥∥ ∫ t

0
Q′

k(t, s)Bu2x (s)ds
∥∥∥ +

∥∥∥ ∫ t

0
Q′

k(t, s) f (s, y(s))ds
∥∥∥

≤ ‖W ′(A, t, x0, y0)‖ + K 2T 6
ε

1

λ

∫ b

0
e2

√
ρ(A)+ε(b−s)ds

·
(

‖y1‖ + ‖W ′(A, b, x0, y0)‖ + (N + Lr)
∫ b

0
T 3

ε e
√

ρ(A)+ε(b−s)ds

)

+ (N + Lr)
∫ b

0
T 3

ε e
√

ρ(A)+ε(b−s)ds

≤ �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + K 2T 6
ε

2
√

ρ(A) + ε

1

λ
e2

√
ρ(A)+εb

·
(

‖y1‖ + �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + T 3
ε√

ρ(A) + ε
(N + Lr)e

√
ρ(A)+εb

)

+ (N + Lr)
T 3

ε√
ρ(A) + ε

e
√

ρ(A)+εb

≤ 
 + L

(
K 2 1

λ

T 9
ε

2ρ(A)
e3

√
ρ(A)+εb + T 3

ε√
ρ(A)

e
√

ρ(A)+εb
)
r ,

where


 = K 2 1

λ

T 6
ε

2
√

ρ(A)
e2

√
ρ(A)+εb(‖y1‖ + �1e

√
ρ(A)+εb(‖x0‖ + ‖y0‖)

)

+ �1e
√

ρ(A)+εb(‖x0‖ + ‖y0‖) + N

(
T 3

ε√
ρ(A)

e
√

ρ(A)+εb + K 2 T 9
ε

2ρ(A)

1

λ
e3

√
ρ(A)+εb

)
.

By inequality (4.2), we can pick

r ≥ 


1 − L(K 2 1
λ

T 9
ε

2ρ(A)2
e3

√
ρ(A)+εb + T 3

ε√
ρ(A)

e
√

ρ(A)+εb)
, (4.10)

Then, we have

‖(H1x)
′ + (H2y)

′‖PC ≤ r .

Take r be the maximum of the right hand of (4.8) and (4.9), then we obtain

‖H1x + H2y‖PC1 ≤ r ,

that is

H1x + H2y ∈ Br .
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Step 2 We state that H1 is a contraction.
For any x, y ∈ Dr , by inequalities (3.5), (4.2), (4.4), and (H1), we have

‖H1x − H1y‖PC =
∥∥∥ ∫ t

0
Qk(t, s)B(u2x (s) − u2y(s))ds

∥∥∥
≤ LK 2 T 6

ε√
ρ(A) + ε

1

λ

∫ t

0
e2

√
ρ(A)+ε(b−s)ds ·

∫ b

0
‖Q′

k(b, s)‖
· ‖x − y‖PCds

≤ LK 2T 9
ε

1

λ

1

2ρ(A)3/2
e3

√
ρ(A)+εb‖x − y‖PC ,

and

‖(H1x)
′ − (H1y)

′‖PC =
∥∥∥ ∫ t

0
Q′

k(t, s)B(u2x (s) − u2y(s))ds
∥∥∥

≤ LT 6
ε K

2 1

λ

∫ t

0
e2

√
ρ(A)+ε(b−s)ds

·
∫ b

0
‖Q′

k(b, s)‖ · ‖x − y‖PCds

≤ T 9
ε K

2L

2(ρ(A) + ε)

1

λ
e3

√
ρ(A)+εb‖x − y‖PC ,

hence according to (4.2), there exists ε > 0 small enough such that

LK 2T 9
ε

1

λ

1

2ρ(A)3/2
e3

√
ρ(A)+εb < 1,

and

T 9
ε K

2L

2(ρ(A) + ε)

1

λ
e3

√
ρ(A)+εb < 1.

