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Abstract
We examine the dynamics of zero-current ionic flows via Poisson-Nernst-Planck sys-
tems with one cation, one anion and boundary layers. To account finite ion size effects
in the analysis, we include Bikerman’s local hard-sphere model. Geometric singular
perturbation theory is employed in our discussion, together with the specific structures
of the model problem, we obtain the existence and local uniqueness result of the prob-
lem for zero-current state. More importantly, we are able to derive explicit expressions
of the approximation to individual fluxes from the solutions. This allows us to further
examine the effect on the zero-current ionic flows with boundary layers from finite
ion sizes and diffusion coefficients by further employing regular perturbation analy-
sis. The detailed analysis, particularly, the characterization of the nonlinear interplay
between system parameters provides deep insights and better understandings of the
internal dynamics of ionic flows through membrane channels.
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1 Introduction

Ion channels are pore-forming membrane proteins that allow ions to pass through the
channel pore. Ion channels are embedded in cell membranes, which provide a major
medium for cells to communicate with each other and with outside environment [1–3].
In this way, ion channels control a wide range of biological functions, in particular,
many varied functions are necessary for life (see [3] for more discussion). Clinically,
malfunctioning channels cause cystic fibrosis, cholera, and many other diseases [4].
Thus, it is significant to explore the mechanism of ion channels.

In general, we study ion channels mainly focusing on two related major topics:
structures of ion channels and ionic flow properties. The physical structure of ion
channels is defined by the channel shape and the spatial distribution of permanent
charges and the polarity of these charges [3, 5]. Thanks to the revolutionary advances
of cryo-electro microscopy, which is recognized in the 2018 Nobel Prize, we are able
to know the structure of many ion channels. This excellent work enhances the study
of permanent charge effects on ionic flows toward a comprehensive understanding of
ion channel properties. Once the structure of an open ion channel is given, the main
interest is on the study of its electrodiffusion property. A main challenge to study
properties of ionic flows through ion channels is to characterize the nonlinear interplay
between specific system parameters. Moreover, current experimental techniques are
still limited, and the key experimental measurement about ionic flow is the I–V relation
defined in (1.7) below [6, 7]. However, it is an input-output type information of an
average effect of physical parameters on ionic flows; particularly, it is still impossible
to“measure/observe" internal dynamical behaviors of ionic flows. It is not a surprise
that to extract coherent properties or to formulate specific characteristic quantities
from the experimental measurements that are crucial for classifying general behavior
of ionic flows is still challenging. On the other hand, the measurement of I–V relations
can still efficiently determine some characteristics of ion channels by employing some
well-established methods of the theory of inverse problem [8, 9].

The challenges mentioned above strongly indicates the importance of mathemat-
ical models and analysis and numerical simulations as complementary tools to the
physiological theory and experiments. Mathematical study might provide deep cor-
respondences from the multiple parameters involved to the internal dynamics and to
properties of ion channels, at least for the relatively simple settings adopted in many
biological experiments. Recently, there have been some successes in mathematical
studies of Poisson-Nernst-Planck (PNP) models for ionic flows through membrane
channels. Particularly, for those [10–26] etc. studied by employing the geometric sin-
gular perturbation analysis, interesting phenomena of ionic flows were observed for
relatively simple setups.

In this work, we analyze a PNP model with Bikerman’s local hard-sphere compo-
nent to account for finite ion size effects. Boundary layers are introduced by relaxing
the electroneutrality conditions, which is more realistic in the study of ion channel
problems. Our main interest is the effect on zero-current ionic flows from finite ion
sizes and diffusion coefficients, respectively, which can be mathematically extracted
from solutions of the PNP system.
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1.1 One-Dimensional Poisson-Nernst-PlanckModels

PNP system is a basic macroscopic model for electrodiffusion of charges through ion
channels [7, 27–31], etc., which can be derived as a reduced model from molecu-
lar dynamics, Boltzmann equations, and variational principles [32–35], under some
further assumptions.

A quasi-one-dimensional steady-state PNP model for a mixtures of n ion species
though a single channel reads (first proposed in [36])

1

A(X)

d

dX

(
εr (X)ε0A(X)

d�

dX

)
= −e

⎛
⎝ n∑

j=1

z jC j (X) + Q(X)

⎞
⎠ ,

dJi

d X
= 0, −Ji = 1

kBT
Di (X)A(X)Ci (X)

dμi

d X
, i = 1, 2, . . . , n,

(1.1)

where e is the elementary charge, kB is the Boltzmann constant, T is the absolute
temperature; �(X) is the electric potential, Q(X) is the permanent charge density of
the channel, ε0(X) is the local dielectric coefficient, εr (X) is the relative dielectric
coefficient, A(X) represents the area of the cross-section over the point X , n is the
number of distinct types of ion species; and for the j th ion species, C j is the number
density, z j is the valence, μ j is the electrochemical potential, J j is the number flux
density, D j (X) is the diffusion coefficient.

The boundary conditions are, for i = 1, 2, . . . , n,

�(0) = V, Ci (0) = Li > 0; �(l) = 0, Ci (l) = Ri > 0. (1.2)

For an analysis of the boundary value problem (1.1)–(1.2), wewill work on a dimen-
sionless form. Let C0 be a characteristic concentration of the problem, for instance,

C0 = max
1≤i≤n

{
Li ,Ri , sup

X∈[0,l]
|Q(X)|

}
.

Set

D0 = max
1≤i≤n

{
sup

X∈[0,l]
Dk(X)

}
and ε̄r = sup

X∈[0,l]
εr (X).

Let

ε2 = ε̄rε0kBT

e2l2C0
, ε̂r (x) = εr (X)

ε̄r
, x = X

l
, h(x) = A(X)

l2
,

Dk(x) = Dk(X)

D0
, Q(x) = Q(X)

C0
, φ(x) = e

kBT
�(X), ck(x) = Ck(X)

C0
,

μ̂k = μk

kBT
, Jk = Jk

lC0D0
.

(1.3)
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In terms of the new variables, BVP (1.1)–(1.2) becomes, for k = 1, 2, . . . , n,

ε2

h(x)

d

dx

(
ε̂r (x)h(x)

d

dx
φ

)
= −

n∑
s=1

zscs − Q(x),

d Jk
dx

= 0, −Jk = h(x)Dk(x)ck
d

dx
μ̂k (1.4)

with the following boundary conditions

φ(0) = V = e

kBT
V, ck(0) = Lk = Lk

C0
; φ(1) = 0, ck(1) = Rk = Rk

C0
. (1.5)

Very often, the following so-called electroneutrality boundary concentration con-
ditions are imposed to eliminate sharp boundary layers

n∑
s=1

zs Ls =
n∑

s=1

zs Rs = 0. (1.6)

For given V , Q(x), L ′
ks and R′

ks, if (φ(x; ε), ck(x; ε), Jk(ε)) is a solution of the
boundary value problem (1.4)–(1.5), then, the steady rate of flow of charge through a
cross-section or current I is

I = I(ε) =
n∑

s=1

zs Js(ε). (1.7)

Our focus will be on the zeroth order approximation (in ε) of I = I(0) and
Jk = Jk(0). Notice that Jk depends on V , Q(x), Lk’s and Rk’s, so does I .

1.2 Excess Potential and a Local Hard-Sphere Model

The electrochemical potential μ̂i (x) for the i th ion species consists of two components,
more precisely, the ideal component μid

i (x), and the excess component μex
i (x):

μ̂i (x) = μid
i (x) + μex

i (x)

with

1

kBT
μid
i (x) = ziφ(x) + ln ci (x). (1.8)

We emphasize that the ideal component μid
i (x) reflects the interaction between ion

particles and the water molecules. The PNP system that just includes the ideal com-
ponent is the so-called classical PNP (cPNP). The cPNP is the simplest PNP model,
which has been studied extensively [6, 22, 36–53] and the reference therein. But, many
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extremely important properties of ion channels, such as selectivity, rely on finite ion
sizes critically, especially for those that have the same ion valence but distinct ion
size (for example, Na+ and K+ ). To examine the effects on ionic flows from the
finite ion size, we need to consider ion-specific components of the electrochemical
potential in the PNP models. One natural but reasonable way is to have Hard-Sphere
(HS) potential models of the excess electrochemical potential. There exist two types
of models for hard-sphere potentials: local and nonlocal. Local hard-sphere potential
models depends pointwise on ion concentrations while nonlocal hard-sphere models
are defined as functionals of ion concentrations (see [17, 54, 55] for more discussions).
The PNP type models with finite ion sizes have been studied both computationally
and analytically for membrane channels, and have shown great success (see [10, 17,
33, 34, 56–70] for example).

In this work, we will take the following local hard-sphere model for μex
i (X) [71]

1

kBT
μBik
i (x) = − ln

⎛
⎝1 −

n∑
j=1

ν j c j (x)

⎞
⎠ , (1.9)

where νi is the volume of the i th ion species. We point out that only the Molecular
Mean Field treatment led by the authors in [72, 73] includes water as a molecule
of defined diameter and also deals successfully with the measurements of activity
(i.e., free energy per mole, or chemical potential) of a wide range of ionic solutions
including mixtures, in the view of experimentalists.

1.3 Zero-Current Ionic Flows and Reversal Potentials

The zero-current state of ionic flows throughmembrane channel, a special state among
the range of the value for ionic current, is defined to be the moment that there is no
net current within a channel. The corresponding membrane potential at zero-current
state is called a reversal potential (see [15, 62] for more detailed discussion). The
study on zero-current ionic flows is significant for physiology, because one is able
to determine which ion species can permeate a particular channel by manipulating
ion concentrations from the boundary and determining how the zero-current potential
changes, fromwhich the biologists and physiologists are able to identify the selectivity
of a specific ion channel [15, 64].

Nernst was one of the first who studied reversal potentials. Specifically, for one
charged particle case, he formulated an equation, which now is the Nernst equation
for the reversal potential. It then follows a treatment of Mott for electronic conduction
in the copper-copper oxide rectifier [46], the Nernst equation was further generalized
by Goldman [62], and Hodgkin and Katz [15], the so-called Goldman-Hodgkin-Katz
(GHK) equation for reversal potentials involving multiple charged particles.

Recently, in [14], the authors analyzed the cPNP system with nonzero permanent
charges, and focused on the existence of reversal potentials and reversal permanent
charges that are defined through zero total current for a degenerate case (the two ion
species involved in the model have the same diffusion coefficients). Later, in [21], the
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author extended the work done in [14] to consider the cPNP system with nonuniform
diffusion coefficients. The dependence of reversal potentials on channel geometry and
diffusion coefficients is mathematically analyzed, which provides rich information of
the internal dynamics of ionic flows. In [44], the authors further examine the diffusion
coefficients and permanent charge effects on reversal potentials based on the work
done in [21], which provides more intuitive illustrations of some analytical results.

However, in [14, 21, 44], the authors ignored the ion sizes. As discussed in Sect. 1.2,
the finite ion size plays critical roles in the study of ionic flow properties, particularly,
the selectivity phenomena for cations having the same ion valences but distinct finite
ion sizes. For this, we include Bikerman’s local hard-sphere electrochemical potential
model (1.9) in our PNP system to account for finite ion size effects.

