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Abstract
This paper deals with the asymptotic and oscillatory behaviour of third-order non-
linear differential equations with mixed non-linear neutral terms and a canonical
operator. The results are obtained via utilising integral conditions as well as com-
parison theorems with the oscillatory properties of first-order advanced and/or delay
differential equations. The proposed theorems improve, extend, and simplify existing
ones in the literature. The results are illustrated by two numerical examples.
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1 Introduction

In this work, we aim to investigate the asymptotic and oscillatory behaviour of all
solutions of the non-linear third-order differential equations with mixed neutral terms
of the form:

(
a(ζ )

(
y′′(ζ )

)α)′ + q(ζ )xγ (τ (ζ )) + p(ζ )xλ(ω(ζ )) = 0, ζ ≥ ζ0, (1.1)

where y(ζ ) = x(ζ ) + p1(ζ )xν(σ (ζ )) − p2(ζ )xκ(σ (ζ )). Throughout the paper, we
always assume that

(A1) α, ν, κ, γ and λ are the ratios of positive odd integers with α ≥ 1,
(A2) a, p1, p2, p and q ∈ C([ζ0,∞),R+) with a′(ζ ) ≥ 0 for ζ ≥ ζ0,
(A3) ω, τ, σ ∈ C([ζ0,∞),R) such that τ(ζ ), σ (ζ ) ≤ ζ , ω(ζ ) ≥ ζ and

τ(ζ ), σ (ζ ), ω(ζ ) → ∞ as ζ → ∞,
(A4) h(ζ ) = σ−1(τ (ζ )) ≤ ζ , h∗(ζ ) = σ−1(ω(ζ )) ≥ ζ with h(ζ ) → ∞ as ζ → ∞,
(A5) A(ζ, ζ0) = ∫ ζ

ζ0

1
a1/α(s)

ds with A(ζ, ζ0) → ∞ as ζ → ∞.

A solution of Eq. (1.1) is a function x(ζ ) which is continuous on [Tx ,∞), Tx ≥
ζ0 and satisfies Eq. (1.1) on [Tx ,∞). The solutions which are vanishing identically
in some neighborhood of infinity will be excluded from our consideration. Such a
solution of Eq. (1.1) is said to be oscillatory if it has arbitrarily large zeros, and to be
nonoscillatory otherwise. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.

A variety of physical and technological issues raise the question of developing a
mathematical model that describes a specific process or structure. It is known that
most differential equations, such as those used to model real-life processes, may not
have closed-form solutions. This led to a new branch of the theory of differential
equations, namely, qualitative theory. In particular, we are especially interested in the
study of the oscillatory behaviour of some classes of functional differential equations.
Over past years, the oscillation theory of functional differential equations has received
much attention since it has a great number of applications in engineering and natural
sciences, see, e.g., [1–3, 7–9, 20, 30, 40, 42] and the references cited therein. For
example, third-order differential equations appear in a variety of real-world problems,
such as in the study of curved beam deflection, scattering cross-section, steam turbine
regulation, control of a flying apparatus in cosmic space, entry-flow phenomenon,
and so on; see, e.g., [22, 40]. Danziger and Elemergreen [22] discovered a class of
third-order linear differential equations by observing the thyroid-pituitary interaction
over time. The governing equations that describe the variation of thyroid hormone
with time are as follows:

a1x
′′′(ζ ) + a2x

′′(ζ ) + a3x
′(ζ ) + (1 + l)x = lc, x < c,

a1x
′′′(ζ ) + a2x

′′(ζ ) + a3x
′(ζ ) + x = 0, x > c,

where x(ζ ) is the concentration of thyroid hormone at time ζ and a1, a2, a3, l and c
are constants.
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Apart from this, neutral delay differential equations arisewhen lossless transmission
lines are employed to interconnect switching circuits in high-speed computers, see
[30].

In the recent years, some authors considered the special cases of Eq. (1.1), that is,
p(ζ ) = 0, or, α = 1, or ν = κ = 1, or λ = 1, or γ = 1, see, e.g., [11, 12, 14–18, 21,
23, 24, 26, 27, 29, 32, 38, 39, 43–45] and references cited therein. In particular, Grace
and Jadlovska [25] established several oscillation theorems for the odd-order neutral
delay differential equation

(x(ζ ) − p1(ζ )x(σ (ζ )))n + q(ζ )xβ(τ (ζ )) = 0,

where n ≥ 3 is an odd natural number, 0 ≤ p1(ζ ) < 1 and the delay terms τ, σ are
non-decresaing. This paper’s contribution is that it employs the comparison technique
to provide conditions that only ensure the oscillation of the aforementioned problem. In
[14], Chatzarakis and Grace considered the coupled of third-order neutral differential
equation

(
a(ζ )

(
y′′(ζ )

)α)′ + q(ζ )xγ (τ (ζ )) = 0,

where y(ζ ) = x(ζ ) ± p1(ζ )xβ(σ (ζ )), 0 ≤ p1(ζ ) < ∞, α ≥ 1 and σ(ζ ) is strictly
increasing. By using the comparison method, their two main conclusions (Theorems 1
and 2) guarantee that every solution of the aforementioned equations either oscillates
or converges to zero.