Therefore, H1 is a contraction mapping.
Step 3 We show that H2 is compact and continuous. Since, for every x, y ∈ D�, by
(4.3) and (4.4), we have

‖H2x − H2y‖PC ≤
∫ t

0
‖Qk(t, s)‖ · ‖ f (s, x(s)) − f (s, y(s))‖ds

≤ bLT 3
ε

ρ(A) + ε
e
√

ρ(A)+εb‖x − y‖PC1 ,
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and

‖(H2x)
′ − (H2y)

′‖PC ≤
∫ t

0
‖Q′

k(t, s)‖ · ‖ f (s, x(s)) − f (s, y(s))‖ds

≤ bLT 3
ε√

ρ(A) + ε
e
√

ρ(A)+εb‖x − y‖PC1 ,

therefore, H2 : D� → PC1(J ,R) is continuous. To check the compactness of H2,
we consider the mapping

(H2x)
′(t) =

∫ t

0
Q′

k(t, s) f (s, x(s))ds.

For every x ∈ D�, by inequality (4.4) and (H1), we obtain

‖(H2x)
′‖PC ≤

∫ t

0
‖Q′

k(t, s)‖ · ‖ f (s, x(s))‖ds

≤
∫ t

0
T 3

ε e
√

ρ(A)+ε(t−s)(N + Lr)ds

≤ bT 3
ε (N + Lr)e

√
ρ(A)+εb,

which implies (H2D�)
′ = {(H2x)′

∣∣x ∈ D�} is uniformly bounded in PC(J ,R). We
prove that for any x ∈ D�, (H2x)′ is equicontinuous. In fact, for any tk < τ1 < τ2 ≤ b,
in term of inequality (4.4), (H1) and Lemma 2.7, we have

‖(H2x)
′(τ2) − (H2x)

′(τ1)‖
=

∥∥∥ ∫ τ2

0
Q′

k(τ2, s) f (s, x(s))ds −
∫ τ1

0
Q′

k(τ1, s) f (s, x(s))ds
∥∥∥

≤
∫ τ1

0
‖Q′

k(τ2, s) − Q′
k(τ1, s)‖ · ‖ f (s, x(s))‖ds

+
∫ τ2

τ1

‖Q′
k(τ2, s) f (s, x(s))‖ds

≤ θ(N + Lr)|τ2 − τ1| + T 3
ε e

√
ρ(A)+εb(N + Lr) · |τ2 − τ1|,

therefore, (H2D�)
′ is the equicontinuous family of functions in PC(J ,Rn). From

Lemma 2.5, (H2D�)
′ is relatively compact in PC(J ,Rn). Hence, for any sequence

{xn} ⊂ D�, there exists a subsequence of {xn}, again denoted by {xn}, such that

(H2xn)
′ → φ in PC(J ,Rn) as n → ∞. (4.11)

Obviously,

‖x‖PC ≤ b‖x ′‖PC ,
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for any x ∈ PC1(J ,Rn). Let φ be the antiderivative of φ, combining this inequality
with (4.11), we have

‖H2xn − φ‖PC1 =max{‖H2xn − φ‖PC , ‖(H2xn)
′ − φ‖PC }

≤max{b, 1}‖(H2xn)
′ − φ‖PC

<ε,

as n is large enough, which implies that for any {H2xn} ⊂ H2D�, there exists a subse-
quence {H2xnk }which is convergence in PC1(J ,R) . Thus, H2 : D� → PC1(J ,Rn)

is a compact and continuous operator.
Hence, by the Krasnoselskii’s fixed point theorem, we obtain that H has a fixed

point x in D� which is the solution of (1.3) and satisfies x ′(b) = y1.
In conclusion, second-order impulsive systems (1.3) are exactly controllable.


�

5 Examples

In this section, we give some examples to illustrate the effectiveness of our results.

Example 5.1 For the simplicity of calculation, we consider the controllability of sys-
tems (1.2) with

A =
(
1 0
0 2

)
, B1 = B2 =

(
1 2
0 3

)
, B =

(
2 0
0 3

)
, x0 =

(
0
1

)
, y0 =

(
1
0

)
,

and 0 = t0 < 1 = t1 < 2 = t2 = b. Obviously, B is nonsingular, then Theorem 3.1
holds for l = 0, that is system (1.2) is controllable. For the sake of convenience in
calculating, we consider x1 = (30 40)T , then we show that we can choose a control
function u1(t) such that, under u1(t), x(2) = (30 40)T. By Theorem 3.1 in [34], we
obtain that, for t ∈ (1, 2], the solution W (A, t, x0, y0) of the homogeneous initial
value problems of (1.2) is expressed as follows,

W (A, t, x0, y0) =
(
2 cosh t 2 cosh

√
2t

0 4 cosh
√
2t

)
x0 +

(
2 sinh t

√
2 sinh

√
2t

0 2
√
2 sinh

√
2t

)
y0

=
(
2 sinh t + 2 cosh

√
2t

4 cosh
√
2t

)
.

