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Abstract
For the water waves, people consider some dispersive systems. Describing the nonlin-
ear and dispersive long gravity waves travelling along two horizontal directions in the
shallow water of uniform depth, we now symbolically compute a (2+1)-dimensional
generalized modified dispersive water-wave system. With respect to the height of the
water surface and horizontal velocity of the water wave, with symbolic computation,
we work out (1) a set of the scaling transformations, (2) a set of the hetero-Bäcklund
transformations, from that system to a known linear partial differential equation, and
(3) four sets of the similarity reductions, each of which is from that system to a known
ordinary differential equation. We pay attention that our hetero-Bäcklund transforma-
tions and similarity reductions rely on the coefficients in that system.
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1 Introduction

As yet, for the sake of studying the water waves (including the soliton consider-
ations) [1–14], people have used such systems/equations as a variable-coefficient
nonlinear dispersive-wave system describing the long gravity water waves in a shal-
low oceanic environment [9], a variable-coefficient generalized dispersive water-wave
system describing the long weakly-nonlinear and weakly-dispersive surface waves of
variable depth in the shallow water [10, 11], a generalized (2+1)-dimensional disper-
sive long-wave system describing the nonlinear and dispersive long gravity waves in
two horizontal directions on the shallow water of an open sea or a wide channel of
finite depth [12], types of the nonlocal Boussinesq equations in the water waves [15,
16], an extended Kadomtsev-Petviashvili equation in a fluid [17], a (3+1)-dimensional
Kadomtsev-Petviashvili equation [18], (2+1)- and (3+1)-dimensional extended shal-
low water wave equations [19], (2+1)- and (3+1)-dimensional shallow water wave
equations [20], shallow water equations from the generalized Camassa-Holm frame-
work [21], coupled Ramani and Nizhnik-Novikov-Veselov systems [22] and nonlinear
time fractional partial differential equations [23]. Other relevant systems and/or mod-
els in fluid mechanics have been reported, e.g., in Refs. [24–28].

Another example, which we purpose to investigate, is a (2+1)-dimensional gener-
alized modified dispersive water-wave system describing the nonlinear and dispersive
long gravity waves travelling along two horizontal directions in the shallow water of
uniform depth, i.e.,

uyt + αuxxy − 2αvxx − βuuxy − βuxuy = 0, (1a)

vt − αvxx − β (uv)x = 0, (1b)

with u(x, y, t) meaning the height of the water surface, v(x, y, t) indicating the
horizontal velocity of the water wave, both u(x, y, t) and v(x, y, t) being the real
differentiable functions, α and β implying the real non-zero constants, while the sub-
scripts being the partial derivatives as for the scaled space variables x , y and time
variable t .

There have existed some special cases of System (1), as follows:

• when α = −1 and β = −2, describing the nonlinear and dispersive long gravity
waves travelling along two horizontal directions in the shallow water of uniform
depth, a (2+1)-dimensional Broer-Kaup-Kupershmidt system [29–31], i.e.,

uyt − uxxy + 2vxx + 2uuxy + 2uxuy = 0, (2a)

vt + vxx + 2 (uv)x = 0, (2b)

with u(x, y, t) meaning the height of the water surface, v(x, y, t) indicating the
horizontal velocity of the water wave, while x , y and t being the scaled space
variables and time variable, separately [29];

• when α = 1 and β = 2, describing the nonlinear and dispersive long gravity
waves travelling along two horizontal directions in the shallow water of uniform
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depth, a (2+1)-dimensional modified dispersive water-wave system [32], i.e.,

uyt + uxxy − 2vxx − 2uuxy − 2uxuy = 0, (3a)

vt − vxx − 2 (uv)x = 0 ; (3b)

• when α = 1
2 , β = 1 and y = x , describing the long waves in the shallow water, a

