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Abstract
This paper is devoted to studying the half-linear functional dynamic equations of
second-order on an unbounded above time scale T. We present some Nehari-type
oscillation criteria for a class of second-order dynamic equations. The obtained results
show that there is a substantial improvement in the literature on second-order dynamic
equations. We include some examples illustrating the significance of our results.

Keywords Oscillation behavior · Second order · Functional dynamic equations ·
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1 Introduction

In order to combine continuous and discrete analysis, Stefan Hilger [25] has proposed
the theory of dynamic equations on time scales. In many applications, different types
of time scales can be applied. The theory of dynamic equations includes the classical
theories for the differential equations and difference equations cases, and other cases in
between these classical cases. That is, we are worthy of considering the q−difference
equations whenT =qN0 := {qλ : λ ∈ N0 for q > 1}which has important applications
in quantum theory (see [27]), and various types of time scales such asT =hN,T = N

2,

and T = Tn, where Tn is the set of the harmonic numbers, can also be considered.
See [1, 9, 10] for more details of time scales calculus.
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Oscillation phenomena take part in different models from real world applications;
we refer to the papers [23, 30] formodels frommathematical biologywhere oscillation
and/or delay actions may be formulated by means of cross-diffusion terms. The study
of half-linear dynamic equations is dealt with in this paper because these equations
arise in various real-world problems such as non-Newtonian fluid theory, the turbulent
flowof a polytrophic gas in a porousmedium, and in the study of p−Laplace equations;
see, e.g., the papers [4, 7, 8, 12, 29, 37] for more details. Therefore, we are concerned
with the behavior of the oscillatory solutions to the half-linear functional dynamic
equation of second-order

[
a(t)φβ

(
y�(t)

)]� + b(t)φβ (y(k(t))) = 0 (1)

on an arbitrary unbounded above time scale T, where t ∈ [t0,∞)T := [t0,∞) ∩ T,
t0 ≥ 0, t0 ∈ T, φβ(u) := |u|β−1 u, β > 0, b is a positive rd-continuous function on
T, k : T → T is a rd-continuous function satisfying limt→∞ k(t) = ∞, and a is a

positive rd-continuous function onT such that a� ≥ 0 such that
∫ ∞
t0

a− 1
β (τ )�τ = ∞.

By a solution of Eq. (1) wemean a nontrivial real–valued function y ∈ C1
rd[ty,∞)T

for some ty ≥ t0 with t0 ∈ T such that y�, a(t)φβ

(
y�(t)

) ∈ C1
rd[ty,∞)T and

y(t) satisfies Eq. (1) on [ty,∞)T, where Crd is the space of right-dense continuous
functions. It may be noted that in a particular case when T = R then

μ(t) = 0, η�(t) = η′(t),
∫ b

a
η(t)�t =

∫ b

a
η(t)dt,

and the equation (1) becomes the half-linear differential equation

[
a(t)φβ

(
y′(t)

)]′ + b(t)φβ (y(k(t))) = 0. (2)

The oscillation properties of special cases of equation (2) are investigated by Nehari
[32] as follows: every solution of the linear differential equation

y′′(t) + b(t)y(t) = 0, (3)

is oscillatory if

lim inf
t→∞

1

t

∫ t

t0
τ 2b(τ )dτ >

1

4
, (4)

We will show that our results not only extend some of the known oscillation results for
differential equations, but we can also perform these results on other cases in which
the oscillatory behaviour of solutions to these equations on various types of time scales
is not known. Notice that, if T = Z, then

μ(t) = 1, η�(t) = �η(t),
∫ b

a
η(t)�t =

b−1∑

t=a

η(t),
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and (1) becomes the half-linear difference equation

�
[
a(t)φβ (�y(t))

] + b(t)φβ (y(k(t))) = 0. (5)

If T = hZ, h > 0, thus

μ(t) = h, η�(t) = �hη(t) = η(t + h) − η(t)

h
,

∫ b

a
η(t)�t =

b−a−h
h∑

k=0

η(a + kh)h,

and (1) gets the half-linear difference equation

�h
[
a(t)φβ (�h y(t))

] + b(t)φβ (y(k(t))) = 0. (6)

If

T =qN0 = {t : t = qk, k ∈ N0, q > 1},

then

μ(t) = (q − 1)t, η�(t) = �qη(t) = y(q t) − y(t)

