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Abstract
Non-Newtonian thermal processing in microchannel systems, is emerging as a major
area of interest in modern thermal engineering. Motivated by these developments, in
the current paper, a mathematical model is developed for laminar, steady state fully
developed viscoelastic natural convection electro-magnetohydrodynamic (EMHD)
flow in a microchannel containing a porous medium. Transverse magnetic field and
axial electrical field are considered. AmodifiedDarcy–Brinkman–Forchheimermodel
is deployed for porous media effects. Viscous dissipation and Joule heating effects
are included. The primitive conservation equations are rendered into dimensionless
coupled ordinary differential equations with associated boundary conditions. The non-
linear ordinary differential boundary value problem is then solved using He’s powerful
homotopy perturbation method (HPM). Validation with the MATLAB bvp4c numeri-
cal scheme is included for Nusselt number. Graphical plots are presented for velocity,
temperature and Nusselt number for the influence of emerging parameters. Increment
in thermal Grashof number and electric field parameter enhance velocity. Increas-
ing Brinkman number and magnetic interaction number boost temperatures and a
weak elevation is also observed in temperatures with increment in third-grade non-
Newtonian parameter and Forchheimer number. Nusselt number is also elevated with
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thermal Grashof number, Forchheimer number, third-grade fluid parameter, Darcy
parameter, Brinkman number and magnetic number.

Keywords Non-Darcian porous medium · Electrical field · Magnetic field · Natural
convection · HPM · Numerical solutions · Microchannel · Viscous heating · Joule
dissipation

1 Introduction

Natural convection is a significant process that plays an important role in a wide range
of industrial applications, including heat exchangers, nuclear reactor transport phe-
nomena, electronic devices, building insulation, solar collectors. Furthermore, natural
convective flows arise in geothermal energy, metallurgy, semiconductor fabrication,
coating flows and chemical engineering processes. As a result, natural convection has
attracted a substantial amount of attention from various researchers in recent years. In
particular, many theoretical and computational studies have been reported addressing
both internal and external flows. Senapti et al. [1] discussed natural convection across
an annular finned horizontal cylinder using numerical simulation. Shirvan et al. [2]
focused on how awavy surface interacts with natural convection in a corrugated square
cavity filled with nanofluid. Rahimi et al. [3] conducted a comprehensive review on
natural convection heat transfer in a diverse range of engineering geometries. Haghighi
et al. [4] investigated the natural convection from a new plate-fin-based configuration
with heat sinks. Mohebbi et al. [5] studied natural convection in a nanofluid within a
�-Shaped geometry in the presence of a rectangular hot impediment. The solutions
were obtained by the use of the lattice Boltzmann method. Roy et al. [6] presented
a computational analysis on the natural convection and heat transfer over an inclined
plate finned channel. Natural convectionwith entropy generation over amultiple struc-
tured heated cylinder in the presence of non-uniform temperature along the walls were
investigated by Bhowmick et al. [7]. Recently, Ding et al. [8] investigated the natural
convection heat transfer for three-dimensional extrinsic finned tubes using both exper-
imental and numerical methods. These studies have all demonstrated the significant
influence of thermal buoyancy force on transport phenomena in natural convection
heat transfer.

Microfluidic channels also have technical significance in various fields such as
fuel cells, heat exchangers [9, 10], separation of physical particles and biomedical
and biochemical processes. This is due to the higher ratio of surface to volume that
exists in microfluidic channels and this feature can be used to improve heat trans-
fer rates. The deployment of pressure gradients, electric field and /or magnetic field,
porous media and other effects can all be used to efficiently mobilize fluid motion in
microchannels. Electro-magnetohydrodynamics micro-pumps have been addressed
[11, 12] in several pumping designs due to their potential applications in microflu-
idics systems. The working mechanism of electro-magnetohydrodynamic (EMHD)
micropumps is based on Lorentz magnetohydrodynamic and electrical body forces
generated by extrinsic imposed electric and magnetic fields between parallel plates
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containing electro-conductive fluids [13, 14]. Additionally heat transfer in the pres-
ence of electrical and magnetic fields is significant in a variety of applications in the
metallurgical industry [15] i.e., liquid metal flows. They also arise in thermal duct
process control [16], smart lubrication [17, 18], energy generators [19] and smart
micropumps in biomedicine [20, 21].