1.4 Electroneutrality Boundary Concentration Conditions Versus Boundary Layers

In the study of ion channel problem, the conditions (1.6) are, in general, enforced
at both ends of the channel (see, e.g., [16–19, 39, 50, 57, 68]). This reduces the
difficulty a lot in mathematical analysis of qualitative properties of the system due to
the disappearance of the boundary layers (see, e.g., [16, 17, 37, 57, 65]). To examine
the boundary layer effects on ionic flows, it is natural to remove the neutral conditions.
On the other hand, if those boundary layers reach into the part of the device performing
atomic control, they dramatically affect its behavior. Boundary layers of charge are
particularly likely to create artifacts over long distances because the electric field
spreads a long way [13]. Correspondingly, to get started, we consider the state that is
not neutral but close to, which is more realistic in the study of ion channel problems
(for this setup, the boundary layers appear). Mathematically, we introduce positive
parameters σ and ρ, and assume

⎛
⎝ k∑

j=1

z j L j

⎞
⎠ σ = −

n∑
j=k+1

z j L j and

⎛
⎝ k∑

j=1

z j R j

⎞
⎠ ρ = −

n∑
j=k+1

z j R j , (1.10)

where z j > 0, j = 1, 2, · · · , k and z j < 0, j = k + 1, · · · , n. We are interested in
the case when (σ, ρ) → (1, 1) while (σ, ρ) = (1, 1) implies neutral conditions. This
is what we did in [51] for the case with k = 1 and n = 2 and in [24] for the case with
k = 2 and n = 3. Compared to previous works under electroneutrality conditions,
more rich dynamics are observed. However, in these works, the finite ion size effect
is not included, while it is one of our main focuses in current work.

1.5 Problem Setup

We will take the following setting through the rest of the work:

(A1) We consider two ion species (n = 2) with z1 > 0 and z2 < 0.
(A2) The permanent charge is set to be zero: Q(x) = 0.
(A3) For the electrochemical potential μi , we include both the ideal component μid

i
in (1.8) and the Bikerman’s local hard-sphere potential μBik

i in (1.9).
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(A4) ε̂r (x) = 1, Di (x) = Di are positive constants, for i = 1, 2.

Under assumptions (A1)–(A4), the boundary value problem (1.4)–(1.5) now reads

ε2

h(x)

d

dx

(
h(x)

dφ

dx

)
= −z1c1 − z2c2,

d J1
dx

= d J2
dx

= 0,

dc1
dx

= − f1(c1, c2; ν1, ν2)
dφ

dx
− 1

h(x)
g1
(
c1, J1/D1, J2/D2; ν1, ν2

)
,

dc2
dx

= f2(c1, c2; ν1, ν2)
dφ

dx
− 1

h(x)
g2
(
c2, J1/D1, J2/D2; ν1, ν2

)
,

(1.11)

where

f1(c1, c2; ν1, ν2) = (z1 − z1ν1c1 − z2ν2c2)c1,

f2(c1, c2; ν1, ν2) = −(z2 − z1ν1c1 − z2ν2c2)c2,

g1
(
c1, J1/D1, J2/D2; ν1, ν2

) = J1
D1

−
(

ν1
J1
D1

+ ν2
J2
D2

)
c1,

g2
(
c2, J1/D1, J2/D2; ν1, ν2

) = J2
D2

−
(

ν1
J1
D1

+ ν2
J2
D2

)
c2.

Its boundary conditions are, for i = 1, 2,

φ(0) = V , ci (0) = Li ; φ(1) = 0, ci (1) = Ri . (1.12)

The rest of the paper is organized as follows. In Sect. 2, under the framework of geo-
metric singular perturbation analysis, we establish the existence and local uniqueness
of the solution of the boundary value problem. Meanwhile, noting that the singular
orbit of the problem depends regularly on ν = ν1 > 0 small, the diameter of the cation,
a regular perturbation analysis is carried out for the singular orbit. Correspondingly,
an approximation (in the diameter ν up to the first order) of the zero-current ionic flow
is derived, which allows us to further examine the effects on the zero-current ionic
flows from different system parameters, such as finite ion sizes and diffusion coeffi-
cients, which is discussed in detail in Sect. 3. In Sect. 4, some concluding remarks are
provided. Some proofs are provided in Sect. 5.

2 Dynamical System Framework for (1.11)–(1.12) with Boundary
Layers

To get started, we write the system (1.11) as a standard form of a singularly perturbed
system. Upon introducing u = εφ̇ and τ = x , and denoting the derivative with respect
to x by overdot, the system (1.11) becomes:
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εφ̇ = u, εu̇ = −z1c1 − z2c2 − ε
hτ (τ )

h(τ )
u,

εċ1 = − f1(c1, c2; ν1, ν2)u − ε

h(τ )
g1
(
c1, J1/D1, J2/D2; ν1, ν2

)
,

εċ2 = f2(c1, c2; ν1, ν2)u − ε

h(τ )
g2
(
c2, J1/D1, J2/D2; ν1, ν2

)
,

J̇1 = J̇2 = 0, τ̇ = 1.

(2.1)

System (2.1) is a singularly perturbed system with the singular parameter ε, its
phase space is R7 with state variables (φ, u, c1, c2, J1, J2, τ ).

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to the
equivalent fast system,

φ′ = u, u′ = −z1c1 − z2c2 − ε
hτ (τ )

h(τ )
u,

c′
1 = − f1(c1, c2; ν1, ν2)u − ε

h(τ )
g1
(
c1, J1/D1, J2/D2; ν1, ν2

)
,

c′
2 = f2(c1, c2; ν1, ν2)u − ε

h(τ )
g2
(
c2, J1/D1, J2/D2; ν1, ν2

)
,

J ′
1 = J ′

2 = 0, τ ′ = ε,

(2.2)

where prime denotes the derivative with respect to the variable ξ .

Remark 2.1 For ε > 0, the systems (2.1) and (2.2) have exactly the same phase portrait.
However, their limiting systems at ε = 0 are different. The limiting system of (2.1) is
called the limiting slow system, whose orbits are called slow orbits or regular layers.
The limiting system of (2.2) is called the limiting fast system, whose orbits are called
fast orbits or singular (boundary and/or internal) layers. By a singular orbit of the
system (2.1) or (2.2), we mean a continuous and piecewise smooth curve in R

7 that
is a union of finitely many slow and fast orbits. Very often, limiting slow and fast
systems provide complimentary information on state variables. Therefore, the main
task of singularly perturbed problems is to patch the limiting information together to
form a solution for the entire ε > 0 system.

Let BL and BR be the subsets of the phase space R7 defined by

BL =
{
(V , u, L1, L2, J1, J2, 0) ∈ R

7 : arbitrary u, J1, J2
}

,

BR =
{
(0, u, R1, R2, J1, J2, 1) ∈ R

7 : arbitrary u, J1, J2
}

,
(2.3)

where V , L1, L2, R1 and R2 are given in (1.12).
The boundary value problem (1.11) and (1.12) is equivalent to an equivalent con-

nection problem, that is, finding an orbit of (2.1) or (2.2) from BL to BR .
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2.1 Limiting Fast Dynamics and Boundary Layers at x = 0 and x = 1

First, we let ε → 0 in (2.1) and obtain the so-called slow manifold

Z = {u = 0, z1c1 + z2c2 = 0} . (2.4)

Setting ε = 0 in (2.2) leads to the limiting fast system,

φ′ = u, u′ = −z1c1 − z2c2,

c′
1 = − f1(c1, c2; ν1, ν2)u, c′

2 = f2(c1, c2; ν1, ν2)u,

J ′
1 = J ′

2 = 0, τ ′ = 0. (2.5)

We point out that the slow manifold Z is precisely the set of equilibria of the
system (2.5), and the dimension of Z is five. By linearizing the system (2.5) at each
point in Z , one obtains that there are five zero eigenvalues associated to the tangent

space of Z and the other two eigenvalues are ±
√
z21c1 + z22c2 under the restriction

that ck’s are positive. Thus, the slow manifold Z is normally hyperbolic [74]. From
the theory of normally hyperbolic invariant manifolds [74], there are six-dimensional
stable manifoldWs(Z) of Z consisting of points approaching Z in forward time, and
six-dimensional unstable manifold Wu(Z) of Z consisting of points approaching Z
in backward time.

Let ML (resp. MR) be the collection of orbits from BL (resp. BR) in forward (resp.
backward) time under the flowof the system (2.5). Then, for a singular orbit connecting
BL and BR , the boundary layer 
0 must lie in NL = ML ∩ Ws(Z) and the boundary
layer 
1 must lie in NR = MR ∩Wu(Z). We first study the limiting fast system (2.5)
to understand the two boundary layers and the resulting two landing points ω(NL)

and α(NR)

Recall that our interest is in the effects on zero-current ionic flows from finite ion
size. For small ν1 > 0 and ν2 > 0, the volumes of ion species, we treat the system
(2.5) as a regular perturbation of that with ν1 = ν2 = 0. For convenience, we let

ν1 = ν and ν2 = λν, (2.6)

where the parameter λ is positive, and seek solutions


(ξ ; ν) = (φ(ξ ; ν), u(ξ ; ν), c1(ξ ; ν), c2(ξ, ν), J1(ν), J2(ν), τ )

of the system (2.5) of the form with i = 1, 2

φ(ξ ; ν) = φ0(ξ) + νφ1(ξ) + o(ν), u(ξ, ν) = u0(ξ) + νu1(ξ) + o(ν),

ci (ξ, ν) = ci0(ξ) + νci1(ξ) + o(ν), Ji (ν) = Ji0 + ν Ji1 + o(ν).
(2.7)

We substitute (2.7) into the system (2.5) and obtain, after careful calculation,
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• The zeroth order limiting fast system in ν

φ′
0 = u0, u′

0 = −z1c10 − z2c20, c′
10 = −z1c10u0, c′

20 = −z2c20u0,

J ′
10 = J ′

20 = 0. τ ′ = 0.
(2.8)

• The first order limiting fast system in ν

φ′
1 = u1, u′

1 = −z1c11 − z2c21,

c′
11 = −z1u0c11 − z1c10u1 + (z1c10 + λz2c20)c10u0,

c′
21 = −z2u0c21 − z2c20u1 + (z1c10 + λz2c20)c20u0,

J ′
11 = J ′

21 = 0, τ ′ = 0. (2.9)

For the system (2.8) and the system (2.9), one has the following result, which charac-
terizes the boundary layers and the landing points.

Proposition 2.2 Assume that ν ≥ 0 is small. Under the condition (1.10) with k = 1
and n = 2, that is, −z2L2 = (z1L1)σ and −z2R2 = (z1R1)ρ, one has

(i) The zeroth order limiting fast system has three nontrivial first integrals

H1 = ln c10 + z1φ0, H2 = ln c20 + z2φ0, H3 = u20
2

− c10 − c20.