(1+1)-dimensional Broer-Kaup system [33, 34], i.e.,

ut + 1

2
uxx − vx − uux = 0, (4a)

vt − 1

2
vxx − (uv)x = 0, (4b)

with u(x, t) standing for the scaled wave horizontal velocity, while v(x, t) related
to the wave horizontal velocity and wave height [34];

• when α = −1, β = −2 and y = x , describing the long waves in the shallow
water, a (1+1)-dimensional Broer-Kaup-Kupershmidt system [29, 35], i.e.,

ut − uxx + 2vx + 2uux = 0, (5a)

vt + vxx + 2 (uv)x = 0 . (5b)

Using symbolic computation [36–43], we aim to construct out a set of the scaling
transformations, a set of the hetero-Bäcklund transformations aswell as four sets of the
similarity reductions for System (1). By the way, more symbolic-computation results
can be seen, e.g., in Refs. [44–54].

2 Scaling and Hetero-Bäcklund Transformations for System (1)

Scaling transformations can help us find certain assumptions, so as to make us con-
struct, e.g., some hetero-Bäcklund transformations [55, 56] or bilinear forms [9, 56,
57].

We work out a set of the scaling transformations

x → ρ1x, y → ρξ x, t → ρ2t, u → ρ−1u, v → ρ−1−ξ v, (6)

and then make the assumptions that

u(x, y, t) = η1wx (x, y, t) + η2, v(x, y, t) = η3wxy(x, y, t), (7)

with ρ > 0 standing for a positive constant, ξ implying an integer, while η1 �= 0, η2
and η3 �= 0 indicating three real constants.

We employ symbolic computation and Assumptions (7), integrate Eq. (1b) once in
relation to x and y, separately, with the integration functions vanishing and decide on

α = 1

2
βη1, (8)
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to get the following Bell-polynomial expression:

Yt (w) − αY2x (w) − βη2Yx (w) = 0, (9)

with the Bell polynomials defined as [58, 59]

Ymx,r y,nt (w) ≡ Ym,r ,n(w0,0,0, · · · , w0,0,n, · · · , w0,r ,0, · · · , w0,r ,n, · · · ,

wm,r ,0, · · · , wm,r ,n) = e−w∂mx ∂ry∂
n
t e

w,

w(x, y, t) as a C∞ function with respect of x , y and t , wk,g,l = ∂kx ∂
g
y ∂

l
tw (k =

0, · · · ,m, g = 0, · · · , r , l = 0, · · · , n), while m, r and n as three non-negative
integers.

Similarly, making use of symbolic computation and Assumptions (7), integrating
Eq. (1a) once in relation to x and y, separately,with the integration functions vanishing
and choosing that

α (η1 − 2η3) = −1

2
βη21, (11)

help us find a Bell-polynomial expression, i.e.,

Yt (w) − αY2x (w) − βη2Yx (w) = 0, (12)

which is the same as Bell-Polynomial Expression (9).
Further, System (1) with the assumption

w(x, y, t) = ln [h(x, y, t)] , (13)

develops into

ht (x, y, t) − α hxx (x, y, t) − βη2 hx (x, y, t) = 0, (14)

in which h(x, y, t) means a positive differentiable function.
Taking into consideration all the above, with symbolic computation, we end up

with the following set of the hetero-Bäcklund transformations for System (1):

u(x, y, t) = 2α

β

hx (x, y, t)

h(x, y, t)
+ η2, (15a)

v(x, y, t) = 2α

β

[
hxy(x, y, t)

h(x, y, t)
− hx (x, y, t)

h(x, y, t)

hy(x, y, t)

h(x, y, t)

]
, (15b)

ht (x, y, t) − α hxx (x, y, t) − βη2 hx (x, y, t) = 0 . (15c)

Eq. (15c) denotes a known linear partial differential equation, whose information has
been reported [60, 61]. Moreover, with symbolic computation, we hereby present the
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following sample solutions for Eq. (15c):

h(x, y, t) = 1 + eζ1x+ζ2(y)+(αζ 21 +βη2ζ1)t ,

where ζ1 is a real non-zero constant and ζ2(y) is a real differentiable function of y.
Explanation with the relevant physics: Eqs. (15) stand for a set of the hetero-