Heat transfer throughmicrochannels containing porousmedia also has awide range
of engineering applications, including heat pipes, thermal management in microelec-
tronics, thermal ducts in process engineering, nuclear waste disposal and radiators
[22]. Furthermore, porous media are also applicable in hydrogen storage system,
membrane-based water desalination via converse osmosis, electrokinetic energy con-
verting devices, shale reservoirs and biofilters. Microchannel systems are also useful
for effective heat removal in cooling systems in aerospace electronics devices with
significant small dimensions [23, 24]. Micro-radiators, which are employed in ther-
mal control, assist in the reduction of temperature gradients and the absolute highest
temperature on the surface of equipment that is subjected to a high heat flux [25].
Porous media may be simulated in a variety of ways including hierarchy models, spa-
tially periodic models, tortuous geometric models among others. A simpler approach
is to use drag force models of which the Darcy model and Darcy–Brinkman–Forhch-
heimer model are popular. The Darcy model is valid for low velocity transport (i. e.
pore Reynolds numbers less than 10) [26]. For higher velocity flows, the Darcy—
Forchheimer and Darcy–Brinkman–Forchheimer model [27] are used which include
a quadratic term for the inertial drag experienced at higher Reynolds numbers. The
Brinkman model also accounts for vorticity diffusion and channeling effects near the
boundary [28].

Many studies have examined natural convection in porous media for both Newto-
nian and non-Newtonian fluids. Aksoy and Pakdemirili [29] proposed approximations
for third- grade fluid flow between parallel plates with porous material. In particu-
lar, constant viscosity, Vogel’s model viscosity, and Reynold’s model viscosity were
explored. Kairi et al. [30] investigated heat and mass transfer in a vertical cone using
non-Newtonian fluid flow. They took into account the non-Darcy model with viscous
dissipation implications and natural convection. Zhao et al. [31] studied unsteady
natural convection with heat transmission through a porous medium saturated with
Oldroyd-B fluid. The solutions were obtained using a finite difference approach with
the L1-algorithm. Ahmed et al. [32] studied magnetized squeezed flow through a non-
Darcymediumwith joule heating and viscous dissipation implications.Dutta et al. [33]
used a porous quadrantal cavity to study natural convection and entropy generation
and reported a numerical result. Ewis [34] applied a novel differential transformation
method to investigate magnetized non-Darcy flow using a Newtonian fluid model.
Gopal et al. [35] analyzed the performance of magnetized nanofluid flow on high
order chemical reactions and viscous dissipation using the Darcy–Brinkmann–Forch-
heimer model. Saha et al. [36] studied natural convection across a complex wavy wall
reactor to a non-Darcy porous material. The combined effect of MHD, porosity, and
viscous dissipation on periodic convective heat transport through a conewas addressed
by Ashraf et al. [37]. This study’s major contribution is composed of non-oscillating
component solutions, which are then utilized to analyze periodic behavior of rate of
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heat transfer, shear stress, and rate of current density in the influence of viscous dissi-
pation. Abbas et al. [38] addressed the chemical reaction with Lorentz force on fluid
flow in the third grade across an exponentially stretched surface. They investigated
the consequences of the modified Darcy model with mass and heat transport.

Inspection of the literature has revealed that so far, no study has addressed the simul-
taneous electro-magnetohydrodynamic (EMHD) dissipative natural convection in a
micro-channel containing a porous medium saturated with a viscoelastic fluid. This
is the focus of the present study. The Reiner-Rivlin third grade viscoelastic model is
utilized for non-Newtonian effects. Transverse magnetic field and axial electrical field
are considered. The Darcy–Brinkmann–Forchheimer model is deployed for porous
media effects. Viscous dissipation and Joule heating effects are also included. The
primitive conservation equations are rendered into dimensionless coupled ordinary
differential equations with associated boundary conditions. The nonlinear ordinary
differential boundary value problem is solved using He’s powerful HPM. Validation
with the MATLAB bvp4c numerical scheme is included for Nusselt number. Graphi-
cal plots are presented for velocity, temperature and Nusselt number for the influence
of emerging parameters including thermal Grashof number, electric field parameter,
Brinkman number and magnetic parameter. The simulations are relevant to smart
electromagnetic non-Newtonian micro-duct flows in nuclear engineering and EMHD
micropumps in bio-chemical engineering systems [39].

2 EMHDNon-NewtonianMicrochannel FlowModel

Consider the third-grade viscoelastic fluid flow under the presence of electrical and
magnetic body force and natural convection, propagating through a non-Darcian
porous medium in a micro-channel. The fluid is electrically conducting, incom-
pressible and irrotational. A Cartesian coordinate system (X ′,Y ′,Z ′) is adopted. The
physical model is depicted in Fig. 1 where the X ′− and Z ′− axes are in the plane of

Fig. 1 Geometrical configuration of electro-magnetohydrodynamics (EMHD) third-grade fluid flow through
micro-parallel plates a three-dimensional view b two-dimensional cross-section view
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the plates and the Y ′− axis is perpendicular to the plane of the plates. The space
between the micro-parallel plates is filled with a Darcy–Brinkmann–Forchheimer
porous medium. The presence of homogenous magnetic field

−→
B and externally

imposed electric field
−→
E in Y ′ and negative Z ′ directions, respectively, produces

a Lorentz force in X ′− direction which induces the fluid motion. The length of the
micro-channel along the X ′− axis is represented by λ; the height is represented by
2λ̄ (usually, the height 2λ̄ is 102 − 2 × 102µm); and width towards the Z ′− axis is
represented by ω.