(q − 1) t
,

∫ ∞

t0
η(t)�t =

∞∑

k=n0

η(qk)μ(qk),

where t0 = qn0 , and (1) becomes the half-linear q−difference equation

�q
[
a(t)φβ

(
�q y(t)

)] + b(t)φβ (y(k(t))) = 0. (7)

If

T = N
2
0 := {n2 : n ∈ N0},

then

μ(t) = 1 + 2
√
t, �qη(t) = η((

√
t + 1)2) − η(t)

1 + 2
√
t

,

and (1) converts to the half-linear difference equation

�N
[
a(t)φβ (�N y(t))

] + b(t)φβ (y(k(t))) = 0. (8)
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If T = {Hn : n ∈ N0} where Hn is the harmonic numbers defined by

H0 = 0, Hn =
n∑

k=1

1

k
, n ∈ N,

then

μ(Hn) = 1

n + 1
, η�(t) = �Hnη(Hn) = (n + 1)�η(Hn),

and (1) becomes the half-linear harmonic difference equation

�Hn

[
a(Hn)φβ

(
�Hn y(Hn)

)] + b(Hn)φβ (y(k(Hn))) = 0. (9)

For Nehari-type oscillation criteria of second-order dynamic equations, Erbe et al.
[20] examined the nonlinear dynamic equation

((
y�(t)

)β
)� + b(t)yβ(k(t)) = 0, (10)

where β ≥ 1 is a quotient of odd positive integers and k(t) ≤ t for t ∈ T and showed
that every solution of (10) is oscillatory, if

∫ ∞

t0
kβ(τ )b(τ )�τ = ∞ (11)

and

lim inf
t→∞

1

t

∫ t

t0
τβ+1

(
k(τ )

σ (τ)

)β

b(τ )�τ +lim inf
t→∞ tβ

∫ ∞

σ(t)

(
k(τ )

σ (τ)

)β

b(τ )�τ >
1

lβ(β+1)
,

(12)

where l := lim inf t→∞t/σ(t) > 0.Erbe et al. [21] investigatedNehari-type oscillation
criterion for the half-linear dynamic equation

(
a(t)

(
y�(t)

)β
)� + b(t)yβ(k(t)) = 0, (13)

where 0 < β ≤ 1 is a quotient of odd positive integers, a� ≥ 0, and k(t) ≤ t for
t ∈ T and proved that every solution of (13) is oscillatory, if (11) holds,

∫ ∞

t0
a− 1

β (τ )�τ = ∞, (14)
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and

lim inf
t→∞

1

t

∫ t

t0

τβ+1

a(τ )

(
k(τ )

σ (τ )

)β

b(τ )�τ + lim inf
t→∞

tβ

a(t)

∫ ∞
σ(t)

(
k(τ )

σ (τ )

)β

b(τ )�τ >
1

lβ(β+1)
,

(15)

where l := lim inf t→∞t/σ(t) > 0.
We refer the reader to associated results [2, 5–8, 11, 14, 16, 19, 22, 24, 31, 33–

35, 38] and the references cited therein. It may be noted that the contributions of
Nehari [32] strongly motivated research in this paper. The objective of this paper is to
conclude some Nehari-type oscillation criteria for Eq. (1) in the cases where k(t) ≤t
and k(t) ≥t . Besides, we reference that, contrary to [20, 21], a restrictive condition
(11) is not needed in our oscillation theorems, and also, our results can function for any
positive real numbers β. All functional inequalities deemed in the sequel are tacitly
supposed to hold eventually. That is, they are satisfied for all sufficiently large t .

2 Main Results

We start this section with the following introductory lemmas.

Lemma 1 ([12, Lemma 2.1]) Suppose that (14) holds. If y is a positive solution of
Eq. (1) on [t0,∞)T, then

y�(t) > 0 and
[
a(t)φβ

(
y�(t)

)]�
< 0

eventually.

Lemma 2 ([12, Lemma 2.2]) If

y(t) > 0, y�(t) > 0,
[
a(t)φβ

(
y�(t)

)]� ≤ 0 on [t0,∞)T,

then
y(t)

t − t0
is strictly decreasing on (t0,∞)T.

In the sequel we will use the following notations l := lim inf t→∞
t

σ(t)
and

ϕ(t) :=
⎧
⎨

⎩

1, k(t) ≥ t,
[
k(t)

t

]β

, k(t) ≤ t .