Bäcklund transformations, which can link the solutions h(x, y, t) of Eq. (15c) and the
solutions u(x, y, t) and v(x, y, t) of System (1). As for the nonlinear and dispersive
long gravity waves travelling along two horizontal directions in the shallow water of
uniform depth, with respect to u(x, y, t), the height of thewater surface, and v(x, y, t),
the horizontal velocity of the water wave, Hetero-Bäcklund Transformations (15) rely
on α and β, the coefficients for System (1).

3 Four Sets of the Similarity Reductions for System (1)

Choosing the assumptions

u(x, y, t) = θ(x, y, t) + ω(x, y, t)p[z(x, y, t)], (16a)

v(x, y, t) = γ (x, y, t) + κ(x, y, t)q[z(x, y, t)], (16b)

which are similar to those in Refs. [62–67], thinking about the case of zx �= 0 and
zy �= 0, and then, with symbolic computation, substituting Assumptions (16) into
System (1), we find

δ0 p
′′′ + δ1

(
pp′′ + p′2) + δ2 pp

′ + δ3 p
2 + δ4q

′′ + δ5q
′ + δ6q + δ7 p

′′

+ δ8 p
′ + δ9 p + δ10 = 0, (17a)

ψ0q
′′ + ψ1

(
pq ′ + p′q

) + ψ2 pq + ψ3q
′ + ψ4 p

′ + ψ5q + ψ6 p + ψ7 = 0, (17b)

in which

δ0 = αωz2x zy, (18a)

δ1 = −βω2zx zy, (18b)

δ2 = −βω
(
2ωyzx + 2ωx zy + ωzxy

)
, (18c)

δ3 = −β
(
ωxωy + ωωxy

)
, (18d)

δ4 = −2ακz2x , (18e)

δ5 = −2α (2κx zx + κzxx ) , (18f)

δ6 = −2ακxx , (18g)

δ7 = αzx
(
ωyzx + 2ωx zy

) + ω
(
zyzt − βθ zx zy + 2αzx zxy + αzyzxx

)
, (18h)

δ8 = (
ωt zy + ωyzt + ωzyt

) − β
(
θyωzx + θωyzx + θxωzy + θωx zy + θωzxy

)
+ α

(
2ωx zxy + 2ωxyzx + ωyzxx + ωxx zy + ωzxxy

)
, (18i)
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δ9 = ωyt − β
(
θxωy + θyωx + θxyω + θωxy

) + αωxxy, (18j)

δ10 = θyt − β
(
θxθy + θθxy

) − 2αγxx + αθxxy, (18k)

ψ0 = −ακz2x , (18l)

ψ1 = −βωκzx , (18m)

ψ2 = −β (ωκx + ωxκ) , (18n)

ψ3 = −2ακx zx + κ (zt − βθ zx − αzxx ) , (18o)

ψ4 = −βγωzx , (18p)

ψ5 = κt − β (θκx + θxκ) − ακxx , (18q)

ψ6 = −β (γxω + γωx ) , (18r)

ψ7 = γt − β (θγx + θxγ ) − αγxx , (18s)

with θ(x, y, t), ω(x, y, t) �= 0, γ (x, y, t), κ(x, y, t) �= 0 and z(x, y, t) �= 0 as the
real to-be-determined differentiable functions, p(z) and q(z) as the real differentiable
functions, while the prime sign as d/dz.

Seeing that Eqs. (17)withExpressions (18) stand for a set of the ordinary differential
equations (ODEs) as for p(z) and q(z), we require the ratios of different derivatives
and powers of p(z) and q(z) to represent the functions of z only, i.e.,

δi = �i (z)δ0, ψ j = � j (z)ψ0, (19)

with �i (z)’s (i = 0, ..., 10) and � j (z)’s ( j = 0, ..., 7) as some real to-be-determined
functions of z only. Hence, a set of the conditions for θ(x, y, t), ω(x, y, t) �= 0,
γ (x, y, t), κ(x, y, t) �= 0 and z(x, y, t) �= 0 are built up, for which any set of the
solutions could develop into, at least, a similarity reduction.