It is assumed that with ω and the height 2λ̄ of the channel is smaller than the
length λ of the channel i.e., [39] ω << λ and 2λ̄ << λ. Hall current and magnetic
induction effects are neglected. In view of the afore-mentioned assumptions, the two-
dimensional rectangular flow reduces to one-dimensional fully developed steady flow
through micro-parallel plates and the velocity will be independent of the Z ′− axis.
Therefore, the equation of continuity (mass conservation) may be defined in vectorial
form as:

∇ · −→
V = 0, (1)

Deploying theDarcy–Brinkmann–Forchheimermodel for porousmedia andOhm’s
law, the momentum conservation equation takes the vectorial form [37, 40]:

ρ

(
−→
V · ∇−→

V + ∂
−→
V

∂t ′

)
= −∇ · p′ + ∇ · χ + −→

J ×−→
B − R

+ ρβ
[
Ts
(
X ′)− T

(
X ′,Y ′)]g, (2)

Here the stress tensor is denoted by χ , dynamic viscosity is denoted by μ, pressure
is denoted by p′, R represents the Darcy resistance, g is gravity, thermal expansion
coefficient is denoted by β, T is the temperature, s in the subscript represents the
surface (wall), density is denoted by ρ, time is denoted by t ′, magnetic field is denoted
by

−→
B . The local current density vector is denoted by

−→
J and is defined following [41,

42] as:

−→
J = σ

(−→
V×−→

B + −→
E
)
, (3)

Here electrical conductivity is denoted by σ , and electrical field is denoted by
−→
E .

The mathematical form of the third-grade viscoelastic fluid model is defined fol-
lowing [43]:

χ = −pI + μ�1 + τ1�2 + τ2�
2
1 + τ 1�3 + τ 2(�1�2 + �2�1) + τ 3

(
tr�21

)
�1, (4)
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where τ1, τ2, τ 1, τ 2, τ 3 represent the material constants, and the kinematical tensors
�1, �2, �3 are expressed as follows:

⎡
⎣ �1 = X + Xt, X = grad

−→
V ,

�n = d�n−1

dt ′
+ Xt

�n−1 + �n−1X, n = 2, 3, . . .
(5)

The energy equation with viscous dissipation and Joule heating effects takes the
form:

ρCh
dT

dt ′
= χ : grad −→

V +
−→
J · −→

J

σ
+ R

−→
V − ∇ · h f , (6)

In the above equationCh denotes the specific heat,h f represents the heat flux vector,
and the symbols “·” and “:” represents the single and double dot products.

For the current microchannel electromagnetohydrodynamic viscoelastic fully
developed flow configuration, the velocity along X ′− axis and is expressed as:

−→
V = [

U
(
Y ′), 0, 0]. (7)

For non-Newtonian fluid flow through porous media [44], the Darcy term will be
modifiedwith the third-grade fluidmodel, and the Forchheimer term be left unchanged
(since it is independent of the viscosity). They are defined following [41]:

R = μ

k

[
μ + 2(τ 2 + τ 3)

(
dU

dY ′

)2
]
U + ρCF

k1/2
U 2, (8)

where the permeability of the homogenous, isotropic porous medium is denoted by k,
and Forchheimer coefficient is denoted by CF .

Using Eq. (7) in the momentum conservation Eq. (2), leads to the following set of
equations:

∂ p′

∂X ′ = μ
d2U

dY ′2 + 6(τ 2 + τ 3)
d2U

dY ′2

(
dU

dY ′

)2

− σ B2U + σ BE

− 1

k

[
μ + 2(τ 2 + τ 3)

(
dU

dY ′

)2
]
U

− ρCF

k1/2
U 2 + ρβ

[
Ts
(
X ′)− T

(
X ′,Y ′)]g, (9)

∂ p′

∂Y ′ = (2τ1 + τ2)
d

dY ′

[(
dU

dY ′

)2
]
, (10)

∂ p′

∂Z ′ = 0. (11)
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It is evident from these equations that the pressure function is dependent on the
Y ′− coordinate. It follows that:

μ
d2U

dY ′2 + 6(τ 2 + τ 3)
d2U

dY ′2

(
dU

dY ′

)2

− σ B2U + σ BE

− 1

k

[
μ + 2(τ 2 + τ 3)

(
dU

dY ′

)2
]
U

− ρCF

k1/2
U 2 + ρβ

[
Ts
(
X ′)− T

(
X ′,Y ′)]g = 0, (12)

