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Abstract
In order to get the lower bound of the number of limit cycles for near-Hamiltonian
systems, one often faces the difficulty in verifying the independence of the coeffi-
cients of some polynomials. The difficulty is mainly coming from the tedious iterative
computation. In the present paper, we provide an approach to verify the independence
which largely reduces calculation and illustrate this method by perturbing a piecewise
smooth Hamiltonian system with a homoclinic loop. Using this method, we prove that
the maximal number of limit cycles of this system is n + [ n+1

2 ], and this bound can
be reached.

Keywords Lower bound · Melnikov function · Limit cycle · Homoclinic loop

1 Introduction andMain Results

Mutational behavior after slow change is ubiquitous in natural and artificial systems
and is usually described by piecewise smooth mathematical models. For a long time,
this research has attracted much attention in the field of nonlinear science. As a part
of nonlinear dynamical systems, piecewise smooth dynamical systems are applied in
many fields of applied science and engineering, such as collision vibration system in
mechanical engineering, stick slip vibration system with dry friction, circuit system
with controllable switch, see [1, 8, 17].
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Similar to smooth differential systems, the number and distribution of limit cycles
is one of the important problems of non-smooth differential systems. So far as we
know, there are two basic methods to study the number of limit cycles. One is the
Melnikov function method developed in [6, 14] and the other is the averaging method
established in [12, 13]. By using the above two methods, many researchers have been
extensively studied the upper or lower bound of the number of limit cycles for the
following piecewise smooth near-Hamiltonian system

{
ẋ = H+

y (x, y) + ε f +(x, y),

ẏ = −H+
x (x, y) + εg+(x, y),

x ≥ 0,

{
ẋ = H−

y (x, y) + ε f −(x, y),

ẏ = −H−
x (x, y) + εg−(x, y),

x < 0,

(1.1)

where 0 < |ε| � 1, H±(x, y) are polynomials of x and y of degree m + 1 and

f ±(x, y) =
n∑

i+ j=0

a±
i, j x

i y j , g±(x, y) =
n∑

i+ j=0

b±
i, j x

i y j , a±
i, j , b

±
i, j ∈ R, i, j ∈ N.

For the purpose of getting the upper bound, one usually analyzed the algebraic struc-
ture of the corresponding first order Melnikov function M(h) of system (1.1) with the
help of Picard-Fuchs equations. Then, the upper bound is obtained by comprehen-
sively applying the methods in the literatures [7, 9, 22, 26] or argument principle or
Chebyshev criterion etc, see [2, 5, 10, 16, 20, 21, 23, 25] that have used these methods.
Fortunately, the independence of the coefficients of the coefficient polynomials of the
generators of M(h) does not need to be verified. Because this is very intricate. How-
ever, this is inevitable if you want to get the lower bound. In [11, 14, 24], the authors
got the lower bound of the number of limit cycles bifurcating from the period annulus
of system (1.1) with a homoclinic loop or heteroclinic loop or eye-figure loop. In order
to get the independence of the coefficients, they took some special perturbed polyno-
mials f ±(x, y) and g±(x, y) for the sake of simplifying the calculation. In [4, 15, 18,
19], the authors obtained the lower bound for the general perturbed polynomials. But,
the proof of the independence of the coefficients involves a lot of computations. With
that in mind, in the present paper, we provide a way to verify the independence of coef-
ficients which largely reduces calculation and illustrate this method with a concrete
example.

Consider the following perturbed piecewise smooth Hamiltonian system

{
ẋ = y + ε f +(x, y),

ẏ = x − 1 + εg+(x, y),
x ≥ 0,

{
ẋ = y + ε f −(x, y),

ẏ = −x + εg−(x, y),
x < 0.

(1.2)
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Fig. 1 The phase portrait of
system (1.2) with ε = 0

The corresponding Hamiltonian functions for system (1.2)|ε=0 are

H+(x, y) = 1

2
y2 − 1

2
x2 + x, x ≥ 0, (1.3)

and

H−(x, y) = 1

2
y2 + 1

2
x2, x < 0. (1.4)

When ε = 0, system (1.2) has a family of periodic orbits as follows

�h = {(x, y)|H+(x, y) = h, x ≥ 0} ∪ {(x, y)|H−(x, y) = h, x < 0}
:= �+

h ∪ �−
h

with h ∈ (0, 1
2 ). As h tends to 0, �h approaches to the origin, and as h tends to 1

2 , �h

approaches to a homoclinic loop passing through the saddle point (1,0), see Fig. 1.
By [6, 14], corresponding to periodic orbits {�h |h ∈ (0, 1

2 )}, system (1.2) has the
first order Melnikov function described by

M(h) =
∫

�+
h

g+(x, y)dx − f +(x, y)dy +
∫

�−
h

g−(x, y)dx − f −(x, y)dy,

(1.5)

and the number of zeros of M(h) controls the number of limit cycles of system (1.2)
if M(h) is not identically zero. In [10] the authors posed the following conjecture.