Therefore, we aim here to initiate the study of the oscillation problem of (1.1)
with either ν < κ ≤ 1 or ν < 1 and κ > 1, via comparison with the known
oscillatory behaviour of first order equations. The method we employ here in this
work has naturally a partial resemblance of the works [14, 24, 28], however the results
and most arguments are quite different due to more general nature of Eq. (1.1). The
obtained results improve and correlate many of the known oscillation criteria existing
in the literature, even for the case of Eq. (1.1) with p1(ζ ) = 0, or p2(ζ ) = 0, or
p1(ζ ) = p2(ζ ) = 0.

To make it easier to read, we simplify our notations here: for b ∈ C ([ζ0,∞),R+),

g1(ζ ) := (1 − ν)ν
ν

1−ν p
1

1−ν

1 (ζ )b
ν

ν−1 (ζ ),

g2(ζ ) := (κ − 1)κ
κ

1−κ p
1

1−κ

2 (ζ )b
κ

κ−1 (ζ ),

P(ζ ) := p(ζ )
(
p2(h∗(ζ ))

) λ
κ

, Q(ζ ) := q(ζ )
(
p2(h(ζ ))

) γ
κ

,

and

P(ζ ) :=
(

κ − ν

ν

) [ν

κ
p1(ζ )

] κ
κ−ν (

p2(ζ )
) ν

ν−κ .

2 Some Preliminaries Lemmas

In order to prove our results later, we have replicated some lemmas that are required.
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Lemma 2.1 Let q : [ζ0,∞) → R
+, g : [ζ0,∞) → R and f : R → R are continuous

functions, f is non-decreasing and x f (x) > 0 for x 	= 0 and g(ζ ) → ∞ as ζ → ∞.
If

(I) the first order delay differential inequality (i.e., g(ζ ) ≤ ζ )

y′(ζ ) + q(ζ ) f
(
y(g(ζ ))

) ≤ 0

has an eventually positive solution, then so does the corresponding delay
differential equation.

(II) the first order advanced differential inequality (i.e., g(ζ ) ≥ ζ )

y′(ζ ) − q(ζ ) f
(
y(g(ζ ))

) ≥ 0

has an eventually positive solution, then so does the corresponding advanced
differential equation.

Proof This Lemma is an extension of known results in [10, Lemma 2.3] and [41,
Corollary 1] and hence the proof is omitted. 
�
Lemma 2.2 [31] If X and Y are non-negative, then

Xϕ + (ϕ − 1)Yϕ − ϕXYϕ−1 ≥ 0 for ϕ > 1 (2.1)

and

Xϕ − (1 − ϕ)Yϕ − ϕXYϕ−1 ≤ 0 for 0 < ϕ < 1, (2.2)

where equalities hold if and only if X = Y.

Lemma 2.3 (Young’s Inequality) [31] If X, Y be nonnegative real numbers and if
m, n > 1 are real numbers such that 1

n + 1
m = 1. Then

XY ≤ 1

n
Xn + 1

m
Ym . (2.3)

Equality holds if and only if Xn=Ym .

3 The CaseWhen � < 1 and � > 1

In this section, we present some oscillation criteria for Eq. (1.1) when ν < 1 and
κ > 1.

Theorem 3.1 Let (A1) – (A5) hold with ν < 1 and κ > 1. Furthermore, assume that

(A6) there exists a function b ∈ C ([ζ0,∞),R+) such that

lim
ζ→∞[g1(ζ ) + g2(ζ )] = 0 (3.1)
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and

(A7) there exist non-decreasing functions μ(ζ ), π(ζ ) ∈ C([ζ0,∞),R) such that
μ1(ζ ) = μ(ζ ) < ζ , μ2(ζ ) = μ

(
μ(ζ )

)
with ρ(ζ ) = h∗(μ2(ζ )

)
> ζ ,

τ(ζ ) ≤ π(ζ ) ≤ ζ f or ζ ≥ ζ0 (3.2)

hold. If there exist numbers θ1, θ2 ∈ (0, 1) such that the delay differential equations

W ′(ζ ) + θ1q(ζ )

(∫ τ(ζ )

ζ0

A(s, ζ1)ds

)γ

W
γ
α (τ (ζ )) = 0, (3.3)

Y ′(ζ ) + θ2τ
γ/κ(ζ )Q(ζ )Aγ /κ

(
π(ζ ), τ (ζ )

)
Y

γ
ακ

(
π(ζ )

) = 0 (3.4)

and the advanced differential equation

ŷ′(ζ ) −
[∫ ζ

μ(ζ )

(
a

−1
α (u)

)(∫ u

μ(u)

P(s)ds

) 1
α

du

]

ŷ
λ
ακ

(
ρ(ζ )

) = 0 (3.5)

are oscillatory, then every solution of Eq. (1.1) is oscillatory or converges to zero.