The first order limiting fast system has three nontrivial first integrals

G1 = z1φ1 + c11
c10

+ c10 + λc20,

G2 = z2φ1 + c21
c20

+ c10 + λc20,

G3 = u0u1 − c11 − c21 − λ

2
c220 − 1

2
c210 − c10c20 + z2(1 − λ)

z1 + z2
e(z1+z2)(V−φ0).

(ii) The stable manifold Ws(Z) intersects BL transversally at points

(
V , ul0 + ul1ν + o(ν), L1, L2, J1(ν), J2(ν), 0

)
,

and the ω-limit set of NL = ML ∩ Ws(Z) is

ω(NL) =
{(

φL
0 + φL

1 ν + o(ν), 0, cLi0 + cLi1ν + o(ν), J1(ν), J2(ν), 0
)}

,

where Ji (ν) = Ji0 + Ji1ν + o(ν), i = 1, 2, can be arbitrary, and

φL
0 = V − 1

z1 − z2
ln σ, z1c

L
10 = −z2c

L
20 = (z1L1)σ

z1
z1−z2 ,
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ul0 = sgn(φL
0 − V )

√
2

(
L1 + L2 + z1 − z2

z1z2
(z1L1)σ

z1
z1−z2

)
;

φL
1 = 0, z1c

L
11 = −z2c

L
21 = z1c

L
10(L1 + λL2 − cL10 − λcL20),

ul1 = 1

ul0

(
λ

2

(
L2
2 − (cL20)

2
)

+ 1

2

(
L2
1 − (cL10)

2
)

− cL10c
L
20 − cL11 − cL21

− z2(1 − λ)

z1 + z2
e(z1+z2)(V−φL

0 )

)
.

(iii) The unstable manifold Wu(Z) intersects BR transversally at points

(
0, ur0 + ur1ν + o(ν), R1, R2, J1(ν), J2(ν), 1

)
,

and the α-limit set of NR = MR ∩ Wu(Z) is

α(NR) =
{(

φR
0 + φR

1 ν + o(ν), 0, cRi0 + cRi1ν + o(ν), Ji (ν), 1
)}

,

where Ji (ν) = Ji0 + Ji1ν + o(ν), i = 1, 2, can be arbitrary, and

φR
0 = − 1

z1 − z2
ln ρ, z1c

R
10 = −z2c

R
20 = (z1R1)ρ

z1
z1−z2 ,

ur0 = −sgn(φR
0 )

√
2

(
R1 + R2 + z1 − z2

z1z2
(z1R1)ρ

z1
z1−z2

)
;

φR
1 = 0, z1c

R
11 = −z2c

R
21 = z1c

R
10(R1 + λR2 − cR10 − λcR20),

ur1 = 1

ur0

(
λ

2
(R2

2 − (cR20)
2) + 1

2
(R2

1 − (cR10)
2) − cR10c

R
20 − cR11 − cR21

− z2(1 − λ)

z1 + z2
e−(z1+z2)φR

0

)
.

Proof We defer the proof to the appendix Sect. 5. �	
Remark 2.3 We point out that in Proposition 2.2, the boundary layers are introduced
due to the violation of electroneutrality boundary conditions, which is more realistic in
the study of ion channel problems. To be specific, if the neutral conditions are enforced
at both ends of ion channel, onehasφL

0 = V , cL10 = L1, cL20 = L2; φR
0 = 0, cR10 = R1

and cR20 = R2. In other words, BL and Br will totally stay in the slow manifold Z ,
and the boundary layers disappear. To examine the effects on ionic flows from the
boundary layers, naturally, one need to relax the neutral conditions.

2.2 Limiting Slow Dynamics and Regular Layer Over (0, 1)

Our focus in this section is to construct the slow orbit � on the slow manifold Z con-
necting the two landing pointsω(NL ) andα(NR) identified in the Proposition 2.2.Note
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that as ε → 0, the system (2.1) loses most information. To remedy this degeneracy, we
follow the idea in [13, 18, 19] and make a rescaling u = εp and −z2c2 = z1c1 + εq
in system (2.1). In terms of new variables p and q, system (2.1) becomes

φ̇ = p, ε ṗ = q − ε
hτ (τ )

h(τ )
p, εq̇ = (z1 f1 − z2 f2)p + z1g1 + z2g2

h(τ )
,

ċ1 = − f1 p − g1
h(τ )

, J̇1 = J̇2 = 0, τ̇ = 1
(2.10)

where, for i = 1, 2,

fi = fi

(
c1,− z1c1 + εq

z2
; ν, λν

)
,

g1 = g1
(
c1, J1/D1, J2/D2; ν, λν

)
,

g2 = g2

(
− z1c1 + εq

z2
, J1/D1, J2/D2; ν, λν

)
.

It is also a singular perturbation problem and its limiting slow system is

q = 0, p = − z1g1 + z2g2
z1(z1 − z2)h(τ )c1

, φ̇ = p,

ċ1 = − f1

(
c1,− z1

z2
c1; ν, λν

)
p − 1

h(τ )
g1
(
c1, J1/D1, J2/D2; ν, λν

)
,

J̇1 = J̇2 = 0, τ̇ = 1.

(2.11)

For system (2.11), the slow manifold is

S =
{
q = 0, p = − z1g1 + z2g2

z1(z1 − z2)h(τ )c1

}
.

Correspondingly, the limiting slow system on S is

φ̇ = p, ċ1 = − f1

(
c1,− z1

z2
c1; ν, λν

)
p − g1

(
c1, J1/D1, J2/D2; ν, λν

)
h(τ )

,

J̇1 = J̇2 = 0, τ̇ = 1,
(2.12)

where p = − z1g1+z2g2
z1(z1−z2)h(τ )c1

.

Similarly, for the system (2.12), we look for solutions of (2.12) of the form

φ(x) = φ0(x) + φ1(x)ν + o(ν), c1(x) = c10(x) + c11(x)ν + o(ν),

J1 = J10 + J11ν + o(ν), J2 = J20 + J21ν + o(ν),
(2.13)
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which connect ω(NL) and α(NR) given in Proposition 2.2, particularly, for j = 0, 1,

(
φ j (0), c1 j (0)

) =
(
φL
j , c

L
1 j

)
,

(
φ j (1), c1 j (1)

) =
(
φR
j , cR1 j

)
.

Substituting (2.13) into the system (2.12), we obtain

• The zeroth order limiting slow system in ν:

φ̇0 = − 1

z1(z1 − z2)c10h(τ )

(
z1 J10
D1

+ z2 J20
D2

)
,

ċ10 = z2
(z1 − z2)h(τ )

(
J10
D1

+ J20
D2

)
, J̇10 = J̇20 = 0, τ̇ = 1,

(2.14)

• The first order limiting slow system in ν:

φ̇1 = c11
( z1 J10

D1
+ z2 J20

D2

)
z1(z1 − z2)c210h(τ )

−
z1 J11
D1

+ z2 J21
D2

z1(z1 − z2)c10h(τ )
,

ċ11 = 1

(z1 − z2)h(τ )

[
(z1λ − z2)

(
J10
D1

+ J20
D2

)
c10 + z2

(
J11
D1

+ J21
D2

)]
,

J̇11 = J̇21 = 0, τ̇ = 1.
(2.15)

Recall that our main interest is the qualitative properties of ionic flows at zero-
current state, that is (from (1.7)), for small ν > 0,

0 = I =z1 J1 + z2 J2 = z1 J10 + z2 J20 + ν(z1 J11 + z2 J21) + o(ν),

which is equivalent to, for small ν > 0,

z1 J10 + z2 J20 = 0 and z1 J11 + z2 J21 = 0. (2.16)

Under the condition (2.16), the system (2.14) and the system (2.15) read

φ̇0 = (D1 − D2)J10
(z1 − z2)D1D2c10h(τ )

, ċ10 = − (z1D1 − z2D2)J10
D1D2(z1 − z2)h(τ )

,

J̇10 = J̇20 = 0, τ̇ = 1,
(2.17)

and

φ̇1 = (D2 − D1)J10c11
(z1 − z2)D1D2c210h(τ )

− (D2 − D1)J11
(z1 − z2)D1D2c10h(τ )

,

ċ11 = (z1λ − z2)(z2D2 − z1D1)J10c10
z2(z1 − z2)D1D2h(τ )

+ (z2D2 − z1D1)J11
(z1 − z2)D1D2h(τ )

,

J̇11 = J̇21 = 0, τ̇ = 1.

(2.18)
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For simplicity, in our following discussion, we always assume D1 
= D2 and
introduce

H(x) =
∫ x

0

1

h(s)
ds. (2.19)

For the system (2.17), one has

Lemma 2.4 There is a unique solution (φ0(x), c10(x), J10, τ (x)) of (2.17) such that

(φ0(0), c10(0), τ (0)) = (φL
0 , cL10, 0) and (φ0(1), c10(1), τ (1)) = (φR

0 , cR10, 1),

where φL
0 , cL10, φ

R
0 and cR10 are given in Proposition 2.2. It is given by

φ0(x) = φL
0 − D1 − D2

z1D1 − z2D2
ln

c10(x)

cL10
,

c10(x) = cL10 − (z1D1 − z2D2)J10
D1D2(z1 − z2)

H(x), τ (x) = x .

(2.20)

In particular, under the condition (1.10) with k = 1 and n = 2, that is, −z2L2 =
(z1L1)σ and −z2R2 = (z1R1)ρ,

J10 = D1D2(z1 − z2)

(z1D1 − z2D2)H(1)

(
L1σ

z1
z1−z2 − R1ρ

z1
z1−z2

)
(2.21)

under the restriction

V + ln ρ − ln σ

z1 − z2
= D1 − D2

z1D1 − z2D2

[
ln R1 − ln L1 + z1

z1 − z2
(ln ρ − ln σ)

]
.

Or equivalently,

J10 = D1D2(z1 − z2)
(
L1σ

z1
z1−z2 − R1ρ

z1
z1−z2

)(
V + 1

z1−z2
(ln ρ − ln σ)

)
(D1 − D2)

(
ln R1 − ln L1 + z1

z1−z2
(ln ρ − ln σ)

)
H(1)

.

Proof We defer the proof to the appendix Sect. 5. �	
For the system (2.18), the following result can be established.

Lemma 2.5 There is a unique solution (φ1(x), c11(x), J11, τ (x)) of (2.18) such that

(φ1(0), c11(0), τ (0)) = (φL
1 , cL11, 0) and (φ1(1), c11(1), τ (1)) = (φR

1 , cR11, 1),

where φL
1 , cL11, φ

R
1 and cR11 are given in Proposition 2.2. It is given by

φ1(x) = φL
1 + D2 − D1

z1D1 − z2D2

(
c11(x)

c10(x)
− cL11

cL10

)
+ (D2 − D1)(z1λ − z2)J10

z2(z1 − z2)D1D2
H(x),
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c11(x) = cL11 + z1λ − z2
2z2

(c210(x) − (cL10)
2) + (z2D2 − z1D1)J11

D1D2(z1 − z2)
H(x).

