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Abstract
In this paper, we study the multiplicity of periodic solutions for the second order
Hamiltonian systems ü + ∇F(t, u) = 0 with the boundary condition u(0) − u(T ) =
u̇(0) − u̇(T ) = 0, where the potential F is either subquadratic k(t)-concave or
subquadratic μ(t)-convex. Based on the reduction method and a three-critical-point
theorem due to Brezis and Nirenberg, we obtain the multiplicity results, which com-
plement and sharply improve some related results in the literature.

Keywords Periodic solution · Second order Hamiltonian systems · Subquadratic ·
Local linking · Sobolev’s inequality
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1 Introduction andMain Results

Consider the second order Hamiltonian systems

{
ü(t) + ∇F(t, u(t)) = 0 a.e. t ∈ [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

(1.1)

where T > 0 and F : [0, T ] × R
N → R satisfies the following assumption:

(A) F(t, x) is measurable in t for every x ∈ R
N and continuously differentiable in

x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such
that

|F(t, x)| ≤ a(|x |)b(t), |∇F(t, x)| ≤ a(|x |)b(t)
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for all x ∈ R
N and a.e. t ∈ [0, T ].

With the aid of variational methods, the existence and multiplicity of periodic
solutions of problem (1.1) have been extensively investigated in the literature during
the past two decades, see [3–5],[7–16, 18–26] and references therein.Many solvability
conditions are obtained, such as: the convexity conditions (see [14, 17, 19] and the
references therein); the subquadratic conditions (including the sublinear nonlinearity
case, see [18, 19] the references therein); the superquadratic conditions (see [6, 26]
and the references therein) and the asymptotically linear conditions (see [20, 26, 29]
and the references therein).

Lazer, Landesman and Meyers in [8] consider a minimax theorem for a C2 func-
tional ϕ defined on a Hilbert space H . They prove the existence of a critical point
characterized by ϕ(u0) = max

v∈V min
w∈W ϕ(v + w), where V , W are subspaces of H , V is

finite-dimensional and H = V
⊕

W . This result has been generalized by Castro and
Lazer [4], supposing a weaker condition that ϕ(v) → −∞ as ‖v‖ → ∞, v ∈ V .
Manasevich [12] extend the result to infinite-dimensional cases by using a global inver-
sion theorem. See also Bates and Ekeland [2] and Manasevich [13] for related results.
Recently, by means of the reduction method, a perturbation argument and the least
action principle, Tang andWu [19] greatly improve the result of Lazer et al. [8] in three
aspects: requiring the spaces being reflexive Banach space instead of Hilbert space;
requiring the functionals beingC1 instead ofC2; and using much weaker convexity of
the functionals. As a main application, they successively studied the existence of peri-
odic solutions of problem (1.1) with subquadratic convex potential, with subquadratic
μ(t)-convex potential andwith subquadratic k(t)-concave potential, which unifies and
significantly improves the recent results in [14, 24, 28]. Here we say that the potential
F is μ(t)-convex, if there exists μ ∈ L1(0, T ;R) such that F(t, x) − 1

2μ(t)|x |2 in
convex in x for a.e. t ∈ [0, T ]. It is worth pointing out that the reduction technique,
which has been motivated in earlier papers by Amann [1] and Thews [21] to discuss
the existence and multiplicity of solutions for nonlinear equations, is rather powerful.
For its applications on semilinear elliptic equations, we refer the readers to [24].

In the present paper, based on the reduction method and some abstract critical
point theorem, i.e., the three-critical-point theorem proposed by Brezis and Niren-
berg, we shall study the multiplicity of periodic solutions of (1.1) with subquadratic
k(t)-concave or subquadratic μ(t)-convex potential, which complements the results
mentioned above and improves the corresponding results in Wu [24] and Zhao and
Wu [27].

1.1 The Subquadratic k(t)-Concave Case

For the subquadratic k(t)-concave case, we make the following hypotheses:

(A1) There exists k ∈ L1(0, T ;R+) with
∫ T
0 k(t)dt < 12/T such that −F(t, x) +

1
2k(t)|x |2 is convex in x for a.e. t ∈ [0, T ].

(A2)
∫ T
0 F(t, x)dt → +∞ as |x | → +∞, x ∈ R

N .
(A3) There exists δ > 0 such that F(t, x) − F(t, 0) ≤ 0 for all |x | ≤ δ and a.e. t ∈

[0, T ].
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(A4) There exists k ∈ L1(0, T ;R+) with k(t) ≤ ω2 for a.e. t ∈ [0, T ] and

meas
{
t ∈ [0, T ] : k(t) < ω2

}
> 0,

such that −F(t, x) + 1
2k(t)|x |2 is convex in x for a.e. t ∈ [0, T ], where ω =

2π\T .
Theorem 1.1 Assume that the potential F satisfies assumptions (A) and (A1)-(A3).
Then problem (1.1) possesses at least three distinct solutions.