On account of the second freedom in Remark 3 in Ref. [62], Eqs. (19) with i = 1, 4
and j = 1 come to

ω(x, y, t) = ±α

β
zx , κ(x, y, t) = ∓ α

2β
zx zy, (20a)

�1(z) = ∓1, �4(z) = 1, �1(z) = ±1 . (20b)

Since the first freedom in Remark 3 in Ref. [62] helps us transform Eqs. (19) with
i = 2 into

z(x, y, t) = λ1x + λ2y + λ3t + λ4, �2(z) = 0, (21)

Eqs. (19) with i = 3, 5, 6 and j = 2 bring about

�3(z) = �5(z) = �6(z) = �2(z) = 0, (22)

with λ1 �= 0, λ2 �= 0, λ3 �= 0 and λ4 denoting the real constants.



Symbolically Computing the Shallow Water via… Page 7 of 13 17

Because the first freedom in Remark 3 in Ref. [62] makes us simplify Eqs. (19)
with j = 4 to

γ (x, y, t) = 0, �4(z) = 0, (23)

Eqs. (19) with j = 6, 7 indicate

�6(z) = �7(z) = 0 . (24)

Until now, with symbolic computation, there exist two choices of θ(x, y, t)making
�7(z) represent a constant:

Choice 1:
According to the first freedom in Remark 3 in Ref. [62], Eqs. (19) with j = 7 make

for

θ(x, y, t) = λ3

βλ1
, �7(z) = 0, (25)

as a result that Eqs. (19) with i = 8, 9, 10 and j = 3, 5 can be simplified into

�8(z) = �9(z) = �10(z) = �3(z) = �5(z) = 0 . (26)

So far, System (1) could be transformed into the following ODEs:

p′′′ ∓
(
pp′′ + p′2) + q ′′ = 0, (27a)

q ′′ ± (
p′q + pq ′) = 0 . (27b)

Thus, simplifying each of two sets of ODEs (27) into an ODE makes us find

q = −p′ ± 1

2
p2 + φ1z + φ2, (28)

and considering ODEs (27)-(28) helps us obtain

p′′ − 1

2
p3 ∓ (φ1z + φ2) p + (φ3 − φ1) = 0, (29)

with φ1, φ2 and φ3 as the real constants of integration.
With symbolic computation, we end up with two sets of the similarity reductions

for System (1), i.e.,

u(x, y, t) = λ3

βλ1
± α

β
λ1 p[z(x, y, t)], (30a)

v(x, y, t) = ∓ α

2β
λ1λ2

{
−p′[z(x, y, t)] ± 1

2
p[z(x, y, t)]2 + φ1z + φ2

}
, (30b)
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z(x, y, t) = λ1x + λ2y + λ3t + λ4, (30c)

p′′ − 1

2
p3 ∓ (φ1z + φ2) p + (φ3 − φ1) = 0 . (30d)

ODEs (30d) stand for two known ODEs, each of which has been investigated in Refs.
[68, 69]. Right now, with symbolic computation, choosing φ1 = φ2 = φ3 = 0, we
can get the following sample solutions for ODEs (30d):

p(z) = ± 2

z + ζ3
,

where ζ3 is a real constant.
Explanation with the relevant physics: As for the nonlinear and dispersive long

gravitywaves travelling along twohorizontal directions in the shallowwater of uniform
depth, with respect to u(x, y, t), the height of the water surface, and v(x, y, t), the
horizontal velocity of the water wave, Similarity Reductions (30) rely on α and β, the
coefficients for System (1). Two sets of Similarity Reductions (30) appear, as a result
of the existence of the “±” signs.