In particular, under the condition (1.10) with k = 1 and n = 2, that is, −z2L2 =
(z1L1)σ and −z2R2 = (z1R1)ρ,

J11 = J10

(
cL11 − cR11
cL10 − cR10

− z1λ − z2
2z2

(cL10 + cR10)

)

= J10

[ L21σ
z1

z1−z2
(
1 − z1λ

z2
σ
)− R2

1ρ
z1

z1−z2
(
1 − z1λ

z2
ρ
)+ z1λ

z2

(
L21σ

2z1
z1−z2 − R2

1ρ
2z1

z1−z2
)

L1σ
z1

z1−z2 − R1ρ
z1

z1−z2

− z1λ + z2
2z2

(
L1σ

z1
z1−z2 + R1ρ

z1
z1−z2

)]

under the restriction

λ = z2(L1 − R1)

z1(σ L1 − ρR1)
.

Or equivalently,

J11 = J10

[
(σ − ρ)L1R1

σ L1 − ρR1
+ (1 − σ)L1 − (1 − ρ)R1

2(σ L1 − ρR1)

(
L1σ

z1
z1−z2 + R1ρ

z1
z1−z2

)]
.

(2.22)

Proof We defer the proof to the appendix Sect. 5. �	
The slow orbit, up to O(ν),

�(x; ν) = (
φ0(x) + φ1(x)ν, c10(x) + c11(x)ν, J10 + J11ν, J20 + J21ν, τ (x)

)
(2.23)

given in Lemmas 2.4 and 2.5 connects ω(NL) and α(NR). Let M̄L (resp. M̄R) be the
forward (resp. backward) image of ω(NL) (resp. α(NR)) under the slow flow (2.12)
on the five-dimensional slow manifold S. The following result can be established.

Proposition 2.6 There exists ν0 > 0 small depending on boundary conditions so that,
if 0 ≤ ν ≤ ν0, then, on the five-dimensional slow manifold S, M̄L and M̄R intersects
transversally along the unique orbit �(x; ν) given in (2.23).

Proof To see the transversality of the intersection, one may verify that ω(NL) · 1, the
image ofω(NL) under the time-onemap of the flow of the system (2.12), is transversal
to α(NR) on S ∩ {τ = 1} for ν = 0. For this step, readers may refer to the detailed
proof of Proposition 2.3 in the reference [18]. Once this is proved, from the smooth
dependence of solutions on the parameter ν, one concludes that there exists ν0 > 0
small, such that, if 0 ≤ ν ≤ ν0, then, ω(NL) · 1 and α(NR) intersect transversally on
S ∩ {τ = 1}. This completes the proof. �	
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2.3 Existence of Solutions Near the Singular Orbit

From Sects. 2.1 and 2.2, we have constructed a unique singular orbit on [0,1] that
connects BL to BR . It consists of two boundary layer orbits 
0 from the point

(
V , ul0 + ul1ν + o(ν), L1, L2, J10 + J11ν + o(ν), J20 + J21ν + o(ν), 0

)
∈ BL

to the point

(
φL , 0, cL1 , cL2 , J1, J2, 0

)
∈ ω(NL) ⊆ Z

and 
1 from the point

(
φR, 0, cR1 , cR2 , J1, J2, 1

)
∈ α(NR) ⊆ Z

to the point

(
0, ur0 + ur1ν + o(ν), R1, R2, J10 + J11ν + o(ν), J20 + J21ν + o(ν), 1

) ∈ BR,

and a regular layer� onZ connecting the two landing points (φL , 0, cL1 , cL2 , J1, J2, 0)
∈ ω(NL) and (φR, 0, cR1 , cR2 , J1, J2, 1) ∈ α(NR) of the boundary layers.

We now focus on the existence of a solution of the system (1.11)–(1.12), which
is close to the singular orbit constructed above. To be specific, it is a union of two
boundary layers and one regular layer, that is, 
0 ∪ � ∪ 
1. The proof of the result
is similar to that in [13, 18, 19] and the main tool to be employed is the Exchange
Lemma [75, 76] of the geometric singular perturbation theory.

Theorem 2.7 Let 
0 ∪ � ∪ 
1 be the singular orbit of the connecting problem system
(2.1) associated to BL and BR in (2.3). Then, for ε > 0 small and ν > 0 small, the
corresponding boundary value problem (1.11)–(1.12) has a unique smooth solution
near the singular orbit 
0 ∪ � ∪ 
1.

Proof Let ν0 > 0 be as in Proposition 2.6. For 0 ≤ ν ≤ ν0, define ul = ul0 + ul1ν,

J1(ν) = J10 + J11ν and J2(ν) = J20 + J21ν. Fix δ > 0 small to be determined. Let

BL(δ) =
{
(V , u, L1, L2, J1, J2, 0) ∈ R

7 : |u − ul | < δ, |Ji − Ji (ν)| < δ
}

,

a neighborhood of 
0 ∩ BL = {(
V , ul0, L1, L2, J1, J2, 0

)}
in BL .

For ε > 0, define M0(ε) to be the forward trace of BL(δ) under the flow of the
system (2.1). We will claim that M0(ε) and BR intersects transversally close to the
point 
1 ∩ BR = {(0, ur0, R1, R2, J1, J2, 1)}.

As for the evolution of M0(ε), it will start near the point (V , ul0, L1, L2, J1, J2, 0),
follow the singular layer 
0 to the slow manifold Z , move along the regular layer
�, and then leave the vicinity of Z along the singular layer 
1 toward the point
(0, ur0, R1, R2, J1, J2, 1) ∈ BR .
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The exchange lemma [75, 76], etc is applied along the stage described above to
track the evolution. It indicates that, near 
1, M0(ε) is C1O(ε)-close to Wu(α(NR) ·
(−ρ, ρ)) for some ρ > 0 independent of ε, if

(i) M0(0) intersects Ws(Z) transversally along 
0 established in Proposition 2.2;
(ii) The vector field on Z is not tangent to ω(NL) at (φL , 0, cL1 , cL2 , J1, J2, 0) ∈ Z ,

which follows from τ̇ = 1 in (2.11).

Note that the latter is transversal to BR near the point (0, ur0, R1, R2, J1, J2, 1).
One has M0(ε) intersects BR transversally near (0, ur0, R1, R2, J1, J2, 1). Note
also that dim M0(ε) = dim BL + 1 = 4 and dim BR = 3. Correspondingly,
dim(M0(ε) ∩ BR) = dim M0(ε) + dim BR − 7 = 0; that is, the intersection near
(0, ur0, R1, R2, J1, J2, 1), is a singleton. This completes the proof. �	

3 Qualitative Properties of Zero-Current Ionic Flows

In this section, we will examine the qualitative properties of the zero-current ionic
flows through membrane channels from different directions, more precisely, we will
study the effects on ionic flows from finite ion sizes and diffusion coefficients with
boundary layers.

To get started, we comment that under zero-current state I = z1 J1 + z2 J2 = 0, we
have J1 = −(z2/z1)J2, thereby, for convenience in our following study, we introduce
J zc as J zc = J1 = −(z2/z1)J2, and call it the zero-current ionic flow. Corresponding,
one has J zc0 corresponding to J10 in (2.21), the zeroth order in ν and J zc1 corresponding
to J11 in (2.22), the first order term in ν.

On the other hand, as we discussed in the introduction, in this work, we will also
consider the effects from the boundary layers due to the violation of the electroneu-
trality boundary conditions in terms of the two positive parameters σ and ρ. More
precisely, we will study the case as (σ, ρ) → (1, 1), a state that is not neutral but
close to (recall that (σ, ρ) = (1, 1) indicates electroneutrality condition). Mathemat-
ically, we view it as a regular perturbation to the neutral condition. We expand the
zero-current ionic flow at (σ, ρ) = (1, 1) up to the first order term and neglect higher
order terms. To be specific, we rewrite J zc = J zc(V ; ν; σ, ρ) as

J zc = J zc(V ; ν; 1, 1) + ∂ J zc

∂σ
(V ; ν; 1, 1)(σ − 1) + ∂ J zc

∂ρ
(V ; ν; 1, 1)(ρ − 1).

(3.1)

3.1 Ion Size Effects on Zero-Current Ionic Flows

To examine the finite ion size effects on the zero-current ionic flow J zc, we employ
regular perturbation analysis and expand it along the small parameter ν at ν = 0. To
be specific, from (3.1), one has
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J zc = J zc0 (V ; 0; 1, 1) + ∂ J zc0
∂σ

(V ; 0; 1, 1)(σ − 1) + ∂ J zc0
∂ρ

(V ; 0; 1, 1)(ρ − 1)

+ ν

(
J zc1 (V ; 0; 1, 1) + ∂ J zc1

∂σ
(V ; 0; 1, 1)(σ − 1) + ∂ J zc1

∂ρ
(V ; 0; 1, 1)(ρ − 1)

)

+ o(ν),

where, with f0(L1, R1) = L1−R1
ln L1−ln R1

,

J zc0 (V ; 0; 1, 1) = D1D2(z1 − z2) f0(L1, R1)V

(D2 − D1)H(1)
,

∂ J zc0
∂σ

(V ; 0; 1, 1) = − D1D2

(D2 − D1)H(1)

(
z1
(
f0(L1, R1) − L1

)
V

ln L1 − ln R1
+ f0(L1, R1)

)
,

∂ J zc0
∂ρ

(V ; 0; 1, 1) = D1D2

(D2 − D1)H(1)

(
z1
(
f0(L1, R1) − R1

)
V

ln L1 − ln R1
+ f0(L1, R1)

)
,

J zc1 (V ; 0; 1, 1) = 0,

∂ J zc1
∂σ

(V ; 0; 1, 1) = −D1D2(z1 − z2)L1 f0(L1, R1)

2(D2 − D1)H(1)
V ,

∂ J zc1
∂ρ

(V ; 0; 1, 1) = −D1D2(z1 − z2)R1 f0(L1, R1)

2(D2 − D1)H(1)
V .

(3.2)

For convenience,we introduce J̄ zc0 = J̄ zc0 (V ; σ, ρ) and J̄ zc1 = J̄ zc1 (V ; σ, ρ) defined
as follows

J̄ zc0 = J zc0 (V ; 0; 1, 1) + ∂ J zc0
∂σ

(V ; 0; 1, 1)(σ − 1) + ∂ J zc0
∂ρ

(V ; 0; 1, 1)(ρ − 1),

J̄ zc1 = J zc1 (V ; 0; 1, 1) + ∂ J zc1
∂σ

(V ; 0; 1, 1)(σ − 1) + ∂ J zc1
∂ρ

(V ; 0; 1, 1)(ρ − 1).

(3.3)

Clearly, J̄ zc1 (V ; σ, ρ) is the leading term that contains finite ion size effects, and its
our main interest in the following discussion.

Remark 3.1 Wepoint out that for (σ, ρ) = (1, 1) corresponding to the electroneutrality
boundary conditions, the leading term J̄ zc1 vanishes, and the finite ion size effects on
ionic flows crucial for the study of the selectivity property of ion channels cannot be
characterized. This further indicates that it is necessary to relax the neutral conditions
and consider the state close to neutral, a more realistic biological setup (see also [24,
51, 56] for more discussions related to boundary layers).