Theorem 1 Suppose that (14) holds. If l > 0 and

lim inf
t→∞

1

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ >

1

lβ(β+1)+1

(
1 − lβ+1

β + 1

)
, (16)
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for sufficiently large T ∈ [t0,∞)T, then all solutions of Eq. (1) are oscillatory.

Proof Assume y is a nonoscillatory solution of Eq. (1) on [t0,∞)T. Then, let y(t) > 0
and y(k(t)) > 0 on [t0,∞)T, without loss of generality. From Lemma 1, we see that

[
a(t)φβ

(
y�(t)

)]�
< 0 and y�(t) > 0 for t ≥ t0.

Define

x(t) := a(t)φβ

(
y�(t)

)

yβ(t)
. (17)

By the rules of product and quotient, we get

x�(t) =
(
a(t)φβ

(
y�(t)

)

yβ(t)

)�

= 1

yβ(t)

[
a(t)φβ

(
y�(t)

)]�

+
(

1

yβ(t)

)� [
a(t)φβ

(
y�(t)

)]σ

=
[
a(t)φβ

(
y�(t)

)]�

yβ(t)
− (yβ(t))�

yβ(t)yβ(σ (t))

[
a(t)φβ

(
y�(t)

)]σ
. (18)

From (1) and the definition of x(t), we have

x�(t) = −b(t)

(
y (k(t))

y(t)

)β

− (yβ(t))�

yβ(t)
x (σ (t)) .

Let t ∈ [t0,∞)T be fixed. When k(t) ≤ t , in view of Lemma 2,

(
y(t)

t − t0

)�

< 0 on

(t0,∞)T, we obtain

y(k(t))

y(t)
≥ k(t) − t0

t
for t ≥ k(t) > t0.

Then there exists tλ ∈ [t0,∞)T, for each 0 < λ < 1, such that

y(k(t)) ≥ λ
k(t)

t
y(t) for t ≥ tλ.

If k(t) ≥ t , then y(k(t)) ≥ y(t) > λy(t) for t ≥ tλ. In both cases, from the definition
of ϕ(t) we have that

yβ(k(t)) ≥ λβϕ(t)yβ(t) for t ≥ tλ. (19)
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Therefore

x�(t) ≤ −λβϕ(t)b(t) − (yβ(t))�

yβ(t)
x (σ (t)) for t ∈ [tλ,∞)T. (20)

Using the Pötzsche chain rule to get

(yβ(t))� = β

(∫ 1

0

[
y(t) + hμ(t)y�(t)

]β−1
dh

)
y�(t)

= β

(∫ 1

0
[(1 − h) y(t) + hy (σ (t))]β−1 dh

)
y�(t)

>

{
β yβ−1 (σ (t)) y�(t), 0 < β ≤ 1,
β yβ−1(t)y�(t), β ≥ 1.

If 0 < β ≤ 1, then

x�(t) < −λβϕ(t)b(t) − β
y�(t)

y (σ (t))

(
y (σ (t))

y(t)

)β

x (σ (t)) ;

and if β ≥ 1, then

x�(t) ≤ −λβϕ(t)b(t) − β
y�(t)

y (σ (t))

y (σ (t))

y(t)
x (σ (t)) .

Note that y(t) is strictly increasing and a
1
β y� is strictly decreasing, we see that for

β > 0 and t ∈ [tλ,∞)T,

x�(t) ≤ −λβϕ(t)b(t) − β
y�(t)

y (σ (t))
x (σ (t))

= −λβϕ(t)b(t) − βa− 1
β (t)x

β+1
β (σ (t)) . (21)

Multiplying by
tβ+1

a(t)
and integrating from T to σ (t) ∈ [tλ,∞)T, we obtain

∫ σ(t)

T

τβ+1

a(τ )
x�(τ)�τ ≤ −λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β

∫ σ(t)

T

[
τβ xσ (τ )

a(τ )

] β+1
β

�τ.

(22)

Now for any ε > 0, there exists t ≥ tλ such that

t

σ(t)
≥ l − ε and tβ

(
x(t)

a(t)

)σ

≥ a∗ − ε for t ∈ [tλ,∞)T, (23)
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where

l = lim inf
t→∞

t

σ(t)
and a∗ = lim inf

t→∞ tβ
(
x (t)

a(t)

)σ

.