The boundary conditions are defined as follows, in accordance with the microchan-
nel geometry:

U (±λ̄) = 0, (13)

The energy equation for the electroconductive fluid may be written as [45]:

ρChU
∂T

∂X ′ = kT

(
∂2T

∂X ′2 + ∂2T

∂Y ′2

)
+ μ

(
dU

dY ′

)2

+ 2(τ 2 + τ 3)

(
dU

dY ′

)4

+ σ
(
B2U 2 + E2 − 2BEU

)

+ 1

k

[
μ + 2(τ 2 + τ 3)

(
dU

dY ′

)2
]
U 2 + ρCF

k1/2
U 3. (14)

Here thermal conductivity of the electroconductive fluid is denoted by kT . The Joule
heating and volumetric heat generation owing to viscous dissipation are represented
by the last terms in the preceding equation.

The dimensionless form of the temperature is defined as:

T = Ts
(
X ′)− T

(
X ′,Y ′)

Ts(X ′) − Tm(X ′)
, (15)

where Tm represents the mean temperature.
The temperature profile, in the fully developed natural convection flow is solely

dependent on the Y ′− direction. As a result, we have the following condition:

∂

∂X ′

(
Ts
(
X ′)− T

(
X ′,Y ′)

Ts(X ′) − Tm(X ′)

)
= 0. (16)

The following expressions for the heat flux boundary conditions are applied:

∂T

∂X ′ = dTm
dX ′ = Const., and

∂2T

∂X ′2 = 0. (17)
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According to the stated assumptions, the energy Eq. (13) and the associated bound-
ary conditions effectively assume the form:

ρChU
∂Tm
∂X ′ = kT

∂2T

∂Y ′2 + μ

(
dU

dY ′

)2

+ 2(τ 2 + τ 3)

(
dU

dY ′

)4

+ σ
(
B2U 2 + E2 − 2BEU

)

+ 1

k

[
μ + 2(τ 2 + τ 3)

(
dU

dY ′

)2
]
U 2 + ρCF

k1/2
U 3. (18)

fh = kT
∂T

∂Y ′

∣∣∣∣
Y ′=±λ̄

or T |
Y ′=±λ̄

= Ts
(
X ′2), (19)

Here the heat flux is denoted by fh(constant). Incorporating an overall energy
balance into the design of an elemental control volume along the length of a duct dX ′:

ρChUmλ̄dTm = fhdX
′ + σ E2λ̄dX ′ + σ

λ̄∫
0

(
B2U 2 − 2EBU

)
dY ′dX ′

+ μ

λ̄∫
0

(
dU

dX ′

)2

dY ′dX ′

+ 2(τ 2 + τ 3)

λ̄∫
0

(
dU

dY ′

)4

dY ′dX ′

+
λ̄∫
0

(
ρCF

k1/2
U 3 + 1

k

[
μ + 2(τ 2 + τ 3)

(
dU

dY ′

)2
]
U 2

)
dY ′dX ′.

(20)

The mean temperature is obtained in the following form:

dTm
dX ′ = c0

ρCh
= Const., (21)

Here c0 is defined as:

c0 = fh
c1

+ σ E2λ̄

c1
+ σ B2c2

c1
+ μc3

c1
+ 2(τ 2 + τ 3)c4

c1

+ 1

c1

[μc2 + 2(τ 2 + τ 3)c6]

k
+ ρCF

k1/2
c5 − 2EBσ. (22)
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The coefficients in the above Eq. (22) take the following definitions:

c1 =
λ̄∫
0

UdY ′, c2 =
λ̄∫
0

U 2dY ′, c3 =
λ̄∫
0

(
dU

dY ′

)2

dY ′,

c4 =
λ̄∫
0

(
dU

dY ′

)4

dY ′, c5 =
λ̄∫
0

U 3dY ′, c6 =
λ̄∫
0

U 2
(
dU

dY ′

)2

dY ′. (23)

Next, the derived equations are rendered into dimensionless form by employing the
following scaling variables and non-dimensional numbers:

u = U

υ
/
λ̄

, y = Y ′

λ̄
, Da = λ̄2

k
, DF = CF2λ̄√

k
, Ha = B2λ̄

√
σ

ρ
,

Gr = gβ2λ̄3(Tm − Ts)

υ2 , Eh = σ BE2λ̄3

μυ
, ξ = υ2(τ 2 + τ 3)

μ2λ̄4
,

Br = μυ2

2λ̄2kT (Tm − Ts)
, ξ1 = υ2λ̄(c0 + 2σ BE)

(Tm − Ts)kT
, ξ2 = σ2λ̄2E2

(Tm − Ts)kT
. (24)