Choice 2:
Based on the second freedom in Remark 3 in Ref. [62], Eqs. (19) with j = 7 give

rise to

θ(x, y, t) = λ3 − αλ21

βλ1
, �7(z) = 1, (31)

so that Eqs. (19) with i = 8, 9, 10 and j = 3, 5 can be transformed into

�8(z) = �9(z) = �10(z) = �5(z) = 0, �3(z) = −1 . (32)

Until now, System (1) could be simplified to the following ODEs:

p′′′ ∓
(
pp′′ + p′2) + q ′′ + p′′ = 0, (33a)

q ′′ ± (
p′q + pq ′) − q ′ = 0 . (33b)

Therefore, simplifying each of two sets of ODEs (33) into an ODE helps us work out

q = −p′ ± 1

2
p2 − p + φ4z + φ5, (34)

and taking into consideration ODEs (33)-(34) makes us discover

p′′ − 1

2
p3 ± 3

2
p2 ∓ (φ4z + φ5 ± 1) p + (φ4z − φ4 + φ5 + φ6) = 0, (35)

with φ4, φ5 and φ6 as the real constants of integration.
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With symbolic computation, we conclude with two more sets of the similarity
reductions for System (1), i.e.,

u(x, y, t) = λ3 − αλ21
βλ1

± α

β
λ1 p[z(x, y, t)], (36a)

v(x, y, t) = ∓ α

2β
λ1λ2

{
−p′[z(x, y, t)] ± 1

2
p[z(x, y, t)]2 − p[z(x, y, t)] + φ4z + φ5

}
,

(36b)

z(x, y, t) = λ1x + λ2y + λ3t + λ4, (36c)

p′′ − 1

2
p3 ± 3

2
p2 ∓ (φ4z + φ5 ± 1) p + (φ4z − φ4 + φ5 + φ6) = 0 . (36d)

ODEs (36d) indicate two known ODEs, each of which has been investigated in Refs.
[68, 69]. This time, with symbolic computation, selecting φ4 = φ6 = 0 and φ5 = ± 1

2 ,
we are able to obtain the following sample solutions for ODEs (36d):

p(z) = 2

z + ζ4
± 1 or p(z) = − 2

z + ζ5
± 1,

where both ζ4 and ζ5 are the real constants.
Explanation with the relevant physics: As for the nonlinear and dispersive long

gravitywaves travelling along twohorizontal directions in the shallowwater of uniform
depth, with respect to u(x, y, t), the height of the water surface, and v(x, y, t), the
horizontal velocity of the water wave, Similarity Reductions (36) rely on α and β, the
coefficients for System (1). Two sets of Similarity Reductions (36) appear, as a result
of the existence of the “±” signs.

4 Conclusions

To sum up, we have briefly reviewed the recent developments on the shallow water
and soliton consideration with analytic solutions, and with symbolic computation,
studied System (1), i.e., a (2+1)-dimensional generalized modified dispersive water-
wave system describing the nonlinear and dispersive long gravity waves travelling
along two horizontal directions in the shallow water of uniform depth. With respect
to u(x, y, t), the height of the water surface, and v(x, y, t), the horizontal velocity of
the water wave, we have symbolically computed out Scaling Transformations (6),
Hetero-Bäcklund Transformations (15), from System (1) to Eq. (15c), Similarity
Reductions (30), from System (1) to ODEs (30d), and Similarity Reductions (36),
from System (1) to ODEs (36d). We have paid attention that Eq. (15c) stands for a
known linear partial differential equation, while each of ODEs (30d) and ODEs (36d),
a known ODE. Hetero-Bäcklund Transformations (15), Similarity Reductions (30)
and Similarity Reductions (36) have been obtained to rely on α and β, the coefficients
for System (1).

We hope that Hetero-Bäcklund Transformations (15), Similarity Reductions (30)
and Similarity Reductions (36), with their sample solutions and other solutions, could
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help the future shallow-water studies. Information about the futurework for System (1)
includes the Darboux transformation, inverse scattering transformation, etc.
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