(5.1)

By the calculation, we find

Q1(t, s) =
{
W0(A, t, s), 0 ≤ s ≤ 1,

W1(A, t, s), 1 < s ≤ t,
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here

W0(A, t, s) =
(
2 sinh(t − s)

√
2 sinh

√
2(t − s)

0 2
√
2 sinh

√
2(t − s)

)
,

W1(A, t, s) =
(
sinh(t − s) 0

0 1√
2
sinh

√
2(t − s)

)
.

and


2
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 sinh 2 + 4 sinh 4 − 9

2
√
2
sinh 2

√
2 + 9

2
√
2
sinh 4

√
2 − 19

− 9√
2
sinh 2

√
2 + 9√

2
sinh 4

√
2 − 18

− 9√
2
sinh 2

√
2 + 9√

2
sinh 4

√
2 − 18

− 18√
2
sinh 2

√
2 + 18√

2
sinh 4

√
2 − 36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2×2

.(5.2)

Hence, by (3.3), we can define the control function u1(t) by a piecewise func-
tion,piecewise function,

u1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
4 sinh(2 − t) 0

3
√
2 sinh

√
2(2 − t) 6

√
2 sinh

√
2(2 − t)

)
(
2

0)
−1(x1 − W (A, 2, x0, y0)

)
, t ∈ (0, 1],

(
2 sinh(2 − t) 0

0 3√
2
sinh

√
2(2 − t)

)
(
2

0)
−1(x1 − W (A, 2, x0, y0)

)
, t ∈ (1, 2],

here W (A, t, x0, y0) is expressed by (5.1), 
2
0 is expressed by (5.2), x1 is the state

we want to arrive. Therefore, under the control u1, we have x(2) = x1, see Fig. 1.
Similarly, take y1 = (0 0)T, then we can take the control u2 as follows,

u2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4 cosh(2 − t) 0

6 cosh
√
2(2 − t) 12 cosh

√
2(2 − t)

)
(�2

0)
−1(y1 − W ′(A, 2, x0, y0)

)
, t ∈ (0, 1],

(
2 cosh(2 − t) 0

0 3 cosh
√
2(2 − t)

)
(�2

0)
−1(y1 − W ′(A, 2, x0, y0)

)
, t ∈ (1, 2],

and under this control, we can steer the derivative of the solution of systems (1.2) to
(0 0)T at terminal, see Fig. 2.

Example 5.2 Consider the systems (1.3) with

A =
(
2 0
0 2

)
, B1 = B2 =

(− 1
2

1
2

0 − 1
3

)
, B =

( 1
2 0
0 1

2

)
,

0 = t0 < 1
2 = t1 < 1 = t2 = b, and f (t, x(t)) = 1

37 sin x(t). Since B is nonsingular,
by Theorem 3.3, we find condition (H2) is satisfied. Obviously, (H1) is satisfied with
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Fig. 1 A The control function u1(t), where blue line denote the first component of u1(t), red line denote
the second component of u1(t). B The state function X(t) of (1.2) without any control, similarly, where
blue line denote the first component of X(t), red line denote the second component of X(t). C Figure C1
denote the first component of state function x1(t) under the control function u1(t), and Figure C2 denote
the second component of state function x1(t) under the control function u1(t). It should be noted that, in
figure C1 and C2, on the left side of impulsive point t = 1, we refer to the left scale, and on the right side
of impulsive point t = 1, we refer to the right scale (color figure online)

L = 1
37 . Then we show that (4.1) and (4.2) hold. Define a new matrix norm ‖ · ‖′ by