It follows from (22) that

∫ σ(t)

T

τβ+1

a(τ )
x�(τ)�τ ≤ −λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

−β (l − ε)β+1
∫ σ(t)

T

[(
τβ

a(τ )
x(τ )

)σ
] β+1

β

�τ.

Using integration by parts, we obtain

(
tβ+1

a(t)
x(t)

)σ

≤ T β+1

a(T )
x(T ) − λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+
∫ σ(t)

T

(
τβ+1

a(τ )

)�

xσ (τ ) �τ

−β (l − ε)β+1
∫ σ(t)

T

[(
τβ

a(τ )
x(τ )

)σ
] β+1

β

�τ. (24)

Utilizing the quotient rule and applying the Pötzsche chain rule, we see

(
τβ+1

a(τ )

)�

=
(
τβ+1

)�

aσ (τ )
− τβ+1a�(τ)

a(τ )aσ (τ )
(25)

≤
(
τβ+1

)�

aσ (τ )
(26)

≤ (β + 1)

(
τβ

a(τ )

)σ

(27)

≤ (β + 1)
σβ (τ )

a(τ )
. (28)

Hence

(
tβ+1

a(t)
x(t)

)σ

≤ T β+1

a(T )
x(T ) − λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+
∫ σ(t)

T

[

(β + 1)

(
τβ

a(τ )
x(τ )

)σ

−β (l − ε)β+1

[(
τβ

a(τ )
x(τ )

)σ
] β+1

β

⎤

⎦ �τ.
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Using the inequality

Bu − Au
β+1
β ≤ ββ

(β + 1)β+1

Bβ+1

aβ
, (29)

with A = β (l − ε)β+1 , B = β + 1 and u =
(

τβ

a(τ )
x(τ )

)σ

, we obtain

(
tβ+1

a(t)
x(t)

)σ

≤ T β+1

a(T )
x(T ) − λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)
(σ (t) − T ) . (30)

Dividing by t , we get

tβ
(
x(t)

a(t)

)σ

≤ 1

t

(
tβ+1

a(t)
x(t)

)σ

≤
T β+1

a(T )
x(T )

t
− λβ

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
σ (t)

t
− T

t

)

≤
T β+1

a(T )
x(T )

t
− λβ

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
1

l − ε
− T

t

)
.

Taking the lim sup as t → ∞ to get

R ≤ − lim inf
t→∞

λβ

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

(l − ε)β(β+1)+1
,

where

R := lim sup
t→∞

tβ
(
x(t)

a(t)

)σ

. (31)

Since ε > 0 and 0 < λ < 1 are arbitrary, we get

R ≤ − lim inf
t→∞

1

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

lβ(β+1)+1
. (32)
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Multiplying both sides of (21) by
tβ+1

a(t)
, we obtain

tβ+1

a(t)
x�(t) ≤ −λβ t

β+1

a(t)
ϕ(t)b(t) − β

(
tβ

a(t)
xσ (t)

) β+1
β

≤ −λβ t
β+1

a(t)
ϕ(t)b(t) − β

(
tβ

(
x(t)

a(t)

)σ ) β+1
β

.

Using (23) gives

tβ+1

a(t)
x�(t) ≤ −λβ t

β+1

a(t)
ϕ(t)b(t) − β (a∗ − ε)

β+1
β for t ∈ [tλ,∞)T. (33)

Integrating (33) from T to σ (t) ∈ [tλ,∞)T, we obtain

∫ σ(t)

T

τβ+1

a(τ )
x�(τ)�τ ≤ −λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

−β (a∗ − ε)
β+1
β (σ (t) − T ) .

By integrating by parts, we conclude that

(
tβ+1

a(t)
x(t)

)σ

≤ T β+1

a(T )
x(T ) +

∫ σ(t)

T

(
τβ+1

a(τ )

)�

xσ (τ )�τ

−λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β (a∗ − ε)

β+1
β (σ (t) − T ) .