Proof Suppose x(ζ ) is a non-oscillatory solution of Eq. (1.1) with x(ζ ) > 0 and
limζ→∞ x(ζ ) 	= 0 for ζ ≥ ζ0. Therefore, x

(
τ(ζ )

)
> 0, x

(
σ(ζ )

)
> 0 and x

(
ω(ζ )

)
> 0

for ζ ≥ ζ1 for some ζ1 > ζ0. It follows from Eq. (1.1) that

(
a(ζ )

(
y′′(ζ )

)α)′ = −q(ζ )xγ
(
τ(ζ )

) − p(ζ )xλ
(
ω(ζ )

)
< 0. (3.6)

Hence, a(ζ )
(
y′′(ζ )

)α is decreasing and of one sign, that is, there exists a ζ2 > ζ1 such
that y′′(ζ ) > 0 or y′′(ζ ) < 0 for ζ ≥ ζ2. We shall distinguish the following four cases:

1. y(ζ ) > 0, y′′(ζ ) < 0, 2. y(ζ ) > 0, y′′(ζ ) > 0

3. y(ζ ) < 0, y′′(ζ ) > 0, 4. y(ζ ) < 0, y′′(ζ ) < 0.

Case 1: Since y′′′(ζ ) < 0 and y′′(ζ ) < 0, then a constant K > 0 exists such that

y′′(ζ ) ≤ −K
1
α

a
1
α (ζ )

< 0 for ζ ≥ ζ3 > ζ2, which on integration from ζ3 to ζ gives

y′(ζ ) ≤ y′(ζ3) − K
1
α

∫ ζ

ζ3

1

a
1
α (s)

ds.

Letting ζ → ∞ and using (A5), we get limζ→∞ y′(ζ ) = −∞. Therefore, y′(ζ ) < 0.
But conditions y′′(ζ ) < 0 and y′(ζ ) < 0 imply that y(ζ ) < 0, which contradicts our
assumption y(ζ ) > 0.

Case 2: For this case we have following two sub-cases:
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Case 21: Let y′(ζ ) < 0 for ζ ≥ ζ2. This case is excluded because of the choice
limζ→∞ x(ζ ) 	= 0.
Case 22: Let y′(ζ ) > 0 for ζ ≥ ζ2. From the associated function y(ζ ), we have

y(ζ ) = x(ζ ) + (
b(ζ )x(σ (ζ ))− p2(ζ )xκ(σ (ζ ))

) + (
p1(ζ )xν(σ (ζ ))−b(ζ )x(σ (ζ ))

)
,

or,

x(ζ ) = y(ζ ) − (
b(ζ )x(σ (ζ ))− p2(ζ )xκ(σ (ζ ))

) − (
p1(ζ )xν(σ (ζ )) − b(ζ )x(σ (ζ ))

)
.

(3.7)

If we apply (2.1) to [b(ζ )x(σ (ζ )) − p2(ζ )xκ(σ (ζ ))] with ϕ = κ > 1, X =
p

1
κ

2 (ζ )x(σ (ζ )) and Y =
(

1
κ
b(ζ )p

−1
κ

2 (ζ )

) 1
κ−1

, we get

(
b(ζ )x(σ (ζ )) − p2(ζ )xκ(σ (ζ ))

) ≤ (κ − 1)κ
κ

1−κ p
1

1−κ

2 (ζ )b
κ

κ−1 (ζ ) := g2(ζ ).

Similarly, if we apply (2.2) to [p1(ζ )xν(σ (ζ )) − b(ζ )x(σ (ζ ))] with ϕ = ν < 1,

X = p
1
ν

1 (ζ )x(σ (ζ )) and Y =
(

1
ν
b(ζ )p

−1
ν

1 (ζ )

) 1
ν−1

, we get

(p1(ζ )xν(σ (ζ )) − b(ζ )x(σ (ζ ))) ≤ (1 − ν)ν
ν

1−ν p
1

1−ν

1 (ζ )b
ν

ν−1 (ζ ) := g1(ζ ).