‖x‖′ = ‖Qx‖, ∀x ∈ R
n,

where

Q =
(
1 0
0 2ε

)
,
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Fig. 2 E1 The state function X(t) of (1.2) without any control function. The blue line denote the first
component of X(t), and the red line denote the second component of X(t). E2 The derivative of state
function X(t) without any control function. Similarly, the blue line denote the first component, and the red
line denote the second component. F The control function u2 we picked to control the derivative function,
the blue line denote the first component of u2, and the red line denote the second component u2. G1 The
state function x2(t) under the control u2. The blue line denote the first component of x2(t), and the red line
denote the second component x2(t).G2 The derivative of state function x2(t). The blue line denote the first
component, and the red line denote the second component (color figure online)
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and ‖A‖ = max
1≤ j≤n

∑n
i=1 |ai j |. According the Theorem 2.2.8 of [35], we find for

A1 = I + B1+B2
2 ,

‖A1‖′ = ‖Q−1A1Q‖ ≤ ρ(A1) + ε. (5.3)

Let ε = 49
100 , then we have, for all x ∈ R

n ,

98

100
‖x‖ ≤ ‖x‖′ ≤ ‖x‖,

hence,

‖A1‖ = sup
x �=0

{‖A1x‖
‖x‖

}
≤ sup

x �=0

{
100

98

‖A1x‖′

‖x‖′

}
= 100

98
‖A1‖′,

combining this with (5.3), we have

‖A1‖ ≤ 100

98
(ρ(A) + ε),

that is TA1,
49
100

= 100
98 . Obviously, TA,ε = 1, therefore, T 49

100
= 100

98 . With a simple
calculation, we find


1
0 =

(
a11 a12
a21 a22

)
,

here

a11 = sinh
√
2 cosh

√
2 + 1

2 − sinh
√
2
2 cosh

√
2
2

32
√
2

+
1
2 + sinh

√
2
2 cosh

√
2
2

16
√
2

,

a12 = sinh
√
2 cosh

√
2 + 1

2 − sinh
√
2
2 cosh

√
2
2

48
√
2

,

a21 = sinh
√
2 cosh

√
2 + 1

2 − sinh
√
2
2 cosh

√
2
2

48
√
2

,

a22 = sinh
√
2 cosh

√
2 + 1

2 − sinh
√
2
2 cosh

√
2
2

36
√
2

+
1
2 + sinh

√
2
2 cosh

√
2
2

16
√
2

,

hence, for all x ∈ R
n ,

(
1
0x, x) >

1

10
‖x‖2,
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that is we can pick γ = 1
10 . Hence we obtain

L

(
K 2 T 9

ε

2γρ(A)5/2
e3

√
ρ(A)b + T 3

ε√
ρ(A)

e
√

ρ(A)b
)

= 1

37

(
( 10098 )9e3

√
2

3.2
√
2

+ ( 10098 )2e
√
2

√
2

)
< 1. (5.4)

Similarly, we can get

�1
0 =

(
b11 b12
b21 b22

)
,

here

b11 = sinh
√
2 cosh

√
2 − 1

2 − sinh
√
2
2 cosh

√
2
2

16
√
2

+ sinh
√
2
2 cosh

√
2
2 − 1

2

8
√
2

,

b12 = sinh
√
2 cosh

√
2 − 1

2 − sinh
√
2
2 cosh

√
2
2

24
√
2

,

b21 = sinh
√
2 cosh

√
2 − 1

2 − sinh
√
2
2 cosh

√
2
2

24
√
2

,

b22 = sinh
√
2 cosh

√
2 − 1

2 − sinh
√
2
2 cosh

√
2
2

18
√
2

+ sinh
√
2
2 cosh

√
2
2 − 1

2

8
√
2

,

hence, for all x ∈ R
n ,

(�1
0x, x) >

1

10
‖x‖2,

i.e., we can pick λ = 1
10 . Put these constants into (4.2), we obtain

L

(
K 2T 9

ε

1

2λ
μe3

√
ρ(A)b + T 3

ε√
ρ(A)

e
√

ρ(A)b
)

< 1. (5.5)

Therefore, all the assumptions of Theorem 4.1 are satisfied, that is the systems (1.3)
are exactly controllable.

6 Conclusion

In this paper,we introduce a newdefinitionof controllability, andobtain some sufficient
and necessary conditions of second-order linear impulsive systems, the rank criterion
of impulsive systems is obtained as well. Then, we present some sufficient conditions
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of nonlinear impulsive systems provided the linear systems are controllable. Finally,
some examples are presented to illustrate our results.
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