Conjecture By using the first order Melnikov function, the maximal number of limit
cycles of system (1.2) bifurcating from the period annulus around the origin is n +
[ n+1

2 ].



142 Page 4 of 14 J. Yang, L. Zhao

We confirm the conjecture with the following theorem.

Theorem 1.1 By using the first order Melnikov function, the number of limit cycles of
system (1.2) bifurcating from the period annulus around the origin is not more than
n + [ n+1

2 ], and this bound can be reached.

This paper is organized as follows. InSect. 2,weobtain the detailed expressionof the
first order Melnikov function M(h) and verify the independence of the coefficients of
the coefficient polynomials of the generators ofM(h)byusingmathematical induction.
Section 3 is devoted to the proof of Theorem 1.1. Finally, conclusion is drawn in Sect.
4.

2 The Algebraic Structure of the First Order Melnikov Function

In order to estimate the number of zeros of the first order Melnikov function M(h),
one should study the algebraic structure of M(h). To this end, we denote

Ii, j (h) =
∫

�+
h

xi y j dy, Ji, j (h) =
∫

�−
h

xi y j dy, h ∈
(
0,

1

2

)
.

Since the orbits �±
h are symmetric with respect to the x-axis, Ii,2 j+1(h) =

Ji,2 j+1(h) ≡ 0. So we only need to consider Ii,2 j (h) and Ji,2 j (h).
The next Lemma shows that M(h) can be expressed as a combination of some gen-

erator integrals with polynomial coefficients and the coefficients of these polynomials
can be taken as free parameters.

Lemma 2.1 For h ∈ (0, 1
2 ) and any n ∈ N it holds that

M(h) =√
h

[ n2 ]∑
i=0

αi h
i +

⎛
⎜⎝

[ n−1
2 ]∑

i=0

βi h
i

⎞
⎟⎠ I1,0(h) + h

[ n−1
2 ]∑

i=0

γi h
i , (2.1)

where αi , βi and γi are constants and can be chosen arbitrarily.

Proof Let D be the interior of �+
h ∪ −→

BA, see Fig. 1. Using the Green’s Formula, one
has ∫

�+
h

xi y j dx =
∮

�+
h ∪−→

BA
xi y j dx −

∫
−→
BA

xi y j dx

=
∮

�+
h ∪−→

BA
xi y j dx = j

∫∫
D

xi y j−1dxdy,

∫
�+
h

xi+1y j−1dy =
∮

�+
h ∪−→

BA
xi+1y j−1dy = −(i + 1)

∫∫
D

xi y j−1dxdy.
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Thus, ∫
�+
h

xi y j dx = − j

i + 1

∫
�+
h

xi+1y j−1dy. (2.2)

Similarly, one has ∫
�−
h

xi y j dx = − j

i + 1

∫
�−
h

xi+1y j−1dy. (2.3)

By (1.5), (2.2) and (2.3), one obtains

M(h) =
∫

�+
h

n∑
i+ j=0

b+
i, j x

i y j dx −
∫

�+
h

n∑
i+ j=0

a+
i, j x

i y j dy

+
∫

�−
h

n∑
i+ j=0

b−
i, j x

i y j dx −
∫

�−
h

n∑
i+ j=0

a−
i, j x

i y j dy

= −
n∑

i+ j=1, j≥1

j

i + 1
b+
i, j

∫
�+
h

xi+1y j−1dy −
n∑

i+ j=0

a+
i, j

∫
�+
h

xi y j dy

−
n∑

i+ j=1, j≥1

j

i + 1
b−
i, j

∫
�−
h

xi+1y j−1dy −
n∑

i+ j=0

a−
i, j

∫
�−
h

xi y j dy

=
n∑

i+ j=0

ξi, j Ii, j (h) +
n∑

i+ j=0

ηi, j Ji, j (h),

where

ξi, j =
{

−a+
i, j − j+1

i b+
i−1, j+1, 1 ≤ i ≤ n, 1 ≤ i + j ≤ n,

−a+
i, j , i = 0, 0 ≤ j ≤ n,

ηi, j =
{

−a−
i, j − j+1

i b−
i−1, j+1, 1 ≤ i ≤ n, 1 ≤ i + j ≤ n,

−a−
i, j , i = 0, 0 ≤ j ≤ n.