Thus, from (3.7), we see that

x(ζ ) ≥
[
1 − g1(ζ ) + g2(ζ )

y(ζ )

]
y(ζ ). (3.8)

Since y(ζ ) > 0 is increasing, a constant C > 0 for ζ3 > ζ2 exists such that y(ζ ) ≥ C

for ζ ≥ ζ3 and so, we have

x(ζ ) ≥
[
1 − g1(ζ ) + g2(ζ )

C

]
y(ζ ) for ζ ≥ ζ3. (3.9)

Now, in view of (3.1), a constant c ∈ (0, 1) exists such that

x(ζ ) ≥ cy(ζ ). (3.10)

Thus, we have

(
a(ζ )(y′′(ζ ))α

)′ ≤ −cγ q(ζ )yγ
(
τ(ζ )

) − cλ p(ζ )yλ
(
ω(ζ )

)
. (3.11)

Since y′(ζ ) > 0, then the last inequality can be written as

(
a(ζ )(y′′(ζ ))α

)′ ≤ −cγ q(ζ )yγ (τ (ζ )). (3.12)
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Because y′′(ζ ) > 0 and y′(ζ ) > 0 for ζ ≥ ζ3, then following [1, Lemma 2.2.3], a
constant k ∈ (0, 1) exists such that

y′(ζ ) ≥ k A(ζ, ζ1)a
1
α (ζ )y′′(ζ ).

Integrating this inequality from ζ3 to ζ , we get

y(ζ ) ≥
(
k

∫ ζ

ζ3

A(s, ζ1)ds)

)
a

1
α (ζ )y′′(ζ ).

Using this inequality in (3.12) and setting W (ζ ) = a(ζ )(y′′(ζ ))α , we have

W ′(ζ ) + θ1q(ζ )

(∫ τ(ζ )

ζ3

A(s, ζ1)ds

)γ

W
γ
α (τ (ζ )) ≤ 0, (3.13)

where θ1 = (ck)γ ∈ (0, 1). It follows from Lemma 2.1 (I) that the corresponding
differential Eq. (3.3) also has a positive solution, which is a contradiction.

Case 3: For y(ζ ) < 0, we consider

ŷ(ζ ) = −y(ζ ) = −x(ζ ) − p1(ζ )xν(σ (ζ )) + p2(ζ )xκ(σ (ζ )) ≤ p2(ζ )xκ(σ (ζ )),

or,

x(σ (ζ )) ≥
(

ŷ(ζ )

p2(ζ )

) 1
κ

,

or,

x(ζ ) ≥
(

ŷ(σ−1(ζ ))

p2(σ−1(ζ ))

) 1
κ

and so,

(
a(ζ )(ŷ′′(ζ ))α

)′ ≥ q(ζ )xγ (τ (ζ ))

≥ q(ζ )
(
p2(σ−1(τ (ζ )))

) γ
κ

ŷ
γ
κ
(
σ−1(τ (ζ ))

) := Q(ζ )ŷ
γ
κ
(
h(ζ )

)
.

(3.14)

From ŷ′′(ζ ) < 0 and for ζ2 ≤ u ≤ v, it follows that

ŷ′(u) ≥ ŷ′(u) − ŷ′(v) = −
∫ v

u
a

−1
α (s)

(
a(s)(ŷ′′(s)α)

) 1
α ds

≥ A(v, u)
( − a

1
α (v)

)
ŷ′′(v).
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In the above inequality, we let u = τ(ζ ) and v = π(ζ ), then

ŷ′(τ(ζ )
) ≥ A(π(ζ ), τ (ζ ))

( − a
1
α (π(ζ ))

)
ŷ′′(π(ζ )

)
. (3.15)

According to [1, Lemma 2.2.3], a constant θ3 ∈ (0, 1) exists such that

ŷ(τ (ζ )) ≥ θ3τ(ζ )ŷ′(τ(ζ )
)
. (3.16)

Combining (3.16) in (3.15), we have

ŷ(τ (ζ )) ≥ θ3τ(ζ )A
(
π(ζ ), τ (ζ )

)( − a
1
α (π(ζ ))

)
ŷ′′(π(ζ )

)
. (3.17)

Using (3.17) in (3.14), we get

Y ′(ζ ) + θ2τ
γ/κ(ζ )Q(ζ )Aγ /κ

(
π(ζ ), τ (ζ )

)
Y

γ
ακ

(
π(ζ )

) ≤ 0, (3.18)

where Y (ζ ) := −a(ζ )
(
ŷ′′(ζ )

)α and θ2 = (θ3)
γ /κ . As a result of Lemma 2.1(I), the

differential Eq. (3.4) also has a positive solution, which is a contradiction.

Case 4: Clearly, we see that ŷ′′(ζ ) > 0. In this case we have ŷ′(ζ ) > 0. From Case 3,
it follows that

(
a(ζ )(ŷ′′(ζ ))α

)′ ≥ P(ζ )ŷ
λ
κ
(
h∗(ζ )

)
. (3.19)

Integrating (3.19) from μ(ζ ) to ζ , we have

a(ζ )
(
ŷ′′(ζ )

)α − a
(
μ(ζ )

)(
ŷ′′(μ(ζ ))

)α ≥
∫ ζ

μ(ζ )

P(s)ŷ
λ
κ
(
h∗(s)

)
ds

≥ ŷ
λ
κ
(
h∗(μ(ζ ))

) ∫ ζ

μ(ζ )

P(s)ds.