Remark 1.1 Theorem 1.1 generalizes [27, Theorem 1], where the existence of one
nonzero solution is obtained under the assumptions (A), (A2) and

(A′
1) There exists k ∈ L1(0, T ;R+) with 0 <

∫ T
0 k(t)dt < 12/T such that

|∇F(t, x1)−∇F(t, x2)| ≤ k(t)|x1− x2| for all x1, x2 ∈ R
N and a.e. t ∈ [0, T ].

(A′
3) For a.e. t ∈ [0, T ], ∇F(t, 0) = 0, and there exists δ > 0 such that F(t, x) −

F(t, 0) < 0 for all x ∈ R
N with 0 < |x | ≤ δ and for a.e. t ∈ [0, T ].

Since, by condition (A′
1), we have

(∇(−F(t, x)) − ∇(−F(t, y)), x − y) ≥ −|∇F(t, x) − ∇F(t, y)||x − y|
≥ −k(t)|x − y|2

for all x, y ∈ R
N and a.e. t ∈ [0, T ], it follows that −F(t, x)+ 1

2k(t)|x |2 is convex in
x for a.e. t ∈ [0, T ]. Hence (A′

1) implies (A1). In addition, the condition∇F(t, 0) = 0
for a.e. t ∈ [0, T ] (see assumption (A′

3)) is deleted and our conclusion is better. There
are functions F satisfying Theorem 1.1 but not satisfying the results in [14, 24, 27,
28]. For example, let

F(t, x) = 1

2
α(t)|x |2 − |x | 32 , ∀x ∈ R

N and a.e. t ∈ [0, T ],

where α ∈ L∞(0, T ;R) with

6

T
≤

∫ T

0
α−(t)dt <

∫ T

0
α+(t)dt <

12

T
,

and α±(t)=max{±α(t), 0}. Then F satisfies Theorem 1.1 with k = α+. But it does
not satisfy the corresponding results in [14, 24, 27, 28], for

∫ T
0 |α(t)|dt > 12/T and

F is not convex in x for t ∈ [0, T ] with α−(t) > 0.

Theorem 1.2 The conclusion of Theorem 1.1 holds if we replace (A1) by (A4).

Remark 1.2 Theorem 1.2 complements [19, Theorem 5.1], where the existence of one
solution was obtained under the assumptions (A), (A2) and (A4). There are functions
F satisfying Theorem 1.2 but not satisfying Theorem 1.1. For example, let

F(t, x) = 2

3T
ω2

(
3T

4
− t

)
|x |2 − |x | 32 , ∀x ∈ R

N and a.e. t ∈ [0, T ].
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Then α(t) = 4
3T ω2

( 3T
4 − t

)
for t ∈ [0, T ],

α+(t) =
{

α(t), t ∈ [
0, 3T

4

]
,

0, t ∈ [ 3T
4 , T

]
,

α−(t) =
{
0, t ∈ [

0, 3T
4

]
,

−α(t), t ∈ [ 3T
4 , T

]
,

and

−F(t, x) + 1

2
α+(t)|x |2 = 1

2
α−(t)|x |2 + |x | 32

for x ∈ R
N and a.e. t ∈ [0, T ]. It is easy to check that F satisfies the conditions of

Theorem 1.2 with k = α+. However, since

∫ T

0
α+(t)dt =

∫ 3T
4

0

4

3T
ω2

(
3T

4
− t

)
dt = 3π2

2T
>

12

T
,

it does not satisfy condition (A1) and hence not satisfy Theorem 1.1.

1.2 The Subquadratic�(t)-Convex Case

For the subquadratic μ(t)-convex case, we make the following hypotheses:

(A5) There existsμ ∈ L1(0, T ;R)with
∫ T
0 μ(t)dt > 0 such that F(t, x)− 1

2μ(t)|x |2
is convex in x for a.e. t ∈ [0, T ].

(A6) There exist α ∈ L1(0, T ;R+) with
∫ T
0 α(t)dt < 12/T and γ ∈ L1(0, T ;R+)

such that

F(t, x) ≤ 1

2
α(t)|x |2 + γ (t), ∀x ∈ R

N and a.e. t ∈ [0, T ]. (1.2)

(A7) There exist δ > 0 and an integer k ≥ 1 such that

1

2
k2ω2|x |2 ≤ F(t, x) − F(t, 0) ≤ 1

2
(k + 1)2ω2|x |2

for all |x | ≤ δ and a.e. t ∈ [0, T ].
(A8) There exists γ ∈ L1(0, T ;R+) such that F(t, x) ≤ 1

2ω
2|x |2 + γ (t) for all x ∈

R
N and a.e. t ∈ [0, T ], andmeas

{
t ∈ [0, T ] : F(t, x) − 1

2ω
2|x |2 → −∞ as|x | →

∞} > 0.
(A9) There exists α ∈ L∞(0, T ;R+) with α(t) ≤ ω2 for a.e. t ∈ [0, T ] and

meas
{
t ∈ [0, T ] : α(t) < ω2

}
> 0,

such that lim sup
|x |→∞

|x |−2F(t, x) ≤ 1

2
α(t) uniformly for a.e. t ∈ [0, T ].
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Theorem 1.3 Assume that assumptions (A) and (A5)-(A7) are satisfied. Then problem
(1.1) possesses at least three distinct solutions.