It is easy to check that ξi, j and ηi, j can be taken as free parameters.


�
Now we claim that

n∑
i+ j=0

ξi, j Ii, j (h) =
⎛
⎝ [ n2 ]∑

i=0

ᾱi h
i

⎞
⎠ I0,0(h) +

⎛
⎜⎝

[ n−1
2 ]∑

j=0

β̄ j h
j

⎞
⎟⎠ I1,0(h), (2.4)

where ᾱi , i = 0, 1, 2, · · · , [ n2 ] and β̄ j , j = 0, 1, 2, · · · , [ n−1
2 ] can be taken as free

parameters.
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In fact, differentiating H+(x, y) = h both sides with respect to y, one obtains

y − x
∂x

∂ y
+ ∂x

∂ y
= 0. (2.5)

Multiplying (2.5) by the one-form xi y j−1dy and integrating over �+
h , one obtains the

relation

Ii, j = j − 1

i + 1
Ii+1, j−2 − j − 1

i + 2
Ii+2, j−2, i ≥ 0, j ≥ 1. (2.6)

Similarly, multiplying H+(x, y) = h both sides by xi−2y j dy and integrating over
�+
h , one gets another relation

Ii, j = −2hIi−2, j + 2Ii−1, j + Ii−2, j+2, i ≥ 2, j ≥ 0. (2.7)

Elementary manipulations reduce equations (2.6) and (2.7) to

Ii, j = − i

i + j + 1

[
2hIi−2, j − 2i + j − 1

i − 1
Ii−1, j

]
, i ≥ 2, j ≥ 0 (2.8)

and

Ii, j = j − 1

i + j + 1

[
2hIi, j−2 − i

i + 1
Ii+1, j−2

]
, i ≥ 0, j ≥ 1. (2.9)

Now we will prove the claim by induction on n. Without loss of generality, we only
prove the claim if n is an even number (the claim can be proved similarly if n is an
odd number). Indeed, a direct computation using the above two equalities (2.8) and
(2.9) gives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I0,2(h) = 2

3hI0,0(h),

I2,0(h) = − 4
3hI0,0(h) + 2I1,0(h),

I1,2(h) = 1
6hI0,0(h) + ( 12h − 1

4 )I1,0(h),

I3,0(h) = − 5
2hI0,0(h) − ( 32h − 15

4 )I1,0(h).

(2.10)

Hence, one has for n = 2, 3

2∑
i+ j=0

ξi, j Ii, j (h) =
[(

2

3
ξ0,2 − 4

3
ξ2,0

)
h + ξ0,0

]
I0,0(h) + (ξ1,0 + 2ξ2,0)I1,0(h),

3∑
i+ j=0

ξi, j Ii, j (h) =
[(

2

3
ξ0,2 − 4

3
ξ2,0 + 1

6
ξ1,2 − 5

2
ξ3,0

)
h + ξ0,0

]
I0,0(h)

+
[(

1

2
ξ1,2 − 3

2
ξ3,0

)
h − 1

4
ξ1,2 + 15

4
ξ3,0 + ξ1,0 + 2ξ2,0

]
I1,0(h).
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That is, the claim holds for n = 2, 3.
Now assume that the claim holds for all i + j ≤ n − 1. Then, taking (i, j) =

(0, n), (2, n−2), · · · , (n−2, 2) in (2.9) and (i, j) = (n, 0) in (2.8), respectively, one
has

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I0,n(h)

I2,n−2(h)

I4,n−4(h)

...

In−2,2(h)

In,0(h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

n + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(n − 1)hI0,n−2(h)

2(n − 3)
(
hI2,n−4(h) − 1

3 I3,n−4(h)
)

2(n − 5)
(
hI4,n−6(h) − 2

5 I5,n−6(h)
)

...