By using (27) , we get

(
tβ+1

a(t)
x(t)

)σ

≤ T β+1

a(T )
x(T ) + (β + 1)

∫ σ(t)

T

(
τβ

a(τ )
x (τ )

)σ

�τ

−λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

−β (a∗ − ε)
β+1
β (σ (t) − T )

≤ T β+1

a(T )
x(T ) + (β + 1)

R + ε

(l − ε)β
[σ (t) − T ]

−λβ

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

−β (a∗ − ε)
β+1
β (σ (t) − T ) . (34)
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Dividing both sides by t, we have

tβ
(
x(t)

a(t)

)σ

≤ 1

t

(
tβ+1

a(t)
x(t)

)σ

≤
T β+1

a(T )
x(T )

t
+ (β + 1)

R + ε

(l − ε)β

[
σ (t)

t
− T

t

]

−λβ

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β (a∗ − ε)

β+1
β

[
σ (t)

t
− T

t

]

≤
T β+1

a(T )
x(T )

t
+ (β + 1)

R + ε

(l − ε)β

[
1

l − ε
− T

t

]

−λβ

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β (a∗ − ε)

β+1
β

[
1 − T

t

]
.

Taking the lim sup as t → ∞ and using (31) , we get

R ≤ (β + 1)
R + ε

(l − ε)β+1 − lim inf
t→∞

λβ

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β (a∗ − ε)

β+1
β .

Since ε > 0 and 0 < λ < 1 are arbitrary, we have

lim inf
t→∞

1

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ R

lβ+1

(
β + 1 − lβ+1

)
− βa

β+1
β∗ . (35)

Substituting (32) into (35) , we achieve

lim inf
t→∞

1

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ 1

lβ(β+1)+1

(
1 − lβ+1

β + 1

)
,

which contradicts the condition (16) . The proof is completed. ��

Theorem 2 Suppose that (14) holds. If l > 0 and

lim inf
t→∞

1

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ >

1

lβ(β+1)

(
1 − lβ

β + 1

)
, (36)

for sufficiently large T ∈ [t0,∞)T, then all solutions of Eq. (1) are oscillatory.

Proof Assume y is a nonoscillatory solution of Eq. (1) on [t0,∞)T. Then, let y(t) > 0
and y(λ(t)) > 0 on [t0,∞)T, without loss of generality. From Lemma 1 , we see that

[
a(t)φβ

(
y�(t)

)]�
< 0 and y�(t) > 0 for t ≥ t0.
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As shown in the proof of Theorem 1, (30) and (34) hold for sufficiently large t ∈
[t0,∞)T. Dividing both sides of (30) by σ (t) , we obtain

tβ
(
x(t)

a(t)

)σ

≤
(

tβ

a(t)
x(t)

)σ

≤
T β+1

a(T )
x(T )

σ (t)
− λβ

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
1 − T

σ (t)

)

≤
T β+1

a(T )
x(T )

σ (t)
− λβ

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
1 − T

σ (t)

)
.

Taking the lim sup as t → ∞ to obtain

R ≤ − lim inf
t→∞

λβ

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

(l − ε)β(β+1)
.

Since ε > 0 and 0 < λ < 1 are arbitrary, we get inequality

R ≤ − lim inf
t→∞

1

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

lβ(β+1)
. (37)

Dividing both sides by of (34) σ (t) , we obtain

tβ
(
x(t)

a(t)

)σ

≤
(
tβx (t)

a(t)

)σ

≤
T β+1

a(T )
x(T )

σ (t)
+ (β + 1)

R + ε

(l − ε)β

[
1 − T

σ (t)

]

− λβ

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β (a∗ − ε)

β+1
β

[
1 − T

σ (t)

]
.

Taking the lim sup as t → ∞ and utilizing (31), we see

R ≤ (β + 1)
R + ε

(l − ε)β
− lim inf

t→∞
λβ

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β (a∗ − ε)

β+1
β .

Since ε > 0 and 0 < λ < 1 are arbitrary, we have

lim inf
t→∞

1

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ R

lβ
(
β + 1 − lβ

) − βa
β+1
β∗ . (38)
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Substituting (37) into (38) , we achieve

lim inf
t→∞

1

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ 1

lβ(β+1)

(
1 − lβ

β + 1

)
,

which contradicts the condition (36) . The proof is completed. ��

Example 1 Consider the dynamic equations of second-order for t ∈ [t0,∞)T,

y��(t) + α

t2
y(t) = 0 (39)

and

y��(t) + α

t2
y(σ (t)) = 0, (40)

where l = lim inf t→∞t/σ(t) > 0 and α > 0 is a constant. It is not difficult to derive

that all solutions of (39) and (40) are oscillatory if α > 1
l3

(
1 − l2

2

)
or α > 1

l2
(
1 − l

2

)

by using Theorems 1 and 2 respectively.