Remark 1.3 Theorem 1.3 extends [24, Theorem 2.2]; thereWu consider problem (1.1)
under the hypothesis (A), (A5) and

(A′
6) There exist f , g ∈ L1(0, T ;R+) with

∫ T
0 f (t)dt < 12/T such that

|∇F(t, x)| ≤ f (t)|x | + g(t) for all x ∈ R
N and a.e. t ∈ [0, T ].

(A′
7) There exist δ > 0 and an integer k ≥ 1 such that 1

2k
2ω2|x |2 ≤ F(t, x) ≤

1
2 (k + 1)2ω2|x |2 for all |x | ≤ δ and a.e. t ∈ [0, T ].

We point out that (A′
6) is stronger than (A6). This is because by (A) and (A′

6), we
deduce that

F(t, x) =
∫ 1

0
(∇F(t, sx), x)ds + F(t, 0)

≤
∫ 1

0
( f (t)|sx | + g(t))|x |ds + a(0)b(t)

≤ 1

2
f (t)|x |2 + g(t)|x | + a(0)b(t)

≤ 1

2
f (t)|x |2 + 1

2
g(t)

(
12 − T | f |1
T (|g|1 + 1)

|x |2 + T (|g|1 + 1)

12 − T | f |1
)

+ a(0)b(t),

which is just (1.2) with

α(t) = f (t) + 12 − T | f |1
T (|g|1 + 1)

g(t) and γ (t) = T (|g|1 + 1)

2(12 − T | f |1)g(t) + a(0)b(t),

where | · |1 denotes the usual norm of L1(0, T ). Moreover, (A′
7) implies that F(t, 0) =

0 for a.e. t ∈ [0, T ], which gives (A7) directly. Hence Theorem 1.3 implies [24,
Theorem2.2]. There are functions F satisfying Theorem 1.3 but not satisfying [24,
Theorem 2.2]. For example, let

F(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 b(t)|x |2, |x | ≤ 1/2,

1
2 (2b(t) − μ(t))|x |2 + 1

3 (μ(t) − b(t))|x |3 + 1
4 (μ(t) − b(t))|x | − 1

24 (μ(t) − b(t)),

1/2 ≤ |x | ≤ 1,
1
2μ(t)|x |2 + 3

4 (b(t) − μ(t))|x | + 7
24 (μ(t) − b(t)), |x | ≥ 1,

where b ∈ L∞(0, T ;R) with k2ω2 ≤ b(t) ≤ (k + 1)2ω2 (k ≥ 1) for a.e. t ∈ [0, T ],
and μ ∈ L∞(0, T ;R) with μ(t) ≤ ω2 for a.e. t ∈ [0, T ], 6

T ≤ ∫ T
0 μ−(t)dt <∫ T

0 μ+(t)dt ≤ 12
T , and μ± = max {±μ(t), 0}. Then one has

F(t, x) ≤ 1

2
μ(t)|x |2 + p(t)|x | + c1, ∀x ∈ R

N and a.e. t ∈ [0, T ],
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where p(t) = 3(b(t) − μ(t))/4 ∈ L∞(0, T ;R+) and c1 = 2(k + 1)2ω2, and hence

F(t, x) ≤ 1

2
μ+(t)|x |2 + p(t)|x | + c1

≤ 1

2
μ+(t)|x |2 + 1

2
p(t)

(
12 − T |μ+|1
T (|p|1 + 1)

|x |2 + T (|p|1 + 1)

12 − T |μ+|1
)

+ c1,

which is just (1.2) with

α(t) = μ+(t) + 12 − T |μ+|1
T (|p|1 + 1)

p(t) and γ (t) = T (|p|1 + 1)

2(12 − T |μ+|1) p(t) + c1.

Thus F satisfies all the conditions of Theorem 1.3. But it does not satisfy the corre-
sponding conditions of [24, Theorem 2.2], since

∫ T
0 |μ(t)|dt > 12/T and (A′

6) does
not hold.

Theorem 1.4 The conclusion of Theorem 1.3 holds if we replace (A6) by (A8).