2
(
hIn−2,0(h) − n−2

2(n−1) In−1,0(h)
)

−n
(
2hIn−2,0(h) − 2n−1

n−1 In−1,0(h)
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.11)

Therefore, by the induction hypothesis and (2.11), one obtains

n∑
i+ j=0

ξi, j Ii, j (h) =
n−1∑

i+ j=0

ξi, j Ii, j (h) +
∑

i+ j=n

ξi, j Ii, j (h)

=
⎛
⎜⎝

[ n−1
2 ]∑

i=0

α̃i h
i

⎞
⎟⎠ I0,0(h) +

⎛
⎜⎝

[ n−2
2 ]∑

j=0

β̃ j h
j

⎞
⎟⎠ I1,0(h)

+ξ0,n
2(n − 1)

n + 1
hI0,n−2(h) + ξ2,n−2

2(n − 3)

n + 1

×
(
hI2,n−4(h) − 1

3
I3,n−4(h)

)

+ · · · − ξn,0
n

n + 1

(
2hIn−2,0(h) − 2n − 1

n − 1
In−1,0(h)

)

�

⎛
⎝ [ n2 ]∑

i=0

ᾱi h
i

⎞
⎠ I0,0(h) +

⎛
⎜⎝

[ n−1
2 ]∑

j=0

β̄ j h
j

⎞
⎟⎠ I1,0(h), (2.12)

where α̃i , β̃i , ᾱi and β̄i are constants.
Next, we prove that ᾱi , i = 0, 1, 2, · · · , [ n2 ] and β̄ j , j = 0, 1, 2, · · · , [ n−1

2 ] can
be taken as free parameters. In fact, by the induction hypothesis, one has α̃i , i =
0, 1, 2, · · · , [ n−1

2 ] and β̃ j , j = 0, 1, 2, · · · , [ n−2
2 ] are independent of each other. That

is, the determinant of the following Jacobian matrix

A =
∂
(
α̃[ n−1

2 ], · · · , α̃0, β̃[ n−2
2 ], · · · , β̃0

)
∂
(
ξi0, j[ n−1

2 ], · · · , ξi[ n−1
2 ], j0 , ξk0,l[ n−2

2 ] , · · · , ξk[ n−2
2 ],l0

)

is different from zero, here the sum of subscripts of ξi, j in the above Jacobian matrix
is less than or equal to n − 1. A directly calculation implies the following Jacobian
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matrix

C =
∂
(
ᾱ[ n−1

2 ], · · · , ᾱ0, β̄[ n−2
2 ], · · · , β̄0, ᾱ[ n2 ]

)
∂
(
ξi0, j[ n−1

2 ], · · · , ξi[ n−1
2 ], j0 , ξk0,l[ n−2

2 ] , · · · , ξk[ n−2
2 ],l0 , ξ0,n

)

=
⎛
⎝A B

0 2[ n2 ]
n+1

⎞
⎠ ,

where 0 is a row vector and B is a column vector. It is easy to get that

|C| = 2[ n2 ]

n + 1
|A| �= 0,

which yields ᾱi , i = 0, 1, 2, · · · , [ n2 ] and β̄ j , j = 0, 1, 2, · · · , [ n−1
2 ] can be taken as

free parameters.
In a similar way, one can prove that

n∑
i+ j=0

ηi, j Ji, j (h) =
⎛
⎝ [ n2 ]∑

i=0

α̂i h
i

⎞
⎠ J0,0(h) +

⎛
⎜⎝

[ n−1
2 ]∑

j=0

β̂ j h
j

⎞
⎟⎠ J1,0(h), (2.13)

where α̂i , i = 0, 1, 2, · · · , [ n2 ] and β̂ j , j = 0, 1, 2, · · · , [ n−1
2 ] can be taken as free

parameters.
Observe that ᾱi and β̄ j are expressed by ξi, j and α̂i and β̂ j are expressed by ηi, j , one

has that ᾱi , β̄ j , α̂i and β̂ j are independent of each other. A straightforward calculation
yields that

I0,0(h) = −2
√
2h, J0,0(h) = 2

√
2h, J1,0(h) = −πh. (2.14)

In view of (2.4), (2.13) and (2.14), one gets the equality (2.1), where

αi = 2
√
2(α̂i − ᾱi ), βi = β̄i , γi = −πβ̂i ,

which means that αi , βi and γi can be chosen arbitrarily. This ends the proof. ♦

Remark 2.1 In the proof of Lemma 2.1, we have verified that the coefficients of the
coefficient polynomials of I0,0(h), I1,0(h), J0,0(h) and J1,0(h) are independent of
each other under general polynomial perturbations by using mathematical induction.
Compared with the verification processes in the previous literatures, the calculation
in this paper is simpler.
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3 Proof of Theorem 1.1

In order to obtain the lower bound of the number of zeros of M(h), we resort to a
result of Coll, Gasull and Prohens published in [3]. We review this result here for the
convenience of the reader.