Using Eqs. (15) & (24), the dimensionless form of Eqs. (12) & (14) along with their
associated boundary conditions emerge as:

d2u

dy2
+ 6ξ

(
du

dy

)2 d2u

dy2
− H2

a u + Eh − Da

[
1 + 2ξ

(
du

dy

)2
]
u − DFu

2 + GrT = 0,

(25)

d2T

dy2
+ Br

(
du

dy

)2

+ 2Brξ

(
du

dy

)4

+ Br H
2
a u

2 − ξ1u + ξ2

+ Br Da

[
1 + 2ξ

(
du

dy

)2
]
u2 + Br DFu

3 = 0, (26)

The boundary conditions are as follows:

u(±1) = 0, T (±1) = 0, (27)

Here kinematic viscosity is denoted by υ, magnetic interaction number is denoted
by Ha , dimensionless parameter related to electrical strength is denoted by Eh , third-
grade fluid parameter is denoted by ξ , Darcy parameter is denoted by Da , Forchheimer
(non-Darcian porous medium) number is denoted by DF , thermal Grashof number
is denoted by Gr ,Br represents the Brinkman number, which indicates the ratio of
heat created by viscous dissipation to heat transferred by molecular conduction, the
effects of heat generation owing to the interaction of magnetic and electric fields on
heat conduction is denoted by ξ1 and the ratio of Joule heating to heat conduction is
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represented by ξ2. We note that Da is inversely proportional to permeability and has
values ranging from 0 (pure fluid i. e. infinite permeability) to infinity (pure solid i.e.
zero permeability). It is also noteworthy that the present non-Darcy model features
modified terms also in the energy Eq. (26).

The Nusselt number provides an estimation of the convective heat transfer relative
to conduction heat transfer at a boundary (microchannel plate inner surfaces) and also
the temperature gradient at the wall. It is determined by the following expression:

Nu = D2λ̄hc
kT

= D2λ̄ fh
kT (Ts − Tm)

, (28)

Here the convective heat transfer coefficient is denoted by hc and fh =
(Ts − Tm)hc. D2λ̄ is the hydraulic diameter and D2λ̄ = 2λ̄ is the semi-height of the
microchannel. The final definition required for Nusselt number at the upper plate is
obtained by using Eqs. (19) and (28), which is emerges as:

Nu = −dT

dy

∣∣∣∣
y=1

. (29)

3 Solutions Using Homotopy PerturbationMethod (HPM)

To obtain the solution of the resulting nonlinear differential Eqs. (25)–(26)with associ-
ated boundary conditions (27), we have used He’s HPM. This method is very accurate
and exceptionally fast at converging compared with other perturbation methods [46]
and uses higher order power series solutions. It has been utilized in many nonlinear
non-Newtonian fluid dynamics problems including Jeffreys viscoelastic flows [47]
and Maxwell rheological flows [48]. The HPM formulation for the coupled ordinary
differential momentum and energy Eqs. (25)–(26) are defined in the following form:

h(v, ε) = (1 − ε)
[
Lop(v) − Lop(ṽ0)

]+ ε

[
Lop(v) + 2ξ

d

dy

(
dv

dy

)3

− H2
a v

+Eh − Da

[
1 + 2ξ

(
dv

dy

)2
]
v − DFv2 + GrT

]
, (30)

h(ϑ, ε) = (1 − ε)
[
Lop(ϑ) − Lop

(
ϑ̃0

)]
+ ε

[
Lop(ϑ) + Br

(
dv

dy

)2

+ 2Brξ

(
dv

dy

)4

+Br H
2
a v2 − ξ1v + ξ2 + Br

[
1 + 2ξ

(
dv

dy

)2
]
v2 + Br DFv3

]
, (31)
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In the above equations Lop is the linear operator and ṽ0, ϑ̃0 are the initial guesses,
and they are defined as:

Lop = d2

dy2
, ṽ0 = ϑ̃0 = y2 − 1

2
, (32)

To proceed further, let us define series expansions for Eqs. (29)-(31):

v = v0 + εv1 + ε2v2 + . . . ,

ϑ = ϑ0 + εϑ1 + ε2ϑ2 + . . . , (33)

Applying Eq. (33), in Eqs. (29)--(31), we obtain a set of linear differential equations
for each order, which are defined next.