Therefore,

ŷ′′(ζ ) ≥ ŷ
λ
ακ

(
h∗(μ(ζ ))

)(
a

−1
α (ζ )

)
(∫ ζ

μ(ζ )

P(s)ds

) 1
α

.

An integration from μ(ζ ) to ζ yields

ŷ′(ζ ) ≥ ŷ
λ
ακ

(
ρ(ζ )

) ∫ ζ

μ(ζ )

(
a

−1
α (u)

) (∫ u

μ(u)

P(s)ds

) 1
α

du.

Consequently, ŷ(ζ ) is a positive solution of the advanced differential inequality

ŷ′(ζ ) −
[∫ ζ

μ(ζ )

(
a

−1
α (u)

) (∫ u

μ(u)

P(s)ds

) 1
α

du

]

ŷ
λ
ακ

(
ρ(ζ )

) ≥ 0. (3.20)



Asymptotic and Oscillatory Behaviour of Third Order… Page 9 of 17 15

As a result of Lemma 2.1(II), the differential Eq. (3.5) also has a positive solution,
which is a contradiction. This completes the proof. 
�

Next, we have the following corollary that follows immediately from Theorem 3.1.

Corollary 3.1 Let (A1) − (A5) hold with ν < 1 and κ > 1. Furthermore, assume
that there exists a function b ∈ C([ζ0,∞),R+) such that condition (3.1), and
non-decreasing functions μ(ζ ), η(ζ ) ∈ C([ζ0,∞),R) such that condition (3.2) are
satisfied. If

lim
ζ→∞

∫ ζ

ζ0

q(s)

(∫ τ(s)

ζ0

A(u, ζ1)du

)γ

ds = ∞ f or γ < α, (3.21)

lim
ζ→∞

∫ ζ

ζ0

Q(s)τ γ/κ(s)Aγ /κ
(
π(s), τ (s)

)
ds = ∞ f or γ < ακ, (3.22)

and

lim
ζ→∞

∫ ζ

ζ0

[∫ l

μ(l)

(
a

−1
α (u)

)(∫ u

μ(u)

P(s)ds

) 1
α

du

]

dl = ∞ f or λ > ακ, (3.23)

then every solution of Eq. (1.1) is oscillatory or converges to zero.

Proof Suppose x(ζ ) is a non-oscillatory solution of Eq. (1.1) with x(ζ ) > 0 and
limζ→∞ x(ζ ) 	= 0 for ζ ≥ ζ0. Therefore, x

(
τ(ζ )

)
> 0, x

(
σ(ζ )

)
> 0 and x

(
ω(ζ )

)
> 0

for ζ ≥ ζ1 for some ζ1 > ζ0. Proceeding as in the proof of Theorem 3.1, we arrive at
(3.13) for ζ ≥ ζ3, (3.18) for ζ > ζ2, and (3.20) for ζ > ζ2 respectively. Upon using
the fact that τ(ζ ) ≤ ζ , andW (ζ ) = a(ζ )(y′′(ζ ))α is positive and decreasing, we have
W (τ (ζ )) ≥ W (ζ ) and hence inequality (3.13) can be written as

W ′(ζ ) + θ1q(ζ )

(∫ τ(ζ )

ζ3

A(s, ζ1)ds

)γ

W
γ
α (ζ ) ≤ 0,

that is,

W ′(ζ )

W
γ
α (ζ )

+ θ1q(ζ )

(∫ τ(ζ )

ζ3

A(s, ζ1)ds

)γ

≤ 0,

which on integration from ζ4 to ζ gives

∫ ζ

ζ4

q(s)

(∫ τ(s)

ζ3

A(u, ζ1)du

)γ

ds ≤ 1

θ1

(
W 1− γ

α (ζ4)

1 − γ
α

)

and letting ζ → ∞, we get a contradiction to (3.21). The reminder of proof follows
from the inequalities (3.18) and (3.20), and noting that π(ζ ) ≤ ζ and ρ(ζ ) ≥ ζ ,
respectively. Hence, we omit the details. 
�
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The following example illustrate the applicability of Corollary 3.1.

Example 3.1 Consider

((
ζ

(
x(ζ ) + 1

ζ
x

3
7

(
ζ

2

)
− ζ x

9
7

(
ζ

2

))′′))′

+x
5
7

(
ζ

8

)
+ 1

ζ
xλ(2ζ ) = 0, ζ > ζ0 = 1, (3.24)

where α = 1, ν = 3
7 , κ = 9

7 , γ = 5
7 , λ > 9

7 , a(ζ ) = ζ , p1(ζ ) = p(ζ ) = 1
ζ
,

p2(ζ ) = ζ , q(ζ ) = 1, σ(ζ ) = ζ
2 , τ(ζ ) = ζ

8 and ω(ζ ) = 2ζ . Also, h(ζ ) = ζ
4 ,

h(ζ ) = 4ζ Q(ζ ) = 1(
ζ
4

)5/9 and P(ζ ) = (2ζ )
5
9

ζ
. Letting b = 1, it is not difficult to see

that (3.1) holds. We let μ(ζ ) = 3
4ζ , then ρ(ζ ) = 9

4ζ . Since A(ζ, ζ0) = ∫ ζ

1
ds
s = ln ζ ,

then all conditions of Corollary 3.1 are met. Indeed, from (3.21), (3.22) and (3.23),
we have