Theorem 3 Suppose that (14) holds. If l > 0 and

lim inf
t→∞

1

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ >

1

lβ(β+1)

(
1 − lβ

β + 1

)
, (41)

for sufficiently large T ∈ [t0,∞)T, then all solutions of Eq. (1) are oscillatory.

Proof Assume y is a nonoscillatory solution of Eq. (1) on [t0,∞)T. Then, let y(t) > 0
and y(k(t)) > 0 on [t0,∞)T, without loss of generality. From Lemma 1, we see that

[
a(t)φβ

(
y�(t)

)]�
< 0 and y�(t) > 0 for t ≥ t0.

As shown in the proof of Theorem 1, (21) holds for sufficiently large t ∈ [t0,∞)T.

Multiply (21) by
tβ+1

a(t)
and integrating from T to t ∈ [tλ,∞)T, we get

∫ t

T

τβ+1

a(τ )
x�(τ)�τ ≤ −λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β

∫ t

T

[
τβxσ (τ )

a(τ )

] β+1
β

�τ

≤ −λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ − β

∫ t

T

[
τβ

(
x(τ )

a(τ )

)σ ] β+1
β

�τ.

Progressing as in the proof of Theorem 1, we arrive that
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tβ+1

a(t)
x(t) ≤ T β+1

a(T )
x(T ) − λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

(l − ε)β(β+1)
(t − T ) .

(42)

Dividing both sides by t , we obtain

tβ
(
x(t)

a(t)

)σ

≤ tβ

a(t)
x(t) ≤

T β+1

a(T )
x(T )

t
− λβ

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
1 − T

t

)

≤
T β+1

a(T )
x(T )

t
− λβ

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
1 − T

t

)
.

Taking the lim sup as t → ∞, we see

R ≤ − lim inf
t→∞

λβ

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

(l − ε)β(β+1)
.

Since ε > 0 and 0 < λ < 1 are arbitrary, we get inequality

R ≤ − lim inf
t→∞

1

t

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

lβ(β+1)
. (43)

Again, multiplying (21) by
tβ+1

a(t)
, we get

tβ+1

a(t)
x�(t) ≤ −λβ t

β+1

a(t)
ϕ(t)b(t) − β

(
tβxσ (t)

a(t)

) β+1
β

≤ −λβ t
β+1

a(t)
ϕ(t)b(t) − β

((
tβ

x (t)

a(t)

)σ ) β+1
β

(
t

σ(t)

)β+1

. (44)

Progressing as in the proof of Theorem 1, we arrive that

R ≤ (β + 1)
R + ε

(l − ε)β
− lim inf

t→∞
λβ

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ.

Since ε > 0 and 0 < λ < 1 are arbitrary, we get

lim inf
t→∞

1

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ R

lβ
(
β + 1 − lβ

)
. (45)



Nehari-type Oscillation Theorems Page 15 of 20 13

Substituting (43) into (45) , we achieve

lim inf
t→∞

1

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ 1

lβ(β+1)

(
1 − lβ

β + 1

)
,

which contradicts the condition (41) . The proof is completed. ��
Example 2 Consider a nonlinear dynamic equation of second-order for t ∈ [t0,∞)T,

[
a(t)φβ

(
y�(t)

)]� + γ a(t)

tkβ(t)
φβ (y(k(t))) = 0, k(t) ≤ t, (46)

where γ > 0 is a constant and l = lim inf t→∞t/σ(t) > 0. Let b(t) = γ a(t)/(tkβ(t)).
Therefore,

lim inf
t→∞

1

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ = lim inf

t→∞ γ

(
1 − T

t

)
= γ.

Employment of Theorem 3 means that every solution of (46) is oscillatory if

γ >
1

lβ(β+1)

(
1 − lβ

β + 1

)
.

Theorem 4 Suppose that (14) holds. If l > 0 and

lim inf
t→∞

1

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ >

1

lβ(β+1)

(
1 − lβ+1

β + 1

)
, (47)

for sufficiently large T ∈ [t0,∞)T, then every solution of Eq. (1) is oscillatory.