3.1 Zeroth Other System "0

At zeroth orderweobtain the following set of differential equationswith their boundary
conditions:

Lop(v0) − Lop(ṽ0) = 0,

v0(±1) = 0, (34)

Lop(ϑ0) − Lop

(
ϑ̃0

)
= 0,

ϑ0(±1) = 0, (35)

The solution at the zeroth order is obtained as:

v0 = y2 − 1

2
,

ϑ0 = y2 − 1

2
,

(36)

3.2 First Order System "1

The first order system is obtained in the following form:

Lop(v1) + Lop(v0) + 2ξ
d

dy

(
dv0
dy

)3

− H2
a v0

+ Eh − Da

[
1 + 2ξ

(
dv0
dy

)2
]
v0 − DFv20 + Grϑ0,

v1(±1) = 0, (37)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lop(ϑ1) + Lop(ϑ0) + Br

(
dv0
dy

)2

+ 2Brξ

(
dv0
dy

)4

+ Br H
2
a v20 − ξ1v0 + ξ2

+ Br Da

[
1 + 2ξ

(
dv0
dy

)2
]
v20 + Br DFv30,

ϑ1(±1) = 0, (38)

The solution of the first order system is obtained as:

v1 = 1

120

(
−1 + y2

)

×
⎛
⎜⎝ DF

(
11 − 4y2 + y4

)
+ Da

(
−25 + y2(5 − 6ξ) − 6ξ + 4y4ξ

)
−5
(
Gr

(
−5 + y2

)
− H2

a

(
−5 + y2

)
+ 12

(
1 + Eh + ξ + y2ξ

))
⎞
⎟⎠ (39)

ϑ1 = − 1

6720

(
−1 + y2

)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
Br

⎛
⎜⎜⎜⎜⎝
56Da

(
11 − 4y2 + y4

)
+ 3DF

(
−93 + 47y2 − 23y4 + 5y6

)
+ 4Da

(
29 + 29y2 − 41y4 + 15y6

)
ξ

+ 56
(
10
(
1 + y2

)
+ H2

a

(
11 − 4y2 + y4

)
+ 8

(
1 + y2 + y4

)
ξ
)

⎞
⎟⎟⎟⎟⎠

− 280
((

−5 + y2
)
ξ1 − 12(1 + ξ2)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(40)

3.3 Second Order System "2

The second order system is obtained as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lop(v2) + 6ξ

[
2
dv0
dy

d2v0
dy2

dv1
dy

+ d2v1
dy2

(
dv0
dy

)2
]

− H2
a v1 − Dav1

− 2ξ

[
v1

(
dv0
dy

)2

+ 2v0
dv1
dy

dv0
dy

]
− 2DFv1v0 + Grϑ1,

v2(±1) = 0, (41)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lop(ϑ1) + 2Br
dv0
dy

dv1
dy

+ 8Brξ
dv1
dy

(
dv0
dy

)3

+ 2Br H
2
a v1v0 − ξ1v1 + 2Br Dav1v0

+ 2ξ Br Da

(
v20

dv0
dy

dv1
dy

+ v0v1

(
dv0
dy

)2
)

+ 3Br DFv20v1,

ϑ1(±1) = 0, (42)
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The solution of the second order system is obtained as:

v1 = v1,0 + v1,1y
2 + v1,2y

4 + v1,3y
6 + v1,4y

8 + v1,5y
10, (43)

ϑ1 = ϑ1,0 + ϑ1,1y
2 + ϑ1,2y

4 + ϑ1,3y
6 + ϑ1,4y

8 + ϑ1,5y
10 + ϑ1,6y

12, (44)

The constants v1,n, ϑ1,n; (n = 0, 1 . . . , 6) mentioned in the above equations are
algebraically rigorous and are therefore omitted for brevity. They can, however, be
easily determined through the use of regular computations in the symbolic software,
Mathematica.

Using the HPM property, we may derive the final form of the solutions as:

u = lim
ε→1

v = v0 + v1 + v2 + . . . , (45)

T = lim
ε→1

ϑ = ϑ0 + ϑ1 + ϑ2 + . . . , (46)

Finally, they can be written as:

u = y2 − 1

2
+ 1

120

(
−1 + y2

)

×
⎛
⎜⎝ DF

(
11 − 4y2 + y4

)
+ Da

(
−25 + y2(5 − 6ξ) − 6ξ + 4y4ξ

)
−5
(
Gr

(
−5 + y2

)
− H2

a

(
−5 + y2

)
+ 12

(
1 + Eh + ξ + y2ξ

))
⎞
⎟⎠

+v1,0 + v1,1y
2 + v1,2y

4 + v1,3y
6 + v1,4y

8 + v1,5y
10, (47)

T = y2 − 1

2
− 1

6720

(
−1 + y2

)

×

⎡
⎢⎢⎢⎢⎣Br

⎛
⎜⎜⎜⎜⎝
56Da

(
11 − 4y2 + y4

)
+ 3DF

(
−93 + 47y2 − 23y4 + 5y6

)
+ 4Da

(
29 + 29y2 − 41y4 + 15y6

)
ξ

+ 56
(
10
(
1 + y2

)
+ H2

a

(
11 − 4y2 + y4

)
+ 8

(
1 + y2 + y4

)
ξ
)

⎞
⎟⎟⎟⎟⎠

− 280
((

−5 + y2
)
ξ1 − 12(1 + ξ2)