lim
ζ→∞

∫ ζ

1

(∫ s/8

1
ln u du

) 5
7

ds = ∞,

lim
ζ→∞

∫ ζ

1

1
( s
4

)5/9

( s
4

)5/9 ( s
8

(
ln

s

2
− 1

))5/9
ds = ∞,

and

lim
ζ→∞

∫ ζ

ζ0

[∫ l

3l
4

(
1

u

) (∫ u

3u
4

(2s)
5
9

s
ds

)

du

]

dl = ∞

respectively. Thus, every solution to (3.24) is oscillatory or else converges to zero.

Remark 3.1 We may note that [24, Theorem 2.1] is not applicable to (3.24) due to
the restriction that p1(ζ ) = 0 = p(ζ ) and 0 < κ ≤ 1. Apart from this, suppose
that p1(ζ ) = 0 = p(ζ ) in (3.24), then it is not difficult to see that Theorem 3.1
generalised/improved the results reported in [24]. A similar observation can be made
for the papers [11, 13, 23, 25, 39].

Now, we shall present some special cases of Theorem 3.1. First we consider the
case when p1(ζ ) = p2(ζ ) = 0, i.e., for the non-neutral equation

(
a(ζ )(x ′′(ζ )

)α
)′ + q(ζ )xγ

(
τ(ζ )

) + p(ζ )xλ
(
ω(ζ )

) = 0. (3.25)

Accordingly, Theorem 3.1 can be expressed in the following form:

Corollary 3.2 Let assumptions (A1) − (A5) hold. If there exists a number θ1 ∈ (0, 1)
such that the first order delay differential Eq. (3.3) is oscillatory, then every solution
of Eq. (3.25) is oscillatory or converges to zero.
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Following that, we consider the case when p2(ζ ) = 0, i.e., the neutral equation

(
a(ζ )

((
x(ζ ) + p1(ζ )xν(σ (ζ ))

)′′)α)′ + q(ζ )xγ
(
τ(ζ )

) + p(ζ )xλ
(
ω(ζ )

) = 0.

(3.26)

For the Eq. (3.26) with 0 < ν ≤ 1, we have the following new result:

Corollary 3.3 In addition to the hypotheses of Corollary 3.2, assume that
limζ→∞ p1(ζ ) = 0. Then every solution of Eq. (3.26) is oscillatory or converges
to zero.

For complete oscillation criteria of Eq. (3.25), we have the following result.

Theorem 3.2 Let conditions (A1) − (A5) hold. Assume that there exists a non-
decreasing function η(ζ ) ∈ C([ζ0,∞),R) such that

η1(ζ ) = η(ζ ) > ζ, η2(ζ ) = η1(η(ζ )) wi th ϕ(ζ ) = η2(τ (ζ )) < ζ. (3.27)

If there exist numbers θ1 ∈ (0, 1) such that the first order delay differential Eq. (3.3),
and

X ′(ζ ) + q(ζ )

(∫ η(τ(ζ ))

τ (ζ )

A(η(s), s)ds

)γ

X
γ
α (ϕ(ζ )) = 0 (3.28)

are oscillatory, then Eq. (3.25) is oscillatory.

Proof Let x(ζ ) be a non-oscillatory solution of Eq. (3.25), say x(ζ ) > 0, x(τ (ζ )) > 0
and x(ω(ζ )) > 0 for ζ ≥ ζ1 for some ζ1 > ζ0. Hence, a(ζ )

(
x ′′(ζ )

)α is of one sign,
that is, there exists a ζ2 ≥ ζ1 such that x ′′(ζ ) > 0 or x ′′(ζ ) < 0 for ζ ≥ ζ2. We shall
distinguish the following two cases:

1. x(ζ ) > 0, x ′′(ζ ) < 0, 2. x(ζ ) > 0, x ′′(ζ ) > 0.

Case 1: Since x ′′(ζ ) is non-increasing and negative, a constant C > 0 exists for
ζ ≥ ζ3 > ζ2 such that

a(ζ )
(
x ′′(ζ )

)α ≤ −C < 0.

Integrating the last inequality from ζ3 to ζ , we get

x ′(ζ ) ≤ x ′(ζ3) − C1/α
∫ ζ

ζ3

a−1/α(s)ds.

Letting ζ → ∞ and then using (A5), we get x ′(ζ ) → −∞. Therefore, x ′(ζ ) < 0
together with x ′′(ζ ) < 0 implies that x(ζ ) < 0, a contradiction.
Case 2: For this case, we have following two subcases:
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Case21 (x ′(ζ ) > 0):This case canbe follows from theproof ofCase 22 ofTheorem3.1
and hence we omit the details.
Case 22 (x ′(ζ ) < 0): One can easily see that x(ζ ) satisfies

(−1)i x (i)(ζ ) ≥ 0, i = 1, 2, 3.