Remark 1.4 There are functions F satisfying Theorem 1.4 but not satisfying Theorem
1.3 and [24, Theorem 2.2]. For example, let

F(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 b(t)|x |2, |x | ≤ 1/2,

1
2 (2b(t) − μ(t))|x |2 + 1

3 (μ(t) − b(t))|x |3 + 1
4 (μ(t) − b(t))|x | − 1

24 (μ(t) − b(t)),

1/2 ≤ |x | ≤ 1,
1
2μ(t)|x |2 + 3

4 (b(t) − μ(t))|x | + 7
24 (μ(t) − b(t)), |x | ≥ 1,

where b ∈ L∞(0, T ;R)withω2 ≤ b ≤ 4ω2 for a.e. t ∈ [0, T ], andμ ∈ L∞(0, T ;R)

withμ(t) ≤ ω2 for a.e. t ∈ [0, T ], ∫ T
0 μ(t)dt > 0, meas

{
t ∈ [0, T ] : μ+(t) < ω2

}
>

0 and b(t) − μ(t) ≤ 4(ω2 − μ+(t)) for a.e. t ∈ [0, T ]. Hence we obtain

F(t, x) ≤ 1

2
μ(t)|x |2 + p(t)|x | + c1, ∀x ∈ R

N and a.e. t ∈ [0, T ],

where p(t) = 3(b(t) − μ(t))/4 ∈ L∞(0, T ;R+) and c1 = 8ω2. Then one has

F(t, x) ≤ 1

2
μ+(t)|x |2 + p(t)|x | + c1

≤ 1

2
(μ+(t) + 1

6
p(t))|x |2 + 3p(t) + c1

for all x ∈ R
N and a.e. t ∈ [0, T ]. Consequently, F satisfies all the assumptions of

Theorem 1.4. But in the case
∫ T
0 μ+(t)dt > 12/T , it does not satisfy the conditions

of Theorem 1.3 and [24, Theorem 2.2].

Theorem 1.5 The conclusion of Theorem 1.3 holds if we replace (A6) by (A9).
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Remark 1.5 Theorem 1.5 is a complement of Theorem 4.2 in [19], where the existence
of one solution of (1.1) was proved under conditions (A), (A5) and (A9). There are
functions F satisfying Theorem 1.5 but not satisfying the results mentioned above.
For example, let

F(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 b(t)|x |2, |x | ≤ 1/2,

1
2 (2b(t) − μ(t))|x |2 + 1

3 (μ(t) − b(t))|x |3 + 1
4 (μ(t) − b(t))|x | − 1

24 (μ(t) − b(t)),

1/2 ≤ |x | ≤ 1,
1
2μ(t)|x |2 + 3

4 (b(t) − μ(t))|x | + 7
24 (μ(t) − b(t)), |x | ≥ 1,

where b ∈ L∞(0, T ;R+) with k2ω2 ≤ b(t) ≤ (k + 1)2ω2 (k ≥ 2) for a.e. t ∈ [0, T ],
and μ ∈ L∞(0, T ;R) with μ(t) ≤ ω2 for a.e. t ∈ [0, T ], ∫ T

0 μ(t)dt > 0 and

meas
{
t ∈ [0, T ] : μ(t) < ω2

}
> 0.

Then F satisfies Theorem 1.5 with α = μ+(t). However, in the case

meas
{
t ∈ [0, T ] : μ(t) = ω2

}
> 0

and
∫ T
0 μ+(t)dt > 12/T , it does not satisfy the conditions of Theorems 1.3, 1.4 and

[24, Theorem 2.2].

Thepaper is organized as follows. Section 2 is devoted to some related preliminaries.
In Sect. 3, we show that the reduction functional ψ is coercive and satisfies the (PS)
condition. Then we apply the three-critical-point theorem to prove the theorems.

2 Preliminaries

Under assumption (A), the energy functional associated to problem (1.1) given by

ϕ(u) = −1

2

∫ T

0
|u̇(t)|2dt +

∫ T

0
[F(t, u(t)) − F(t, 0)]dt (2.1)

is continuously differentiable and weakly lower semi-continuous on H1
T , where

H1
T =

{
u : [0, T ] → R

N
∣∣∣∣ u is absolutely continuous,
u(0) = u(T ) and u̇ ∈ L2(0, T ;RN )

}

is a Hilbert space with the norm defined by

‖u‖ =
(∫ T

0
|u(t)|2dt +

∫ T

0
|u̇(t)|2dt

)1/2

.
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Furthermore, we have

〈ϕ′(u), v〉 = −
∫ T

0
(u̇(t), v̇(t))dt +

∫ T

0
(∇F(t, u(t)), v(t))dt

for all u, v ∈ H1
T . It is well known that the weak solutions of problem (1.1) correspond

to the critical points of ϕ (see [14]).