)
⎤
⎥⎥⎥⎥⎦+ ϑ1,0 + ϑ1,1y

2 + ϑ1,2y
4

+ ϑ1,3y
6 + ϑ1,4y

8 + ϑ1,5y
10 + ϑ1,6y

12. (48)
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4 HPM and Numerical bvp4c Results and Discussion

In this section, graphical results are presented based on the HPM solutions. Addition-
ally, solutions have been obtained using the numerical shooting quadrature available
in the bvp4c command in MATLAB. The following parametric values were chosen
to carry out the computational formulation such as: Da = 1.5; ξ = 0.2; Br = 0.2;
Eh = 1; Ha = 2; DF = 1; Gr = 0.2; ξ1 = 0.5; ξ2 = 0.5. These values have been
adopted from references [10, 14, 39, 40] and represent realistic scenarios inmicrochan-
nel electromagnetic non-Newtonian heat transfer systems. A comparison between the
proposed results and a numerical technique based on the built-in command bvp4c in
Matlab to ensure that the results are valid (see Table 1). According to this table, it is
evident the HPM solutions correlate very closely with the MATLAB bvp4c numerical
results, which verifies that the current results are correct.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and16 illustrate the influence of
key parameters on the velocity, temperature and Nusselt number distributions.

Figures 2, 3, 4, 5, 6, 7 and 8 show the evolution in velocity profile in relation
to several parameters such as the third-grade fluid parameter ξ , the thermal Grashof
numberGr , the Darcy number Da , the Forchheimer number DF , themagnetic number
Ha , the Brinkman number Br , and the electric strength Eh .

Figure 2 shows how increasing the third-grade fluid parameter (ξ ) causes significant
reduction in the velocity magnitude. When the third-grade fluid parameter is set to
zero, however, the case of a Newtonian fluid is retrieved, and this corresponds to the
maximumvelocity i. e. greatest flowacceleration in themicro-channel. The third-grade

fluid parameter (ξ ) arises in the momentum Eq. (25) in the term,6ξ
(
du
dy

)2
d2u
dy2

. Since

ξ = υ2(τ 2+τ 3)

μ2λ̄4
the parameter is dominated by viscosity and not elasticity of the non-

Newtonian fluid. Higher values will therefore imply greater viscous resistance which
will lead to a depletion in velocity across the micro-channel. Strongly viscoelastic
fluids will therefore flow slower than the classical Newtonian case. There is no cross-
over in velocity profiles and a consistent deceleration is induced across the micro-
channel span with higher third-grade fluid parameter (ξ ) values.

Figure 3 demonstrates that the thermal Grashof number induces a considerable
enhancement in the velocity profile. The buoyancy force, +GrT in Eq. (25) increases
as the thermal Grashof number increases. This intensifies natural convection currents
which amplifies the velocitymagnitude. Again, this behaviour is maintained across the
micro-channel span. The case of forced convection is retrieved for Gr < < 1 and this
corresponds to the lowest velocity computed. The velocity profiles are symmetrical
about the centreline of the micro-channel (y = 0).

The effects of Darcy number on the velocity profile are depicted in Fig. 4. In this
illustration, it can be seen that increasing the Darcy number causes the velocity profile
to decline drastically. The Darcy parameter, Da = λ2

k and is inversely proportional to
porousmedium permeability, k. This is distinct from the classical Darcy numberwhich
is directly proportional to permeability. Da features in the Darcian drag force term i.e.
−Dau in the momentum conservation Eq. (25). As Da is elevated, the permeability
is reduced and this decelerates the flow since greater resistance is generated to the
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Table 1 Numerical comparison of the Nusselt number using numerical and perturbation solutions

Da ξ Br Eh Ha DF Gr ξ1 ξ2 Nu Nu

MATLAB bvp4c
numerical
solutions

HPM solutions

0 0.2 0.2 1 2 1 0.2 1.5 0.5 1.46179 1.46179

1.5 1.46835 1.46835

3 1.47300 1.47300

0 1.46792 1.46792

2 1.47081 1.47081

4 1.47246 1.47246

2 1.70513 1.70513

3 1.84378 1.84378

4 1.98801 1.98801

0.5 1.47583 1.47583

1 1.46835 1.46835

1.5 1.47128 1.47128

0.5 1.44567 1.44567

1 1.45228 1.45228

1.5 1.46052 1.46052

0 1.46782 1.46782

3 1.46930 1.46930

6 1.47053 1.47053

3 1.52775 1.46912

3.5 1.54623 1.47079

4 1.56787 1.48619

0 1.60146 1.60146

0.5 1.48619 1.48619

1 1.38103 1.38103

0.5 0.46856 0.46856

0.7 0.67002 0.67002

0.9 0.87251 0.87251

percolating viscoelastic fluid. The velocity is therefore maximized for Da = 0 which
corresponds to vanishing permeability (infinite) implying there are no solid matrix
fibers and the regime is purely viscoelastic fluid. The significant damping effect of
small permeability of the porous medium is clearly demonstrated, confirming the
excellent control mechanism offered in electromagnetic micro-channel flows via the
presence of a porous matrix.