Therefore,

−x ′(ζ ) ≥ x ′(η(ζ )) − x ′(ζ ) =
∫ η(ζ )

ζ

a
−1
α (s)ds

(
a

1
α (η(ζ ))x ′′(η(ζ ))

)
,

which implies that

−x ′(ζ ) ≥ A(η(ζ ), ζ )
(
a

1
α (η(ζ ))x ′′(η(ζ ))

)
.

Integrate this inequality from ζ to η(ζ ) yields

x(ζ ) ≥
(
a

1
α (η2(ζ ))x ′′(η2(ζ ))

)(∫ η(ζ )

ζ

A(η(s), s)ds

)

,

that is,

x(τ (ζ )) ≥
(
a

1
α (η2(τ (ζ )))x ′′(η2(τ (ζ )))

)(∫ η(τ(ζ ))

τ (ζ )

A(η(s), s)ds

)

.

Using this inequality in (3.25), we have

X ′(ζ ) + q(ζ )

(∫ η(τ(ζ ))

τ (ζ )

A(η(s), s)ds

)γ

X
γ
α (ϕ(ζ )) ≤ 0,

where X(ζ ) = a(ζ )
(
x ′′(ζ )

)α . It follows that the rest of the proof is similar to those
mentioned above, so it is omitted. This completes the proof. 
�

Finally, we consider the case when p1(ζ ) = 0, i.e., the neutral equation
(
a(ζ )

((
x(ζ ) − p2(ζ )xκ(σ (ζ ))

)′′)α)′ + q(ζ )xγ
(
τ(ζ )

) + p(ζ )xλ
(
ω(ζ )

) = 0.

(3.29)

Now, we have the following oscillation result for Eq. (3.29).

Theorem 3.3 Let the hypotheses of Theorem 3.1 hold with p1(ζ ) = 0. Then every
solution of Eq. (3.29) is oscillatory or converges to zero.
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Proof Suppose x(ζ ) is a non-oscillatory solution of (3.29) with x(ζ ) > 0 and
limζ→∞ x(ζ ) 	= 0 for ζ ≥ ζ0. Therefore, x

(
τ(ζ )

)
> 0, x

(
σ(ζ )

)
> 0 and x

(
ω(ζ )

)
> 0

for ζ ≥ ζ1 for some ζ1 > ζ0. Following the same procedure used for the proof of
Theorem 3.1, we obtain Cases 1 through 4.

If y(ζ ) = x(ζ ) − p2(ζ )xκ
(
σ(ζ )

)
is positive, then x(ζ ) ≥ y(ζ ) and so, Eq. (3.29)

becomes

(
a(ζ )

(
y′′(ζ )

)α)′ ≤ −q(ζ )yγ
(
τ(ζ )

) − p(ζ )yλ
(
ω(ζ )

)

and we may apply Corollary 3.2. For the case when y(ζ ) < 0, we apply the Theo-
rem 3.1 when the two cases, Case 3 and Case 4 hold. Therefore, we omit the details.


�

Remark 3.2 Theorem 3.3 improved or generalised the results reportted in [11, 23–25].

4 The CaseWhen � < � ≤ 1

In this section, we present some oscillation criteria for Eq. (1.1) when ν < κ ≤ 1.

Theorem 4.1 Let (A1) − (A5) hold with ν < κ ≤ 1. Assume that all the hypotheses
of the Theorem 3.1 hold, and the condition (3.1) is replaced by

lim
ζ→∞P(ζ ) = 0. (4.1)

Then the conclusion of Theorem 3.1 holds.

Proof Suppose x(ζ ) is a non-oscillatory solution of (1.1) with x(ζ ) > 0 and
limζ→∞ x(ζ ) 	= 0 for ζ ≥ ζ0. Therefore, x

(
τ(ζ )

)
> 0, x

(
σ(ζ )

)
> 0 and x

(
ω(ζ )

)
> 0

for ζ ≥ ζ1 for some ζ1 > ζ0. Following the same procedure used for the proof of
Theorem 3.1, we obtain Cases 1 through 4.

First, we consider Case 1 and 2. Clearly, we see that y′(ζ ) > 0 for ζ ≥ ζ2. It is not
difficult to see that

[p1(ζ )xν
(
σ(ζ )

)− p2(ζ )xκ
(
σ(ζ )

)] = κ

ν
p2(ζ )

[
xν

(
σ(ζ )

)ν

κ

p1(ζ )

p2(ζ )
− ν

κ

(
xν(σ (ζ ))

) κ
ν

]
.