In view of [14, Proposition 1.3], for u ∈ H̃1
T =

{
u ∈ H1

T : ∫ T
0 u(t)dt = 0

}
, we

have

∫ T

0
|u(t)|2dt ≤ T 2

4π2

∫ T

0
|u̇(t)|2dt (Wirtinger’s inequality)

and

‖u‖2∞ ≤ T

12

∫ T

0
|u̇(t)|2dt (Sobolev’s inequality),

which implies that

‖u‖∞ ≤ C‖u‖ (2.2)

for all u ∈ H1
T and some C > 0, where ‖u‖∞ = maxt∈[0,T ] |u(t)|.

Lemma 2.1 If α ∈ L∞(0, T ;R+) such that α(t) ≤ ω2 for a.e. t ∈ [0, T ] and

meas
{
t ∈ [0, T ] : α(t) < ω2

}
> 0,

then there exists a < 1 such that

∫ T

0
α(t)|u|2dt ≤ a

∫ T

0
|u̇|2dt, ∀u ∈ H̃1

T .

Proof We prove this assertion by contradiction. In fact, if not, there exists a sequence
(un) ⊂ H̃1

T such that

∫ T

0
α(t)|un|2dt >

(
1 − 1

n

)∫ T

0
|u̇n|2dt, ∀n ∈ N,

which implies that un �= 0 for all n. By the homogeneity of the above inequality, we
may assume that

∫ T
0 |u̇n|2dt = 1 and

∫ T

0
α(t)|un|2dt ≥ 1 − 1

n
, ∀n ∈ N. (2.3)
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It follows from the weak compactness of the unit ball of H̃1
T that there exists a subse-

quence, still denoted by (un), such that

un⇀u in H̃1
T ,

un → u in C(0, T ;RN ).

Combining this with (2.3), we obtain

∫ T

0
α(t)|u|2dt ≥ 1,

and then,

1 ≥
∫ T

0
|u̇|2dt ≥ ω2

∫ T

0
|u|2dt ≥

∫ T

0
α(t)|u|2dt ≥ 1.

Hence we obtain

1 =
∫ T

0
|u̇|2dt = ω2

∫ T

0
|u|2dt

and

∫ T

0
(ω2 − α(t))|u|2dt = 0,

which yields that u = a cosωt + b sinωt , a, b ∈ R
N , u �= 0 and u = 0 on a positive

measure subset. This contradicts the fact that u = a cosωt + b sinωt only has finite
zeros if u �= 0. ��

To end this section, we state the reduction method developed by Tang and Wu [19,
Lemma 2.1] and the three-critical-point theorem proposed by Brezis and Nirenberg
(see [3, Theorem4]).

Proposition 2.1 (see [19]) Suppose that V is a reflexive Banach space and W is a
Banach space, ϕ ∈ C1(V × W ,R). Assume that there exists μ > 0 such that

〈D1ϕ(v1, w) − D1ϕ(v2, w), v1 − v2〉 ≤ −μ‖v1 − v2‖2 (2.4)

for all v1, v2 ∈ V and w ∈ W. Then there exists a map θ ∈ C(W , V ) such that θ(w)

is the unique maxmum of ϕ(·, w) for all w ∈ W and the functional ψ , given by

ψ(w) = ϕ(θ(w),w) = sup
v∈V

ϕ(v,w),

is continuously differentiable and

ψ ′(w) = D2ϕ(θ(w),w), ∀w ∈ W .
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Moreover, (θ(w),w) is a critical point of ϕ if and only if w is a critical point of ψ .

Remark 2.1 When V andW areHilbert spaces, Proposition 2.1 is a corollary ofAmann
[1, Theorem 2.3].

Proposition 2.2 (Brezis and Nirenberg [3]) Let X be a Banach space with a direct
sum decomposition X = X1

⊕
X2 with dimX2 < +∞ and let ψ be a C1-functional

on X with ψ(0) = 0, satisfying the (PS) condition. Assume that, for some δ0 > 0,

ψ(u) ≥ 0, ∀u ∈ X1 with ‖u‖ ≤ δ0

and

ψ(u) ≤ 0, ∀u ∈ X2 with ‖u‖ ≤ δ0.

Assume also that ψ is bounded from below and infu∈X ψ(u) < 0. Then ψ has at least
two nonzero critical points.

3 Proofs of the Theorems

First, we consider the subquadratic k(t)-concave case. Let ϕ be the functional intro-
duced in (2.1) and decompose the Hilbert space H1

T as H1
T = V

⊕
W with

V = H̃1
T and W = R

N .

Proof of Theorem 1.1 The proof will be divided into several steps.