We first define two critical potentials V c
0 and V c

1 , which are essential for our fol-
lowing discussion.
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Definition 3.2 We define two critical potentials V c
0 and V c

1 by J̄ zc0 (V c
0 ) = 0 and

J̄ zc1 (V c
1 ) = 0. Particularly,

V c
0 = (σ − ρ)(ln L1 − ln R1)(L1 − R1)

R1 f (L1, R1; σ, ρ)
and V c

1 = 0,

where

f (L1, R1; σ, ρ) = (z1 − z2)

(
L1

R1
− 1

)
(ln L1 − ln R1) + z1

[
(σ − 1)

L1

R1
− (ρ − 1)

]

× (ln L1 − ln R1) + z1(ρ − σ)

(
L1

R1
− 1

)
.

(3.4)

For the function f (L1, R1; σ, ρ), the following result can be established.

Lemma 3.3 Assume x = L1/R1 > 1and (σ, ρ) → (1, 1). One has f (L1, R1; σ, ρ) >

0.

Proof With x = L1/R1, one has

f (L1, R1; σ, ρ) = f (x; σ, ρ)

= (z1 − z2)(x − 1) ln x + z1
[
(σ − 1)x − (ρ − 1)

]
ln x

+ z1(ρ − σ)(x − 1).

Direct calculation yields

f ′(x; σ, ρ) = (z1 − z2) ln x + (z1 − z2)

(
1 − 1

x

)
+ z1(σ − 1) ln x

+ z1

(
(σ − 1) − ρ − 1

x

)
+ z1(ρ − σ),

f ′′(x; σ, ρ) = z1ρ − z2 + (z1σ − z2)x

x2
.

Note that f ′′(x; σ, ρ) > 0 for x > 0. Hence, the function f (x; σ, ρ) is concave up
for x ∈ (0,∞). Together with f ′(1; σ, ρ) = 0, one can conclude that x = 1 is the
unique critical point of the function f (x; σ, ρ) for x > 0. Therefore, the function
f (x; σ, ρ) attains its absolute minimum at x = 1. Note also that f (1; σ, ρ) = 0. One
has f (x; σ, ρ) > 0 for x > 1. �	

It follows directly from Lemma 3.3 that

Lemma 3.4 Assume (σ, ρ) → (1, 1). One has V c
0 > V c

1 if σ > ρ; and V c
0 < V c

1 if
σ < ρ.
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3.1.1 Ion Size Effects on Jzc

In this part, we analyze the sign of J̄ zc1 , which provides the information of the finite ion
size effects on the zero-current ionic flow J zc. Note that J̄ zc1 is linear in the potential

V . We first consider
∂ J̄ zc1
∂V (V ; x; σ, ρ) with x = L1/R1. Careful calculation gives

∂ J̄ zc1
∂V

(V ; x; σ, ρ) = D1D2

D1 − D2

z1 − z2
2H(1)

x − 1

ln x
R2
1F(x; σ, ρ), (3.5)

where

F(x; σ, ρ) = (σ − 1)x + (ρ − 1).

For the function F(x; σ, ρ), one has the following result, which is crucial for our
subsequent analysis.

Lemma 3.5 Assume 1 < x < ρ/σ . One has

(i) F(x; σ, ρ) > 0 if one of the following conditions holds

(i1) σ → 1+, ρ → 1+ and σ < ρ;
(i2) σ → 1−, ρ → 1+, σ + ρ < 2 and σ+ρ

σρ
< 2;

(i3) σ → 1−, ρ → 1+, σ + ρ < 2 and σ+ρ
σρ

> 2 for x <
1−ρ
σ−1 .

(ii) F(x; σ, ρ) < 0 if one of the following conditions holds

(ii1) σ → 1−, ρ → 1+ and σ + ρ > 2;
(ii2) σ → 1−, ρ → 1+, σ + ρ < 2 and σ+ρ

σρ
> 2 for 1−ρ

σ−1 < x;

(ii3) σ → 1−, ρ → 1− and σ < ρ.

Proof The proof is straightforward calculus argument, and we omit it here. �	
Our main result then follows.

Theorem 3.6 Assume 1 < x < ρ/σ for (σ, ρ) → (1, 1) with ρ > σ . For ε > 0 small
and ν > 0 small, one has

(i) For D1 > D2,

(i1) If F(x; σ, ρ) > 0, then, J̄ zc1 (V ) > 0 for V > V c
1 and J̄ zc1 (V ) < 0 for V < V c

1 ;
that is, ion sizes enhances the zero-current ionic flow J zc(V ) if V > V c

1 and
reduces the zero-current ionic flow J zc(V ) for V < V c

1 .
(i2) If F(x; σ, ρ) < 0, then, J̄ zc1 (V ) > 0 for V < V c

1 and J̄ zc1 (V ) < 0 for V > V c
1 ;

that is, ion sizes enhances the zero-current ionic flow J zc(V ) if V < V c
1 and

reduces the zero-current ionic flow J zc(V ) for V > V c
1 .

(ii) For D1 < D2,

(ii1) If F(x; σ, ρ) > 0, then, J̄ zc1 (V ) > 0 for V < V c
1 and J̄ zc1 (V ) < 0 for V > V c

1 ;
that is, ion sizes enhances the zero-current ionic flow J zc(V ) if V < V c

1 and
reduces the zero-current ionic flow J zc(V ) for V > V c

1 .
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(ii2) If F(x; σ, ρ) < 0, then, J̄ zc1 (V ) > 0 for V > V c
1 and J̄ zc1 (V ) < 0 for V < V c

1 ;
that is, ion sizes enhances the zero-current ionic flow J zc(V ) if V > V c

1 and
reduces the zero-current ionic flow J zc(V ) for V < V c

1 .

Proof From (3.5), the sign of
∂ J̄ zc1 (V ;x;σ,ρ)

∂V is determined by F(x;σ,ρ)
D1−D2

since the factor
D1D2(z1−z2)(x−1)

2H(1) ln x R2
1 > 0. Taking the statement (i) for example. With D1 > D2, the

sign of
∂ J̄ zc1 (V ;x;σ,ρ)

∂V is uniquely determined by the sign of F(x; σ, ρ). And the result
follows directly. �	

The result in Theorem 3.6 indicates the sensitive dependence of the zero-current
ionic flow property on the diffusion coefficients, which will be further analyzed in
Sect. 3.2.

3.1.2 Ion Size Effects on
∣
∣Jzc

∣
∣, the Magnitude of Jzc

The discussion in the Sect. 3.1.1 provide information of the relative finite ion size
effects on the zero-current ionic flows since J̄ zc0 (V ) and J̄ zc1 (V ) have different sign.
We now focus on the ion size effects on the magnitude of zero-current ionic flow J zc,
namely |J zc(V )|, equivalent to analyzing J̄ zc0 (V ) J̄ zc1 (V ) for small ν > 0.

With x = L1/R1, careful calculation gives

∂ J̄ zc0
∂V

(x; σ, ρ) = D1D2

D2 − D1

1

H(1)

R1

(ln x)2
f (x; σ, ρ), (3.6)

where f is given in (3.4).
From Lemma 3.4, together with (3.6), we establish the following result.

Theorem 3.7 Assume x = L1/R1 > 1 and (σ, ρ) → (1, 1). One has

(i) If D1 > D2, then, J̄
zc
0 > 0 (resp. J̄ zc0 < 0) for V < V c

0 (resp. V > V c
0 ).

(ii) If D1 < D2, then, J̄
zc
0 > 0 (resp. J̄ zc0 < 0) for V > V c

0 (resp. V < V c
0 ).

We now state our main result related to the finite ion size effects on the magnitude
of the zero-current ionic flow J zc(V ).

Theorem 3.8 Assume 1 < x < ρ/σ and (σ, ρ) → (1, 1)with ρ > σ . For small ε > 0
and small ν > 0, one has

(i) For D1 > D2,

(i1) If F(x; σ, ρ) > 0, then, J̄ zc0 (V ) J̄ zc1 (V ) < 0 for either V < V c
0 or V > V c

1 ;
and J̄ zc0 (V ) J̄ zc1 (V ) > 0 for V c

0 < V < V c
1 . Equivalently, ion size effects

reduce |J zc| for V < V c
0 or V > V c

1 , while enhance |J zc| for V c
0 < V < V c

1 ;
(i2) If F(x; σ, ρ) < 0, then, J̄ zc0 (V ) J̄ zc1 (V ) > 0 for either V < V c

0 or V > V c
1 ;

and J̄ zc0 (V ) J̄ zc1 (V ) < 0 for V c
0 < V < V c

1 . Equivalently, ion size effects
enhance |J zc| for V < V c

0 or V > V c
1 , while reduce |J zc| for V c

0 < V < V c
1 .

(ii) For D1 < D2,
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(ii1) If F(x; σ, ρ) > 0, then, J̄ zc0 (V ) J̄ zc1 (V ) < 0 for either V < V c
0 or V > V c

1 ;
and J̄ zc0 (V ) J̄ zc1 (V ) > 0 for V c

0 < V < V c
1 . Equivalently, ion size effects

reduce |J zc| for V < V c
0 or V > V c

1 while enhance |J zc| for V c
0 < V < V c

1 ;
(ii2) If F(x; σ, ρ) < 0, then, J̄ zc0 (V ) J̄ zc1 (V ) > 0 for either V < V c

0 or V > V c
1 ;

and J̄ zc0 (V ) J̄ zc1 (V ) < 0 for V c
0 < V < V c

1 . Equivalently, ion size effects
enhance |J zc| for V < V c

0 or V > V c
1 , while reduce |J zc| for V c

0 < V < V c
1 .

Proof The result follows directly from Lemma 3.4, Theorem 3.6 and Theorem 3.7. �	
To end the discussion of the finite ion size effects on ionic flows, we point out that,

for the terms J̄ zc0 and J̄ zc1 , and the critical potentials V c
0 and V c

1 , interesting scaling
laws in boundary concentrations are observed, which actually provides efficient ways
to control the finite ion size effects on the zero-current ionic flows.

Lemma 3.9 Treating J̄ zc0 , J̄ zc1 , V c
0 and V c

1 as functions of the boundary concentrations
L1 and R1, one has

(i) J̄ zc0 is homogeneous of degree one in (L1, R1), that is, for any s > 0,

J̄ zc0 (V ; sL1, sR1) = s J̄ zc0 (V ; L1, R1);

(ii) J̄ zc1 is homogeneous of degree two in (L1, R1), that is, for any s > 0,

J̄ zc1 (V ; sL1, sR1) = s2 J̄ zc1 (V ; L1, R1);

(iii) V c
0 and V c

1 are homogeneous of degree zero in (L1, R1), that is, for any s > 0,

V c
0 (sL1, sR1) = V c

0 (L1, R1) and V c
1 (sL1, sR1) = V c

1 (L1, R1).