Lemma 3.1 [3]. Consider p + 1 linearly independent analytical functions fi : U →
R, i = 0, 1, 2, · · · , p, where U ∈ R is an interval. Suppose that there exists j ∈
{0, 1, · · · , p} such that f j has constant sign. Then there exists p+1 constants δi , i =
0, 1, · · · , p, such that f (x) = ∑p

i=0 δi fi (x) has at least p simple zeros in U.

To apply the above Lemma 3.1 one should show that the first order Melnikov func-
tion M(h) can be expressed as a combination of some linearly independent functions.
To this end, let us start with some preliminary considerations.

Let u = √
h, h ∈ (0, 1

2 ). Then (2.1) can be written as

M(u) =
[ n2 ]∑
i=0

αi u
2i+1 +

⎛
⎜⎝

[ n−1
2 ]∑

i=0

βi u
2i

⎞
⎟⎠ I1,0(u

2) +
[ n−1

2 ]∑
i=0

γi u
2i+2

=
n+1∑
i=1

δi u
i +

⎛
⎜⎝

[ n−1
2 ]∑

i=0

βi u
2i

⎞
⎟⎠ I1,0(u

2),

where δi are constants and can be chosen as free parameters. Therefore, one finds that

M(u) =
n+1∑
i=1

δi u
i +

⎛
⎜⎝

[ n−1
2 ]∑

i=0

βi u
2i

⎞
⎟⎠ ϕ(u), (3.1)

in view of

I1,0(h) = −√
2h + 1

2
(2h − 1) ln

1 − √
2h

1 + √
2h

,

where

ϕ(u) = −√
2u + 1

2
(2u2 − 1) ln

1 − √
2u

1 + √
2u

.

It is easy to check that ϕ(u) satisfies the following differential equation

(2u2 − 1)ϕ′(u) = 4uϕ(u) + 4
√
2u2. (3.2)

In order to show the linear independence of generating functions of M(u) in (3.1),
we extend M(u) to a complex domain. From now on, we suppose that u is complex.
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We know that ϕ(u) can be analytically extended to the complex domain  = C\{u ∈
R| |u| ≥

√
2
2 }. For |u| >

√
2
2 and let ϕ±(u) donates the analytic continuation of ϕ(u)

along an arcwith±Im(u) > 0, respectively. Then by (3.2) the function ϕ±(u) satisfies

ϕ+(u) − ϕ−(u) = c(2u2 − 1)i, u ∈
(

−∞,−
√
2

2

)
∪

(√
2

2
,+∞

)
, (3.3)

where i2 = −1 and c is a nonzero real number.
The following Proposition plays a key role in estimating the lower bound of the

number of zeros of M(h).

Proposition 3.1 The Melnikov function M(u) in (3.1) can be represented as a linear
combination of the following n+[ n+1

2 ]+1 linearly independent generating functions

u, · · · , un+1, ϕ(u), u2ϕ(u), · · · , u2[
n−1
2 ]ϕ(u).

Proof We assume that there exist constants σ1, · · · , σn+1, μ0, μ1, · · · , μ[ n−1
2 ] such

that

M(u) � σ1u + · · · + σn+1u
n+1 + μ0ϕ(u)

+ μ1u
2ϕ(u) + · · · + μ[ n−1

2 ]u
2[ n−1

2 ]ϕ(u) ≡ 0.
(3.4)

To show the linear independence of generating functions, we only need to prove that
all the coefficients in (3.4) are zeros.

Since ϕ(u) can be analytically extended to domains , M(h) can be analytically

extended to the domain . For u ∈ (−∞,−
√
2
2 ) ∪ (

√
2
2 ,+∞), by (3.3) and (3.4), one

has that

M
+
(u) − M

−
(u) = c(2u2 − 1)i

[ n−1
2 ]∑

i=0

μi u
2i ≡ 0,

which implies μi = 0, i = 0, 1, 2, · · · , [ n−1
2 ]. Then M(u) in (3.4) is simplified into

the form

M(u) � σ1u + · · · + σn+1u
n+1 ≡ 0.

Taking for granted that the functions u, u2, · · · , un+1 are independent of each other,
one obtains that σi = 0, i = 1, 2, · · · , n + 1. This ends the proof.


�
The following Lemma proves to be extremely useful in estimating the upper bound

of the number of zeros of M(h).
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Lemma 3.2 Let f (n)(h) represents the nth-order derivative of f (h). Then for n ≥
m + 1 and any m, n ∈ N, it holds that

(
hm ln

1 − √
2h

1 + √
2h

)(n)

= Pn−1(h)

hn−m− 1
2 (2h − 1)n

,

where Pn−1(h) is a polynomial of degree n − 1.