(1) By condition (A1), since

(∇(−F(t, x)) − ∇(−F(t, y)), x − y) ≥ −k(t)|x − y|2, ∀x, y ∈ R
N ,

we obtain, for v1, v2 ∈ H̃1
T and x ∈ R

N ,

〈D1ϕ(v1, x) − D1ϕ(v2, x), v1 − v2〉

= −
∫ T

0
|v̇1 − v̇2|2dt +

∫ T

0
(∇F(t, v1 + x) − ∇F(t, v2 + x), v1 − v2)dt

≤ −
∫ T

0
|v̇1 − v̇2|2dt +

∫ T

0
k(t)|v1 − v2|2dt

≤ −
∫ T

0
|v̇1 − v̇2|2dt +

∫ T

0
k(t)dt · ‖v1 − v2‖2∞

≤ −
(
1 − T

12

∫ T

0
k(t)dt

)
|v̇1 − v̇2|22,
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that is, ϕ satisfies (2.4) withμ = 1−(T /12)
∫ T
0 k(t)dt . Applying Proposition 2.1,

we obtain a continuous map θ : RN → H̃1
T and a C1-functional ψ : RN → R

such that

ψ(x) = ϕ(θ(x) + x) = sup
v∈H̃1

T

ϕ(v + x).

It suffices to find two nonzero critical points of ψ .
(2) It follows from the definition of ψ and condition (A2) that

ψ(x) ≥ ϕ(x) =
∫ T

0
[F(t, x) − F(t, 0)]dt → +∞ as |x | → ∞.

Hence ψ is coercive on R
N , and then ψ is bounded from below and satisfies the

(PS) condition, i.e., (un) ⊂ W possesses a convergent subsequence whenever
{ψ(un)} is bounded and ψ ′(un) → 0 as n → ∞.

(3) Set W1 = {0} and W2 = R
N . The continuity of θ implies that there exists δ0 > 0

small enough such that

‖θ(x) + x‖∞ ≤ C‖θ(x) + x‖ ≤ δ

for all x ∈ W2 with |x | ≤ δ0. Thus, using (A3), we obtain

ψ(x) = ϕ(θ(x) + x) ≤
∫ T

0
[F(t, θ(x) + x) − F(t, 0)]dt ≤ 0 (3.1)

for all x ∈ W2 with |x | ≤ δ0. On the other hand, noting

ψ(0) ≥ ϕ(0) = 0,

we have

ψ(w) ≥ 0, ∀w ∈ W1 with ‖w‖ ≤ δ0.

This, jointly with (3.1), shows that ϕ has a local linking at 0 with respect to
(W1,W2).

(4) If inf
x∈RN

ψ(x) = 0, then all x ∈ W2 with |x | ≤ δ0 are minimums of ψ , which

implies that ψ has infinitely many critical points. If inf
x∈RN

ψ(x) < 0, Proposition

2.2 implies that ψ has at least two nontrivial critical points. In any case, we can
find two nonzero critical points x1, x2 of ψ . Consequently, u1 = θ(x1) + x1 and
u2 = θ(x2)+ x2 are two nontrivial solutions of problem (1.1). This completes the
proof.

��
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Proof of Theorem 1.2 The proof is identical to that of Theorem 1.1 except that now
(2.4) follows from condition (A4). Indeed, using Lemma 2.1, we obtain

〈D1ϕ(v1, x) − D1ϕ(v2, x), v1 − v2〉 ≤ −
∫ T

0
|v̇1 − v̇2|2dt +

∫ T

0
k(t)|v1 − v2|2dt

≤ −(1 − a)|v̇1 − v̇2|22

for all v1, v2 ∈ H̃1
T and x ∈ R

N . Therefore, (2.4) holds with μ = 1 − a. ��

Next we consider the subquadratic μ(t)-convex case. Let � = −ϕ and decompose
the Hilbert space H1

T as H1
T = V

⊕
W with

V = R
N and W = H̃1

T .

Proof of Theorem 1.3 We divide the proof into several steps.

(1) It follows from (A5) that

(∇F(t, x) − ∇F(t, y), x − y) ≥ μ(t)|x − y|2, ∀x, y ∈ R
N ,

and hence,

〈D1�(x1, w) − D1�(x2, w), x1 − x2〉 = −
∫ T

0
(∇F(t, x1 + w) − ∇F(t, x2 + w), x1 − x2)dt

≤ −
∫ T

0
μ(t)|x1 − x2|2dt

≤ − 1

T

∫ T

0
μ(t)dt‖x1 − x2‖2, (3.2)

for all x1, x2 ∈ R
N andw ∈ H̃1

T . Therefore, (2.4) holds withμ = T−1
∫ T
0 μ(t)dt .

In view of Proposition 2.1, we obtain a continuous map θ : H̃1
T → R

N and a
C1-functional ψ : H̃1

T → R such that

ψ(w) = �(θ(w) + w) = sup
x∈RN

�(x + w).