Proof Note that f0(sL1, sR1) = s f0(L1, R1) for s > 0. The statements follow (3.2)
and (3.3) directly. �	

3.2 Effects on Zero-Current Flows fromDiffusion Coefficients

Diffusion coefficients play critical roles in the study of the qualitative properties of the
zero-current ionic flows through ion channels, and we further examine their effects on
ionic flows in this part. For convenience, we rewrite J̄ zc0 and J̄ zc1 as J̄ zc0 (V ; D1, D2)

and J̄ zc1 (V ; D1, D2) to emphasize the dependence of the zero-current ionic flows on
the diffusion coefficients.

The following results can be established.

Theorem 3.10 Assume x = L1/R1 > 1 and (σ, ρ) → (1, 1). One has

(i) J̄ zc0 increases (resp. decreases) in the diffusion coefficient D1 if V > V c
0 (resp.

V < V c
0 );

(ii) J̄ zc0 increases (resp. decreases) in the diffusion coefficient D2 if V < V c
0 (resp.

V > V c
0 ).
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Proof Careful calculation gives, with x = L1/R1,

∂ J̄ zc0 (V ; D1, D2)

∂D1
=
(

D2

D2 − D1

)2 R1

H(1) ln x

(
f (x)

ln x
V + (x − 1)(ρ − σ)

)

=
(

D2

D2 − D1

)2 R1 f (x)

H(1) ln2 x
(V − V c

0 ),

∂ J̄ zc0 (V ; D1, D2)

∂D2
= −

(
D1

D2 − D1

)2 R1

H(1) ln x

(
f (x)

ln x
V + (x − 1)(ρ − σ)

)

= −
(

D2

D2 − D1

)2 R1 f (x)

H(1) ln2 x
(V − V c

0 ),

where f (x) is given in (3.4) and V c
0 is defined in Definition 3.2. Statements (i) and

(ii) then follows directly. �	
Theorem 3.11 Assume 1 < x = L1/R1 < ρ/σ and (σ, ρ) → (1, 1) with ρ > σ . One
has

(i) For F(x; σ, ρ) > 0,

(i1) J̄ zc1 increases (resp. decreases) in the diffusion coefficients D1 if V < V c
1 (resp.

V > V c
1 );

(i2) J̄ zc1 increases (resp. decreases) in the diffusion coefficients D2 if V > V c
1 (resp.

V < V c
1 ).

(ii) For F(x; σ, ρ) < 0,

(ii1) J̄ zc1 increases (resp. decreases) in the diffusion coefficients D1 if V > V c
1 (resp.

V < V c
1 );

(ii2) J̄ zc1 increases (resp. decreases) in the diffusion coefficients D2 if V < V c
1 (resp.

V > V c
1 ).

Proof The argument is similar to that in Theorem 3.10, and we omit it here. �	
We comment that, from the analysis in Theorems 3.10 and 3.11, the effects on J̄ zc0

and J̄ zc1 , respectively, from the diffusion coefficients D1 and D2 are opposite. The
critical roles of the potentials V c

0 and V c
1 identified in the Definition 3.2 are further

demonstrated in these results.
We now examine the effects on |J zc|, the magnitude of J zc (equivalent to J̄ zc0 J̄ zc1 )

from the diffusion coefficients from small finite ion sizes. To be specific, we consider
the monotonicity properties of |J zc| in terms of D1 and D2, respectively, which is
characterized in the following result.

Theorem 3.12 Assume 1 < x = L1/R1 < ρ/σ and (σ, ρ) → (1, 1) with ρ > σ .
Assume further that D1 > D2. One has

(i) For F(x; σ, ρ) > 0,

(i1) J̄ zc0 J̄ zc1 increases (resp. decreases) in the diffusion coefficients D1 if either
V < V c

0 or V > V c
1 (resp. V c

0 < V < V c
1 );
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(i2) J̄ zc0 J̄ zc1 increases (resp. decreases) in the diffusion coefficients D2 if V c
0 <

V < V c
1 (resp. either V < V c

0 or V > V c
1 ).

(ii) For F(x; σ, ρ) < 0,

(ii1) J̄ zc0 J̄ zc1 increases (resp. decreases) in the diffusion coefficients D1 if V c
0 <

V < V c
1 (resp. either V < V c

0 or V > V c
1 );

(ii2) J̄ zc0 J̄ zc1 increases (resp. decreases) in the diffusion coefficients D2 if either
V < V c

0 or V > V c
1 (resp. V c

0 < V < V c
1 ).

Remark 3.13 Similar result as that in the Theorem 3.12 can be obtained for the case
with D1 < D2. Meanwhile, we would like to demonstrate that the monotonicity of
the zero-current ionic flow J zc in the diffusion coefficients sensitively depends on the
nonlinear interplay among the system parameters, especially the ratio of the boundary
layer parameters ρ/σ , the order of D1 and D2, the ratio of the boundary concentrations
L1/R1, and the critical potentials V c

0 and V c
1 . This indicates again the complexity of

the qualitative properties of the ionic flow through membrane channel. The rigorous
mathematical analysis based on the PNP model in current work should provide some
insights and better understanding of the mechanism of ionic flows through membrane
channels.

4 Concluding Remarks

In this work, we analyze the Poisson-Nernst-Planck model with particular interest
in the zero-current ionic flows through a membrane channel. The model problem
includes one cation and one anion. Bikerman’s local hard-sphere model is included
to characterize the ion size effects. By employing the geometric singular perturbation
theory, we obtain the existence and local uniqueness result. Particularly, from the
solutions of the limiting PNP system, we are able to obtain explicit expressions of the
approximation of the zero-current ionic flow J zc, the starting point of our analysis on
ionic flow properties.

The qualitative properties of the zero-current ionic flows is our main interest, which
is analyzed from two directions: effects from finite ion sizes and effects from diffusion
coefficients. Detailed analysis along each direction is provided, from which one can
better understand the mechanism of ionic flows through membrane channels, partic-
ularly the internal dynamics of ionic flows, which are non-intuitive and cannot be
detected by current technology. We would also like to demonstrate that our studies on
the ionic flow properties is under the assumption that the two ends (very often, people
call them baths) connected by the ion channel are not neutral, but close to (that is,
(σ, ρ) → (1, 1) but not equal to 1 simultaneously). This is a more realistic setup in
the study of ion channel problem, but the mathematical analysis is more channeling
due to the appearance of two boundary layers. Among others, we find

(i) The sign of the leading term J̄ zc1 that contains the finite ion size effects depends
sensitively on the interplays among system parameters, such as the diffusion
coefficients (D1, D2), the boundary concentrations (L1, R1), and the boundary
layers in terms of (σ, ρ) through the critical potentials V c

0 and V c
1 ;
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(ii) The monotonicity of J̄ zck for k = 0, 1 on the diffusion coefficient D1 is opposite
to that on the diffusion coefficient D2 (see Theorems 3.10 and 3.11);

(iii) Under electronuetrality boundary conditions (i.e. (σ, ρ) = (1, 1)), the leading
term J̄ zc1 that contains finite ion size effects vanishes (see Remark 3.1), and the
finite ion size effects, which is crucial in the study of the selectivity property of
ion channels, cannot be characterized. This also indicates the setup (including
the boundary layers) in current work is necessary.

To end this section, we comment that

(I) as a first step to investigate the qualitative properties of zero-current ionic flows
through membrane channels, the setup in current work does not include the per-
manent charge due to the complicity of the analysis, and surely this will have
some limitations in the study of ion channel problems. Particularly, when the
adjacent regions of permanent charges have opposite signs, very likely, they will
produce complex and therefore useful effects, just as they do in the PN junctions
of bipolar transistors. We will focus on the case with nonzero permanent charges
in our future projects.

(II) the boundary layers we considered in this work are located at the ends of the
channel. A brief illustration is provided in the Remark 2.3. One may also refer to
[13] for more detailed discussion.

5 Appendix: Proofs of Some Results

5.1 Proof of Proposition 2.2

Statement (i) can be checked directly. Statements (ii) and (iii) are derived based on the
first integrals obtained from the first statement, and the arguments are similar. Here
we briefly provide a proof for the second statement. The second statement consists
of three parts: (a) the intersection of the stable manifold Ws(Z) and the set BL ; (b)
the transversality of the intersection stated in (a); and (c) the characterization of the
landing point ω(NL).

For the part (a), it is clear since dimWs(Z) = 6 and dim BL = 3, while the state
variables are in the phase space R7.

For the part (b), via the first integrals obtained in the statement (i), one is able
to consider the tangent space of the stable manifold Ws(Z) and the set BL at the
intersection point, from which linearly independent vectors that span the whole phase
space R7 can be identified, and this establishes the transversality of the intersection.
The calculation is tedious but straightforward, and we skip the details here.

For the part (c), wewill just show the derivation of the variables φL
0 , cL10, c

L
20 and u

l
0

associated to the zeroth order (in ν) limiting fast system. The discussion for the vari-
ables φL

1 , cL11, c
L
12 and u

l
1 is similar. Let z(ξ) = (φ0(ξ), u0(ξ), c10(ξ), c20(ξ), J10(ξ),

J20(ξ), τ (ξ)) be a solution of the system (2.8) with z(0) ∈ BL and z(ξ) ∈ Ws(Z).
Then, one has J10(ξ) = J10, J20(ξ) = J20, τ (ξ) = 0 for all ξ ,

z(ξ) → z(∞) = (φL
0 , 0, cL10, c

L
20, J1, J2, 0) ∈ Z
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for some φL
0 , cL10 and cL20 with z1cL10 = −z2cL20, and

φ0(0) = V , c10(0) = L1, c20(0) = L2.

Using the integrals H1 and H2 in the statement (i), one has

ln c10(ξ) + z1φ0(ξ) = ln L1 + z1V and ln c20(ξ) + z2φ0(ξ) = ln L2 + z2V ,

from which we get

c10(ξ) = L1e
z1(V−φ0(ξ)) and c20(ξ) = L2e

z2(V−φ0(ξ)). (5.1)

Let ξ → ∞, one has

cL1 = L1e
z1(V−φL

0 ) and cL2 = L2e
z2(V−φL

0 ).

Recall that z1cL10 = −z2cL20 and −z2L2 = (z1L1)σ. We obtain

φL
0 = V − 1

z1 − z2
ln σ.

It follows that

cL10 = 1

z1
(z1L1)

−z2
z1−z2 (−z2L2)

z1
z1−z2 = 1

z1
(z1L1)σ

z1
z1−z2 or z1c

L
10 = (z1L1)σ

z1
z1−z2 .

Similarly,

−z2c
L
20 = (z1L1)σ

z1
z1−z2 .

Note that φ′′
0 = −z1c10 − z2c20. The system (5.1) indicates that φ0 satisfies the

Hamiltonian equation

φ′′
0 + z1L1e

z1(V−φ0) + z2L2e
z2(V−φ0) = 0

with φ0(0) = V and φ0(ξ) → φL
0 as ξ → ∞. The corresponding Hamiltonian is

H(φ0, u0) = u20
2

− L1e
z1(V−φ0) − L2e

z2(V−φ0).

In terms of φ0 and u0 = φ′
0, the equation reads

φ′
0 = u0, u′

0 = −z1L1e
z1(V−φ0) − z2L2e

z2(V−φ0).