Setting n = κ
ν

> 1, X = xν
(
σ(ζ )

)
, Y = ν

κ

(
p1(ζ )
p2(ζ )

)
and m = κ

κ−ν
, in

[p1(ζ )xν
(
σ(ζ )

) − p2(ζ )xκ
(
σ(ζ )

)], we have

[p1(ζ )xν
(
σ(ζ )

) − p2(ζ )xκ
(
σ(ζ )

)] = κ

ν
p2(ζ )

[
XY − 1

n
Xn

]
.
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Applying (2.3) to [p1(ζ )xν
(
σ(ζ )

) − p2(ζ )xκ
(
σ(ζ )

)], we obtain

[p1(ζ )xν
(
σ(ζ )

) − p2(ζ )xκ
(
σ(ζ )

)] ≤ κ

ν
p2(ζ )

(
1

m
Ym

)

= κ − ν

ν

[ν

κ
p1(ζ )

] κ
κ−ν

(p2(ζ ))
ν

ν−κ := P(ζ ).

Thus, using the last inequality to x(ζ ) = y(ζ ) − p1(ζ )xν
(
σ(ζ )

) + p2(ζ )xκ
(
σ(ζ )

)
,

we see that

x(ζ ) ≥
[
1 − P(ζ )

y(ζ )

]
y(ζ ). (4.2)

Due to non-decreasing of y(ζ ) > 0, we can find a constant C > 0 such that y(ζ ) ≥ C,
therefore, we have

x(ζ ) ≥
[
1 − P(ζ )

C

]
y(ζ ). (4.3)

Now, in view of (4.1), we can find ε ∈ (0, 1) such that

x(ζ ) ≥ εy(ζ ). (4.4)

It follows that the remainder of the proof is similar to Theorem 3.1. This completes
the proof. 
�
Remark 4.1 We may note that the results similar to Corollary 3.1-Corollary 3.2 can
also be extracted from Theorem 4.1. The details are left to the reader.

The following example illustrate the applicability of Theorem 4.1.

Example 4.1 Consider

((
1

ζ

(
x(ζ ) + 1

ζ
x

3
7

(
ζ

2

)
− x

5
7

(
ζ

2

))′′))′

+ 1

ζ 2 x
5
7

(
ζ

4

)
+ 1

ζ 2 x
λ(2ζ ) = 0, ζ > ζ0 = 1, (4.5)

whereα = 1, ν = 3
7 , κ = 5

7 , γ = 5
7 ,λ > 1, a(ζ ) = 1

ζ
, p1(ζ ) = 1

ζ
,q(ζ ) = 1

ζ 2
= p(ζ ),

p2(ζ ) = 1, σ(ζ ) = ζ
2 , τ(ζ ) = ζ

4 and ω(ζ ) = 2ζ . It is not difficult to see that (4.1)

holds. We let μ(ζ ) = 3
4ζ , then ρ(ζ ) = 9

8ζ . Since A(ζ, ζ0) = ∫ ζ

1 s ds � ζ 2

2 , then all
conditions of Theorem 4.1 are met, and thus every solution of (4.5) is either oscillatory
or converges to zero.

Remark 4.2 We may note that [24, Theorem 2.1] is not applicable to (3.24) due to the
restriction that p1(ζ ) = 0 and p(ζ ) = 0. Apart from this, suppose that p1(ζ ) = 0 =
p(ζ ) in (3.24), then it is not difficult to see that Theorem 4.1 generalised the results
reported in [24]. A similar observation can be made for the papers [11, 13, 23, 25, 39].
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5 Concluding Remark

In this paper, with the help of a novel comparison technique with the behaviour of
first order delay and/or advanced differential equations as well as an integral criterion,
several results for the oscillation and asymptotic behaviour of solutions of Eq. (1.1)
are presented. As an application of the main results, Corollary 3.1, as well as some
examples, are then presented. Articles [13, 16, 17, 24, 27, 32, 33, 43–45] are concerned
with the asymptotic behaviour and oscillation of solutions to third/odd order neutral
differential equations, which is a topic very close to our investigations but does not
compliment our findings. We present our findings in a way that is essentially new and
has high generality. Our findings are also easily applicable to higher-order equations
of the form

(
a(ζ )

(
y(n−1)(ζ )

)α)′ + q(ζ )xγ
(
τ(ζ )

) + p(ζ )xλ
(
ω(ζ )

) = 0, (5.1)

where n ∈ N and y(ζ ) = x(ζ ) + p1(ζ )xν
(
σ(ζ )

) − p2(ζ )xκ
(
σ(ζ )

)
. The details are

left to the reader.
Secondly, in this work, we have considered third-order non-linear differential equa-

tionswithmixedneutral terms in the sense of non-linearity of function, that is, sublinear
and superlinear neutral terms. Therefore, following the work [39], we raise the ques-
tion of whether it would be interesting to extend this work to third-order non-linear
differential equations with mixed neutral terms, that is, the neutral term contains both
retarded and advanced arguments. The details are left to the reader.
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