It suffices to find two nonzero critical points of ψ .
(2) Since the reduced functional ψ is defined on an infinite dimensional subspace, it

is difficult to verify the coerciveness and (PS) condition for ψ . To overcome this
difficulty, we need to study the properties of θ .
We claim that the functional θ obtained above is bounded, i.e., it maps bounded
sets into bounded sets. Indeed, note that D1�(θ(w),w) = 0. Setting x1 = θ(w)
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and x2 = 0 in (3.2), we obtain

1

T

∫ T

0
μ(t)dt‖θ(w)‖2 ≤ −〈D1�(θ(w),w) − D1�(0, w), θ(w)〉

= 〈D1�(0, w), θ(w)〉

= −
∫ T

0
(∇F(t, w), θ(w))dt

≤ max
s∈[0,C‖w‖] a(s)

∫ T

0
b(t)dt · C‖θ(w)‖

by assumption (A) and (2.2). Hence the desired result follows from the last inequal-
ity.
Now letting (wn) ⊂ H̃1

T be a bounded sequence such thatψ ′(wn) → 0 as n → ∞,
we show that (wn) has a convergent subsequence. Without loss of generality, we
can assume that

wn⇀w in H̃1
T ,

wn → w in C(0, T ;RN ).

Since (wn) is bounded, then {θ(wn)} and hence {θ(wn) + wn} are also bounded
in H1

T . Hence, taking

a1 = max
s∈[0,C(‖θ(wn)+wn‖)]

a(s), a2 = max
s∈[0,C(‖θ(w)+w‖)] a(s),

we have

|ẇn − ẇ|22
= 〈ψ ′(wn) − ψ ′(w), wn − w〉 +

∫ T

0
(∇F(t, θ(wn) + wn) − ∇F(t, θ(w) + w),wn − w)dt

≤ ‖ψ ′(wn)‖‖wn − w‖ − 〈ψ ′(w), wn − w〉 +
(
a1

∫ T

0
b(t)dt + a2

∫ T

0
b(t)dt

)
‖wn − w‖∞

→ 0

because of assumption (A) and (2.2). The equivalence of the L2-norm for ẇ and
the H1

T -norm on H̃1
T implies that

wn → w in H̃1
T .

Hence the (PS) condition holds.
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Moreover, it follows from (A6) and Sobolev’s inequality that

�(w) = 1

2

∫ T

0
|ẇ|2dt −

∫ T

0
[F(t, w) − F(t, 0)]dt

≥ 1

2

∫ T

0
|ẇ|2dt − 1

2

∫ T

0
α(t)|w|2dt −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt

≥ 1

2

∫ T

0
|ẇ|2dt − 1

2

∫ T

0
α(t)dt · ‖w‖2∞ −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt

≥ 1

2

(
1 − T

12

∫ T

0
α(t)dt

)
|ẇ|22 −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt

for all w ∈ H̃1
T , which implies that

�(w) → +∞ as ‖w‖ → ∞, w ∈ H̃1
T . (3.3)

This, jointly with the definition of ψ , shows that

ψ(w) → +∞ as ‖w‖ → ∞, w ∈ H̃1
T .

So ψ is bounded from below.
(3) Letting

W2 =
⎧⎨
⎩

k∑
j=1

(a j cos jωt + b j sin jωt)
∣∣∣a j , b j ∈ R

N , j = 1, 2, · · · , k

⎫⎬
⎭

and W1 = (RN ⊕
W2)

⊥. Then H̃1
T = W1

⊕
W2, and the reduction functional ψ

has a local linking at 0 with respect to (W1,W2).
In fact, condition (A7) and (2.2) imply that

ψ(w) = sup
x∈RN

�(x + w)

≥ �(w)

= 1

2

∫ T

0
|ẇ|2dt −

∫ T

0
[F(t, w) − F(t, 0)]dt

≥ 1

2

∫ T

0
|ẇ|2dt − (k + 1)2ω2

2

∫ T

0
|w|2dt

≥ 0

for all w ∈ W1 with ‖w‖ ≤ δ/C . Furthermore, by the continuity of θ , the map
w �−→ θ(w) + w from H̃1

T to H1
T is continuous. Hence, using (2.2), there exists

a constant δ0 ∈ (0, δ/C) such that

‖θ(w) + w‖∞ ≤ C‖θ(w) + w‖ ≤ δ
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for w ∈ H̃1
T with ‖w‖ ≤ δ0, so that, using (A7), we obtain

ψ(w) = �(θ(w) + w)

= 1

2

∫ T

0
|ẇ|2dt −

∫ T

0
[F(t, θ(w) + w) − F(t, 0)]dt

≤ 1

2

∫ T

0
|ẇ|2dt − 1

2
k2ω2

∫ T

0
|θ(w) + w|2dt

≤ 0 (3.4)

for w ∈ W2 with ‖w‖ ≤ δ0. Thus, ψ has a local linking at 0 with respect to
(W1,W2).