Proof Assume y is a nonoscillatory solution of Eq. (1) on [t0,∞)T. Then, let y(t) > 0
and y(k(t)) > 0 on [t0,∞)T, without loss of generality. From Lemma 1, we see that

[
a(t)φβ

(
y�(t)

)]�
< 0 and y�(t) > 0 for t ≥ t0.

As shown in the proof of Theorem 3, (42) and (44) hold for sufficiently large tλ ∈
[t0,∞)T. Dividing both sides of (42) by σ (t) , we obtain

tβ
(
x(t)

a(t)

)σ

(l − ε) ≤
T β+1

a(T )
x(T )

σ (t)

≤
T β+1

a(T )
x(T )

σ (t)
− λβ

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
t

σ (t)
− T

σ (t)

)
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≤
T β+1

a(T )
x(T )

σ (t)
− λβ

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

+ 1

(l − ε)β(β+1)

(
1 − T

σ (t)

)
.

Taking the lim sup as t → ∞ we get

R (l − ε) ≤ − lim inf
t→∞

λβ

σ (t)

∫ t

t

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

(l − ε)β(β+1)
.

Since 0 < λ < 1 and ε > 0 are arbitrary, we get inequality

Rl ≤ − lim inf
t→∞

1

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ + 1

lβ(β+1)
. (48)

Integrating the inequality (44) from t to t ∈ [t,∞)T to obtain

∫ t

T

τβ+1

a(τ )
x�(τ)�τ ≤ −λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

−β (l − ε)β+1 (a∗ − ε)
β+1
β (t − t)

≤ −λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ.

By integrating by parts, we obtain

tβ+1

a(t)
x(t) ≤ T β+1

a(t)
x(T ) +

∫ t

T

(
τβ+1

a(τ )

)�

xσ (τ )�τ

−λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ.

By using (27) , we get

tβ+1

a(t)
x(t) ≤ T β+1

a(T )
x(T ) + (β + 1)

∫ t

T

(
τβ

a(τ )
x (τ )

)σ

�τ

−λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

≤ T β+1

a(T )
x(T ) + (β + 1)

R + ε

(l − ε)β
[t − T ]

−λβ

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ.
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Dividing both sides by σ (t) , we have

tβ
(
x (t)

a(t)

)σ

(l − ε) ≤ tβ+1x (t)

σ (t) a(t)
(l − ε)

≤
T β+1

a(T )
x(T )

σ (t)
+ (β + 1)

R + ε

(l − ε)β

[
t

σ(t)
− T

σ (t)

]

− λβ

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

≤
T β+1

a(T )
x(T )

σ (t)
+ (β + 1)

R + ε

(l − ε)β

[
1 − T

σ (t)

]

− λβ

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ.

Taking the lim sup as t → ∞ and utilizing (31) , we get

Rl ≤ (β + 1)
R + ε

(l − ε)β
− lim inf

t→∞
λβ

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ.

Since ε > 0 and 0 < λ < 1 are arbitrary, we see

lim inf
t→∞

1

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ R

lβ

(
β + 1 − lβ+1

)
. (49)

Substituting (48) into (49) , we achieve

lim inf
t→∞

1

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≤ 1

lβ(β+1)

(
1 − lβ+1

β + 1

)
,

which contradicts the condition (47) . The proof is completed. ��

3 Discussions and Conclusions

(1) In this paper, several new Nehari-type criteria are presented that can be applied to
Eq. (1) are valid for various types of time scales, e.g., T = R,T = Z,T = hZ
with h > 0, T = qN0 with q > 1, etc. (see [9]).

(2) The results in this paper are including the both cases and also we do not need to
assume k(t) ≥ t or k(t) ≤ t , for all sufficiently large t .

(3) We note that Theorems 2 and 3 improve Theorem 4, namely, conditions (36) and
(41) improve (47) ; see the following details:
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1

σ (t)

∫ σ(t)

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ ≥ 1

σ (t)

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

≤ 1

t

∫ t

T

τβ+1

a(τ )
ϕ(τ)b(τ )�τ

and

1 − lβ

β + 1
≤ 1 − lβ+1

β + 1
.

(4) It would be interesting to extend the sharp Nehari-type criterion that the solutions

of the second-order Euler differential equation y′′(t) + γ

t2
y(t) = 0 are oscillatory

when γ >
1

4
to a second-order dynamic equation, see [32].
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