Proof It is easy to get that

(
ln

1 − √
2h

1 + √
2h

)(k)

= Qk−1(h)

hk− 1
2 (2h − 1)k

,

in view of induction on k, where Qk−1(h) is a polynomial of degree k − 1. Hence, by
Leibniz formula and the above equality, one finds that

(
hm ln

1 − √
2h

1 + √
2h

)(n)

=
n∑

k=0

Ck
n (h

m)(n−k)

(
ln

1 − √
2h

1 + √
2h

)(k)

=
n∑

k=0

Ck
nm(m − 1) · · · (m − n + k + 1)Qk−1(h)

hn−m− 1
2 (2h − 1)k

:= Pn−1(h)

hn−m− 1
2 (2h − 1)n

.

The proof is completed. 
�

Proof of Theorem 1.1 In accordance with Lemma 2.1, Lemma 3.1 and Proposition 3.1,

one knows that M(u) in (3.1) can have n + [ n+1
2 ] zeros on (0,

√
2
2 ), which means that

M(h) in (2.1) can have n+[ n+1
2 ] zeros on the interval (0, 1

2 ). Therefore, system (1.2)
can have n + [ n+1

2 ] limit cycles for h ∈ (0, 1
2 ).

Next we want to obtain the upper bound of the number of limit cycles of system
(1.2). (2.1) can be written as
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M(h) =

⎛
⎜⎜⎝

[
n−1
2

]
∑
i=0

βi h
i

⎞
⎟⎟⎠

(
−√

2h + (h − 1

2
) ln

1 − √
2h

1 + √
2h

)

+ √
h

[ n2 ]∑
i=0

αi h
i +

[
n−1
2

]
∑
i=0

γi h
i+1

:=
(
h − 1

2

) [
n−1
2

]
∑
i=0

βi h
i ln

1 − √
2h

1 + √
2h

+ √
h

[ n2 ]∑
i=0

ζi h
i +

[
n−1
2

]
∑
i=0

γi h
i+1,

(3.5)

where ζi are constants. Differentiating (3.5) [ n−1
2 ] + 2 times using Lemma 3.2 gives

that

M

([
n−1
2

]
+2

)
(h) =

⎛
⎜⎜⎝√

h

[ n2 ]∑
i=0

ζi h
i +

(
h − 1

2

) [
n−1
2

]
∑
i=0

βi h
i ln

1 − √
2h

1 + √
2h

⎞
⎟⎟⎠

([
n−1
2

]
+2

)

= P[ n2 ](h)

h

[
n−1
2

]
+ 3

2

+

[
n−1
2

]
+2∑

k=0

Ck[
n−1
2

]
+2

(
h − 1

2

)(k)

×

⎛
⎜⎜⎝

[
n−1
2

]
∑
i=0

βi h
i ln

1 − √
2h

1 + √
2h

⎞
⎟⎟⎠

([
n−1
2

]
+2−k

)

=
P[ n

2

]+[
n−1
2

]
+1

(h)

h

[
n−1
2

]
+ 3

2 (2h − 1)

[
n−1
2

]
+1

.

Thus M

([
n−1
2

]
+2

)
(h) has at most [ n2 ]+[ n−1

2

]+1 zeros on (0, 1
2 ). Therefor, by Rolle’s

theorem, M(h) has at most n + [ n+1
2

] + 1 zeros on [0, 1
2 ). Notice that M(0) = 0

and hence M(h) has at most n + [ n+1
2 ] zeros on (0, 1

2 ). This completes the proof of
Theorem 1.1. 
�

4 Conclusion

The motivation of this work is to find a simple approach to verify the independence
of the coefficients of the coefficient polynomials of the generators of the first order
Melnikov functionM(h) of system (1.1). Because this is an essential step in estimating
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the lower bound of the number of zeros ofM(h) and the existingmethods for verifying
independence are cumbersome.

To achieve our goal, we illustrate this approach by estimating the number of limit
cycles of a near-Hamiltonian system with a homoclinic loop. Using this method, we
have proved that this near-Hamiltonian system (1.2) has at most n+[ n+1

2 ] limit cycles
and this number can be reached. This is a new result on the bound of the number of
limit cycles for such system with a homoclinic loop and the method in this paper can
be applied in the study of limit cycle bifurcations of integrable differential systems.
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