(4) It follows from (3.4) that infw∈H̃1
T

ψ(w) ≤ 0.
If infw∈H̃1

T
ψ(w) = 0, all w ∈ W2 with ‖w‖ ≤ δ0 are minimums of ψ , which

implies that ψ has infinitely many critical points. If infw∈H̃1
T

ψ(w) < 0, Propo-
sition 2.2 implies that ψ has at least two nontrivial critical points. In any case,
the functional ψ possesses two nonzero critical points, denoted by w1, w2. Con-
sequently, u1 = θ(w1) + w1 and u2 = θ(w2) + w2 are two nonzero solutions of
problem (1.1). This completes the proof.

��

Proof of Theorem 1.4 The proof is similar to that of Theorem 1.3 with the exception
that now (3.3) follows from condition (A8). We verify this assertion by contradiction.
If not, there exist c2 ∈ R and a sequence (un) ⊂ H̃1

T such that ‖un‖ → ∞ as n → ∞
and

�(un) ≤ c2, ∀n ∈ N. (3.5)

Set

H1 = R
N

⊕
(sinωtRN )

⊕
(cosωtRN ).

Then H1
T = H1

⊕
H⊥
1 , and for un ∈ H̃1

T , we can rewrite

un = (an‖un‖ cosωt + bn‖un‖ sinωt) + wn,

where an , bn ∈ R
N and wn ∈ H⊥

1 . It is obvious that

∫ T

0
|ẇn|2dt ≥ 4ω2

∫ T

0
|wn|2dt .
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Hence, using (A8), we have

c2 ≥ �(un)

≥ 1

2

∫ T

0
|u̇n|2dt − ω2

2

∫ T

0
|un|2dt −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt

= 1

2

∫ T

0
|ẇn|2dt − ω2

2

∫ T

0
|wn|2dt −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt

≥ 3

8

∫ T

0
|ẇn|2dt −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt,

which implies that (wn) is bounded. Taking vn = un/‖un‖, then ‖vn‖ = 1, and hence
(an) and (bn) are bounded. Up to a subsequence, we can assume that

an → a and bn → b as n → ∞,

for some a, b ∈ R. By the boundedness of (wn), one has wn/‖un‖ → 0. Hence

vn → a cosωt + b sinωt in H1
T ,

and |a| + |b| �= 0, which yields that

vn(t) → a cosωt + b sinωt uniformly for a.e. t ∈ [0, T ]

by Sobolev’s inequality. Therefore,

|un(t)| → ∞ as n → ∞

for a.e. t ∈ [0, T ], since a cosωt + b sinωt only has finite zeros. Now set

E =
{
t ∈ [0, T ]

∣∣∣∣F(t, x) − 1

2
ω2|x |2 → −∞ as |x | → ∞

}
.

It follows from Fatou’s lemma (see [25]) that

lim inf
n→∞ �(un) ≥ lim inf

n→∞

∫ T

0

(
ω2

2
|un|2 − F(t, un)

)
dt +

∫ T

0
F(t, 0)dt

≥ lim inf
n→∞

∫
E

(
ω2

2
|un|2 − F(t, un)

)
dt −

∫ T

0
γ (t)dt +

∫ T

0
F(t, 0)dt

= +∞,

a contradiction with (3.5). Thus

�(u) → +∞ as ‖u‖ → ∞, u ∈ H̃1
T .

��
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Proof of Theorem 1.5 It follows from (A) and (A9) that, for ε ∈ (0, 1−a), there exists
Mε > 0 such that

F(t, x) ≤ 1

2
(α(t) + εω2)|x |2 + max

s∈[0,Mε]
a(s)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ]. Hence, we obtain, by Lemma 2.1 and Wirtinger’s

inequality,

�(w) = 1

2

∫ T

0
|ẇ|2dt −

∫ T

0
[F(t, w) − F(t, 0)]dt

≥ 1

2

∫ T

0
|ẇ|2dt − 1

2

∫ T

0
(α(t) + εω2)|w|2dt − max

s∈[0,Mε] a(s)
∫ T

0
b(t)dt +

∫ T

0
F(t, 0)dt

≥ 1

2
(1 − a − ε)|ẇ|22 − max

s∈[0,Mε ] a(s)
∫ T

0
b(t)dt +

∫ T

0
F(t, 0)dt

for all w ∈ H̃1
T . The equivalence of the norm |ẇ|2 and the H1

T -norm on H̃1
T shows

that

�(w) → +∞ as ‖w‖ → ∞, w ∈ H̃1
T .

The remainder of the proof is the same as that of Theorem 1.3. Consequently, Theorem
1.5 holds. ��
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