The Hamiltonian system has a unique equilibrium (φL
0 , 0)with φL

0 given above, and it
is easy to verify that the equilibrium is a saddle point of the system. If Ws(φL

0 ) is the
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stable manifold of (φL
0 , 0), then it is the restriction ofWs(Z) to the (φ0, ul0)-plane. To

have (V , ul0) ∈ Ws(φL
0 ), one need H(φL

0 , 0) = H(V , ul0), from which the expression
for ul0 follows. The sign of ul0 is determined by which stable branch of Ws(φL

0 ) the
solution approaches the equilibrium.

5.2 Proof of Lemma 2.4

Taking the integral for the second equation in (2.17) from 0 to x , together with the
initial value c10(0) = cL10, one has

c10(x) − cL10 = − (z1D1 − z2D2)J10
D1D2(z1 − z2)

∫ x

0

1

h(s)
ds,

which gives

c10(x) = cL10 − (z1D1 − z2D2)J10
D1D2(z1 − z2)

H(x). (5.2)

Again, from the c10-equation in (2.17), one has

1

h(τ )
= D1D2(z1 − z2)ċ10

(z2D2 − z1D1)J10
.

Substituting the above relation into the φ0-equation in (2.17), and integrating it from
0 to x , we have

φ0(x) − φL
0 = (D1 − D2)J10

(z1 − z2)D1D2
· D1D2(z1 − z2)

(z2D2 − z1D1)J10

∫ x

0

ċ10
c10

ds

= − D1 − D2

z1D1 − z2D2
ln

c10(x)

cL10
,

which gives

φ0(x) = φL
0 − D1 − D2

z1D1 − z2D2
ln

c10(x)

cL10
. (5.3)

Evaluating (5.2) and (5.3) at x = 1, together with φ0(1) = φR
0 and c10(1) = cR10,

one has

φR
0 = φL

0 − D1 − D2

z1D1 − z2D2
ln

cR10
cL10

and cR10 = cL10 − (z1D1 − z2D2)H(1)

D1D2(z1 − z2)
J10,
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from which, together with the relation −z2L2 = (z1L1)σ and −z2R2 = (z1R1)ρ, we
obtain

J10 = D1D2(z1 − z2)(cL10 − cR10)

(z1D1 − z2D2)H(1)
=

D1D2(z1 − z2)

(
L1σ

z1
z1−z2 − R1ρ

z1
z1−z2

)

(z1D1 − z2D2)H(1)
(5.4)

with

φL
0 − φR

0 = D1 − D2

z1D1 − z2D2
(ln cR10 − ln cL10) (5.5)

equivalent to

V + ln ρ − ln σ

z1 − z2
= D1 − D2

z1D1 − z2D2

[
ln R1 − ln L1 + z1

z1 − z2
(ln ρ − ln σ)

]
.

Or equivalently, one has

J10 =
D1D2(z1 − z2)

(
L1σ

z1
z1−z2 − R1ρ

z1
z1−z2

)(
V − 1

z1−z2
ln σ

ρ

)

(D2 − D1)
(
ln L1 − ln R1 + z1

z1−z2
ln σ

ρ

)
H(1)

.

5.3 Proof of Lemma 2.5

Note that, with the ċ10-equation in the system (2.17), the ċ11-equation in the system
(2.18) can be written as

ċ11 = z1λ − z2
z2

c10ċ10 + (z2D2 − z1D1)J11
(z1 − z2)D1D2

1

h(τ )
.

Taking the integration for 0 to x , together with c11(0) = cL11, one has

c11(x) = cL11 + z1λ − z2
2z2

(
c210(x) − (cL10)

2)+ (z2D2 − z1D1)J11
(z1 − z2)D1D2

H(x). (5.6)

Similarly, for the φ1-equation, one has

φ1(x) = φL
1 + (D2 − D1)J10

(z1 − z2)D1D2

∫ x

0

c11(s)

c210(s)h(s)
ds

− (D2 − D1)J11
(z1 − z2)D1D2

∫ x

0

1

c10(s)h(s)
ds.
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From the ċ10-equation in (2.17), one has

1

h(s)
= − D1D2(z1 − z2)

(z1D1 − z2D2)J10
ċ10(s).

It follows that

∫ x

0

c11(s)ds

c210(s)h(s)

= − D1D2(z1 − z2)

(z1D1 − z2D2)J10

∫ x

0

c11(s)ċ10(s)

c210(s)
ds

= D1D2(z1 − z2)

(z1D1 − z2D2)J10

[
c11(x)

c10(x)
− cL11

cL10
−
∫ x

0

ċ11(s)

c10(s)
ds

]

= D1D2(z1 − z2)

(z1D1 − z2D2)J10

(
c11(x)

c10(x)
− cL11

cL10

)
+ z1λ − z2

z2
H(x) + J11

J10

∫ x

0

1

h(s)c10(s)
ds,

where, a similar argument gives

∫ x

0

1

c10(s)h(s)
ds = (z1 − z2)D1D2

(z2D2 − z1D1)J10

(
ln c10(x) − ln cL10

)
.

Together, we get the expression for φ1(x). Evaluating both the c11(x)-equation and
the φ1(x)-equation at x = 1 yields

cR11 = cL11 + z1λ − z2
2z2

(
(cR10)

2 − (cL10)
2
)

+ (z2D2 − z1D1)J11
(z1 − z2)D1D2

H(1),

φR
1 = φL

1 + D2 − D1

z1D1 − z2D2

(
cR11
cR10

− cL11
cL10

)
+ (D2 − D1)(z1λ − z2)J10

z2(z1 − z2)D1D2
H(1).

(5.7)

The first equation in (5.7), together with J10 in (5.4) and (5.5), gives

J11 = J10

(
cL11 − cR11
cL10 − cR10

− z1λ − z2
2z2

(
cL10 + cR10

))

= J10

[ L21σ
z1

z1−z2
(
1 − z1λ

z2
σ
)− R2

1ρ
z1

z1−z2
(
1 − z1λ

z2
ρ
)+ z1λ

z2

(
L21σ

2z1
z1−z2 − R2

1ρ
2z1

z1−z2
)

L1σ
z1

z1−z2 − R1ρ
z1

z1−z2

− z1λ + z2
2z2

(
L1σ

z1
z1−z2 + R1ρ

z1
z1−z2

)]
.
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The restriction on J11 is actually the second equation in (5.7). Careful calculation
leads to the equivalent one given by λ = z2(L1−R1)

z1(σ L1−ρR1)
.

Author Contributions MZ is contributed to establishing the existence and local uniqueness of the boundary
value problem and manuscript preparation, while JC is contributed to some detailed calculations related to
the behaviors of ionic flows.

Funding Jianing Chen and Mingji Zhang are supported by Simons Foundation No. 628308.

Data Availability All data generated or analyzed during this study are included in this article.

Code Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code Availability Not applicable.

References

1. Eisenberg, B.: Ions in Fluctuating Channels: Transistors Alive. Fluct. Noise Lett. 11, 76–96 (2012)
2. Eisenberg, B.: Crowded charges in ion channels. In: Rice, S.A. (ed.) Advances in chemical physics,

pp. 77–223. John Wiley & Sons, Hoboken, NJ (2011)
3. Gillespie, G.: A singular perturbation analysis of the Poisson-Nernst-Planck system: applications to

ionic channels. Ph.D Thesis, Rush University at Chicago, Chicago, IL (1999)
4. Dworakowska, B., Dołowy, K.: Ion channels-related diseases. Acta Biochim Pol. 47, 685–703 (2000)
5. Unwin, N.: The structure of ion channels in membranes of excitable cells. Neuron 3, 665–676 (1989)
6. Barcilon, V., Chen, D.-P., Eisenberg, R.S., Jerome, J.W.: Qualitative properties of steady-state Poisson-

Nernst-Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57, 631–648 (1997)
7. Chen, D.-P., Eisenberg, R.S.: Charges, currents and potentials in ionic channels of one conformation.

Biophys. J. 64, 1405–1421 (1993)
8. Burger, M.: Inverse problems in ion channel modelling. Inverse Problems 27, 083001 (2011)
9. Burger, M., Eisenberg, R.S., Engl, H.: Inverse problems related to ion channel selectivity. SIAM J.

Appl. Math. 67, 960–989 (2007)
10. Bates, P.W., Chen, J., Zhang, M.: Dynamics of ionic flows via Poisson-Nernst-Planck systems with

local hard-sphere potentials: competition between cations. Math. Biosci. Eng. 17, 3736–3766 (2020)
11. Bates, P.W., Wen, Z., Zhang, M.: Small permanent charge effects on individual fluxes via Poisson-

Nernst-Planck models with multiple cations. J. Nonlinear Sci. 31, 55 (2021)
12. Chen, J., Wang, Y., Zhang, L., Zhang, M.: Mathematical analysis of Poisson- Nernst-Planck models

with permanent charge and boundary layers: studies on individual fluxes. Nonlinearity 34, 3879–3906
(2021)

13. Eisenberg, B., Liu,W.: Poisson-Nernst-Planck systems for ion channelswith permanent charges. SIAM
J. Math. Anal. 38, 1932–1966 (2007)

14. Eisenberg, B., Liu, W., Xu, H.: Reversal charge and reversal potential: case studies via classical
Poisson-Nernst-Planck models. Nonlinearity 28, 103–128 (2015)

15. Ji, S., Liu, W.: Flux ratios and channel structures. J. Dyn. Differ. Equ. 31, 1141–1183 (2019)
16. Ji, S., Liu, W., Zhang, M.: Effects of (small) permanent charges and channel geometry on ionic flows

via classical Poisson-Nernst-Planck models. SIAM J. on Appl. Math. 75, 114–135 (2015)
17. Lin, G., Liu,W., Yi, Y., Zhang,M.: Poisson-Nernst-Planck systems for ion flowwith density functional

theory for local hard-sphere potential. SIAM J. Appl. Dyn. Syst. 12, 1613–1648 (2013)
18. Liu, W.: Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems.

SIAM J. Appl. Math. 65, 754–766 (2005)



Geometric Singular Perturbation Approach... Page 31 of 33 139

19. Liu, W.: One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple
ion species. J. Differ. Equ. 246, 428–451 (2009)

20. Liu, W., Xu, H.: A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow. J.
Differ. Equ. 258, 1192–1228 (2015)

21. Mofidi, H., Liu, W.: Reversal potential and reversal permanent charge with unequal diffusion coeffi-
cients via classical Poisson-Nernst-Planck models. SIAM J. Appl. Math. 80, 1908–1935 (2020)

22. Park, J.-K., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: math-
ematical study. SIAM J. Appl. Math. 57, 609–630 (1997)

23. Wen, Z., Bates, P.W., Zhang, M.: Effects on I-V relations from small permanent charge and channel
geometry via classical Poisson-Nernst-Planck equations with multiple cations. Nonlinearity 34, 4464–
4502 (2021)

24. Wen, Z., Zhang, L., Zhang, M.: Dynamics of classical Poisson-Nernst-Planck systems with multiple
cations and boundary layers. J. Dyn. Diff. Equ. 33, 211–234 (2021)

25. Zhang, L., Eisenberg, B., Liu, W.: An effect of large permanent charge: decreasing flux with increasing
transmembrane potential. Eur. Phys. J. Special Topics 227, 2575–2601 (2019)

26. Zhang, M.: Competition between cations via Poisson-Nernst-Planck systems with nonzero but small
permanent charges. Membranes 11, 236 (2021)

27. Eisenberg, B.: Proteins, channels, and crowded ions. Biophys. Chem. 100, 507–517 (2003)
28. Eisenberg, R.S.: From structure to function in open ionic channels. J. Memb. Biol. 171, 1–24 (1999)
29. Gillespie, D., Eisenberg, R.S.: Physical descriptions of experimental selectivity measurements in ion

channels. Eur. Biophys. J. 31, 454–466 (2002)
30. Henderson, L.J.: The fitness of the environment: an inquiry into the biological significance of the

properties of matter. Macmillan, New York (1927)
31. Noskov, S.Y., Berneche, S., Roux, B.: Control of ion selectivity in potassium channels by electrostatic

and dynamic properties of carbonyl ligands. Nature 431, 830–834 (2004)
32. Barcilon, V.: Ion flow through narrowmembrane channels: part I. SIAM J. Appl. Math. 52, 1391–1404

(1992)
33. Hyon, Y., Eisenberg, B., Liu, C.: Amathematical model for the hard sphere repulsion in ionic solutions.

Commun. Math. Sci. 9, 459–475 (2010)
34. Hyon, Y., Fonseca, J., Eisenberg, B., Liu, C.: A new Poisson-Nernst-Planck equation (PNP-FS-IF) for

charge inversion near walls. Biophys. J. 100, 578a (2011)
35. Schuss, Z., Nadler, B., Eisenberg, R.S.: Derivation of Poisson and Nernst-Planck equations in a bath

and channel from a molecular model. Phys. Rev. E 64, 1–14 (2001)
36. Nonner, W., Eisenberg, R.S.: Ion permeation and glutamate residues linked by Poisson-Nernst-Planck

theory in L-type calcium channels. Biophys. J. 75, 1287–1305 (1998)
37. Abaid, N., Eisenberg, R.S., Liu, W.: Asymptotic expansions of I-V relations via a Poisson-Nernst-

Planck system. SIAM J. Appl. Dyn. Syst. 7, 1507–1526 (2008)
38. Barcilon, V., Chen, D.-P., Eisenberg, R.S.: Ion flow through narrowmembrane channels: part II. SIAM

J. Appl. Math. 52, 1405–1425 (1992)
39. Bates, P.W., Jia, Y., Lin, G., Lu, H., Zhang, M.: Individual flux study via steady-state Poisson-Nernst-

Planck systems: effects from boundary conditions. SIAM J. Appl. Dyn. Syst. 16, 410–430 (2017)
40. Cardenas, A.E., Coalson, R.D., Kurnikova, M.G.: Three-dimensional Poisson-Nernst-Planck theory

studies: influence of membrane electrostatics on Gramicidin a channel conductance. Biophys. J. 79,
80–93 (2000)

41. Graf, P., Kurnikova, M.G., Coalson, R.D., Nitzan, A.: Comparison of dynamic lattice monte-carlo
simulations and dielectric self energy Poisson-Nernst-Planck continuum theory formodel ion channels.
J. Phys. Chem. B 108, 2006–2015 (2004)

42. Liu,W.,Wang, B.: Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dyn.
Diff. Equ. 22, 413–437 (2010)

43. Mock, M.S.: An example of nonuniqueness of stationary solutions in device models. COMPEL 1,
165–174 (1982)

44. Mofidi, H., Eisenberg, B., Liu, W.: Effects of diffusion coefficients and permanent charge on reversal
potentials in ionic channels. Entropy 22, 325 (2020)

45. Rubinstein, I.: Electro-diffusion of ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia,
PA (1990)

46. Saraniti, M., Aboud, S., Eisenberg, R.S.: The simulation of ionic charge transport in biological ion
channels: an introduction to numerical methods. Rev. Comp. Chem. 22, 229–294 (2005)



139 Page 32 of 33 J. Chen, M. Zhang

47. Singer, A., Norbury, J.: A Poisson-Nernst-Planck model for biological ion channels-an asymptotic
analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math. 70, 949–968 (2009)

48. Singer, A., Gillespie, D., Norbury, J., Eisenberg, R.S.: Singular perturbation analysis of the steady-state
Poisson-Nernst-Planck system: applications to ion channels. Eur. J. Appl. Math. 19, 541–560 (2008)

49. Wang, X.-S., He, D., Wylie, J., Huang, H.: Singular perturbation solutions of steady-state Poisson-
Nernst-Planck systems. Phys. Rev. E 89, 022722 (2014)

50. Zhang, M.: Asymptotic expansions and numerical simulations of I–V relations via a steady-state
Poisson-Nernst-Planck system. Rocky MT. J. Math. 45, 1681–1708 (2015)

51. Zhang,M.:Boundary layer effects on ionic flowsvia classical Poisson-Nernst-Planck systems.Comput.
Math. Biophys. 6, 14–27 (2018)

52. Zheng, Q., Wei, G.W.: Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 134, 1–17 (2011)
53. Zhang, L., Liu, W.: Effects of large permanent charges on ionic flows via Poisson-Nernst-Planck

models. SIAM J. Appl. Dyn. Syst. 19, 1993–2029 (2020)
54. Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-

functional theory of freezing. Phys. Rev. Lett. 63, 980–983 (1989)
55. Rosenfeld, Y.: Free energymodel for the inhomogeneous fluidmixtures: Yukawa-charged hard spheres,

general interactions, and plasmas. J. Chem. Phys. 98, 8126–8148 (1993)
56. Aitbayev, R., Bates, P.W., Lu, H., Zhang, L., Zhang, M.: Mathematical studies of Poisson-Nernst-

Planck systems: dynamics of ionic flows without electroneutrality conditions. J. Comput. Appl. Math.
362, 510–527 (2019)

57. Bates, P.W., Liu,W., Lu, H., Zhang, M.: Ion size and valence effects on ionic flows via Poisson-Nernst-
Planck systems. Commun. Math. Sci. 15, 881–901 (2017)

58. Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: field theory
for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (2010)

59. Gillespie, D., Xu, L., Wang, Y., Meissner, G.: (De)constructing the ryanodine receptor: modeling ion
permeation and selectivity of the calcium release channel. J. Phys. Chem. B 109, 15598–15610 (2005)

60. Gillespie, D., Nonner, W., Eisenberg, R.S.: Coupling Poisson-Nernst-Planck and density functional
theory to calculate ion flux. J. Phys. Condens. Matter 14, 12129–12145 (2002)

61. Gillespie, D., Nonner, W., Eisenberg, R.S.: Crowded charge in biological ion channels. Nanotech. 3,
435–438 (2003)

62. Hyon, Y., Fonseca, J., Eisenberg, B., Liu, C.: Energy variational approach to study charge inversion
(layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B 17, 2725–2743 (2012)

63. Hyon, Y., Liu, C., Eisenberg, B.: PNP equations with steric effects: a model of ion flow through
channels. J. Phys. Chem. B 116, 11422–11441 (2012)

64. Ji, S., Liu, W.: Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-
sphere potential: I–V relations and critical potentials. Part I: analysis. J. Dyn. Diff. Equ. 24, 955–983
(2012)

65. Jia, Y., Liu, W., Zhang, M.: Qualitative properties of ionic flows via Poisson-Nernst-Planck systems
with Bikerman’s local hard-sphere potential: ion size effects. Discrete Contin. Dyn. Syst. Ser. B 21,
1775–1802 (2016)

66. Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied
voltages II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E. 75, 021503 (2007)

67. Lu,H., Li, J., Shackelford, J., Vorenberg, J., Zhang,M.: Ion size effects on individual fluxes via Poisson-
Nernst-Planck systemswith Bikerman’s local hard-sphere potential: Analysis without electroneutrality
boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 23, 1623–1643 (2018)

68. Liu, W., Tu, X., Zhang, M.: Poisson-Nernst-Planck systems for ion flow with density functional theory
for hard-sphere potential: I–V relations and critical potentials. Part II: numerics. J. Dyn. Diff. Equ. 24,
985–1004 (2012)

69. Sun, L., Liu, W.: Non-localness of excess potentials and boundary value problems of Poisson-Nernst-
Planck systems for ionic flow: a case study. J. Dyn. Diff. Equ. 30, 779–797 (2018)

70. Zhou, Z., Wang, Z., Li, B.: Mean-field description of ionic size effects with nonuniform ionic sizes: a
numerical approach. Phy. Rev. E 84, 1–13 (2011)

71. Bikerman, J.J.: Structure and capacity of the electrical double layer. Philos. Mag. 33, 384 (1942)
72. Liu, J., Eisenberg, B.: Molecular mean-field theory of ionic solutions: a Poisson-Nernst-Planck-

Bikerman model. Entropy 22, 550 (2020)
73. Vera, J. H., Wilezek-Vera, G.: Classical thermodynamics of fluid systems: principles and applications,

CRC Press, New York, NY, USA (2016)



Geometric Singular Perturbation Approach... Page 33 of 33 139

74. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equ.
31, 53–98 (1979)

75. Jones, C.: Geometric singular perturbation theory. Dynamical systems (Montecatini Terme, 1994).
Lect. Notes in Math., vol. 1609, pp. 44-118. Springer, Berlin (1995)

76. Jones, C., Kopell, N.: Tracking invariant manifolds with differential forms in singularly perturbed
systems. J. Diff. Equ. 108, 64–88 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.


	Geometric Singular Perturbation Approach to Poisson-Nernst-Planck Systems with Local Hard-Sphere Potential: Studies on Zero-Current Ionic Flows with Boundary Layers
	Abstract
	1 Introduction
	1.1 One-Dimensional Poisson-Nernst-Planck Models
	1.2 Excess Potential and a Local Hard-Sphere Model
	1.3 Zero-Current Ionic Flows and Reversal Potentials
	1.4 Electroneutrality Boundary Concentration Conditions Versus Boundary Layers
	1.5 Problem Setup

	2 Dynamical System Framework for (1.11)–(1.12) with Boundary Layers
	2.1 Limiting Fast Dynamics and Boundary Layers at x=0 and x=1
	2.2 Limiting Slow Dynamics and Regular Layer Over (0,1)
	2.3 Existence of Solutions Near the Singular Orbit

	3 Qualitative Properties of Zero-Current Ionic Flows
	3.1 Ion Size Effects on Zero-Current Ionic Flows
	3.1.1 Ion Size Effects on Jzc
	3.1.2 Ion Size Effects on |Jzc|, the Magnitude of Jzc

	3.2 Effects on Zero-Current Flows from Diffusion Coefficients

	4 Concluding Remarks
	5 Appendix: Proofs of Some Results
	5.1 Proof of Proposition 2.2
	5.2 Proof of Lemma 2.4
	5.3 Proof of Lemma 2.5

	References