The effects of the Forchheimer number DF on velocity distribution across the
micro-channel span are depicted in Fig. 5. DF = CF2λ̄√

k
and enables an assessment
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Fig. 2 Behavior of ξ on velocity profile

Fig. 3 Behavior of Gr on velocity profile

Fig. 4 Behavior of Da on velocity profile



Natural Convection Non-Newtonian EMHD Dissipative Flow Through … Page 17 of 27 97

Fig. 5 Behavior of DF on velocity profile

Fig. 6 Behavior of Ha on velocity profile

of non-Darcian inertial drag forces on the viscoelastic flow in the porous medium. A
significant decrease in the velocity profile is observed with increment in Forchheimer
number. As Forchheimer number increases, the second order (quadratic) inertial drag
is boosted i. e. the term, −DFu2 is enhanced and this decelerates the flow across
the micro-channel. For DF = 0, Forchheimer effects are negated and the classical
Darcian model is retrieved. Symmetric profiles are sustained at all values of DF across
the microchannel. At the plate boundaries, in accordance with the no-slip boundary
conditions, velocities vanish. The strong damping achievedwith inertial (Forchheimer)
drag is clearly demonstrated. These findings concurwithmanyother non-Darcy studies
including Saha et al. [36] and Ashraf et al. [37].

Figure 6 shows that increasing values of the magnetic interaction parameter, Ha .

Ha = B2λ̄
√

σ
ρ
and an increment in this parameter enhances the Lorentzian magnetic
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Fig. 7 Behavior of Br on velocity profile

Fig. 8 Behavior of Eh on velocity profile

drag force, −H2
a u, in Eq. (24). This damps the flow and reduces velocity across the

micro-channel. The non-magnetic case is retrieved for Ha= 0 and this achieves the
maximum velocity. A significant deceleration in the flow is clearly achieved with
greater magnetic parameter which corresponds to a stronger transverse magnetic field
presence in the regime. Peak velocity is always computed at the centre line (y = 0)
and again the profiles are symmetric. In all cases magnitudes of velocity are positive
indicating that back flow is never induced in the regime, even at maximum magnetic
parameter of Ha = 2.5.

It is seen in Fig. 7 that there is a slight increase in velocity owing to an increment

in Brinkman number, but the impacts are minimal. Br = μυ2

2λ̄2kT (Tm−Ts )
and describes

the viscous dissipation effect. Ordinarily this parameter which features in the viscous

heating term, +Br
(
du
dy

)2
in Eq. (26) will convert kinetic energy into thermal energy.
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Fig. 9 Behavior of ξ on temperature profile

Fig. 10 Behavior of Br on temperature profile

However in the present case, Br also appears in many other terms in the energy con-

servation Eq. (26), viz, a non-Newtonian term, +2Br ξ
(
du
dy

)4
, the Joule heating term,

+Br H2
a u

2, and additionally the modified non-Darcian dissipative terms, +Br Dau2

and +Br DFu3. The collective contribution of these multiple terms however modifies
the action of the Brinkman number and leads to a slight acceleration in the flow across
the micro-channel.

The impact of electric field parameter, Eh , on velocity evolution across the micro-
channel span is depicted in Fig. 8. Eh = σ BE2λ̄3

μυ
is directly proportional to the electrical

field strength,E. It arises in the single axial electrical body force term,+Eh u inEq. (25)
which unlike the magnetic Lorentzian force, is an assistive body force. Increment in
electrical field parameter therefore magnifies this electrohydrodynamic body force
which assists theflowand induces strong acceleration in the regime.There is therefore a
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Fig. 11 Behavior of Da on temperature profile

Fig. 12 Behavior of DF on temperature profile

significant boost in axial velocity across themicro-channel spanwith stronger electrical
field strength effect. The electrohydrodynamic body force therefore can be utilized
to balance the magnetic Lorentzian drag effect and together these two body forces
provide a dual mechanism for regulating the micro-channel flow distribution. The
simultaneous presence of electromagnetohydrodynamic (EMHD) effects i. e. Ha > 0
and Eh > 0, therefore offers improved control of the microchannel regime compared
to only electrohydrodynamic (EHD) (for which Ha = 0) or magnetohydrodynamic
(MHD) designs (for which Eh = 0).

Figure 9 depicts the third-grade fluid parameter (ξ ) impact on temperature profile.
A very slight heating effect is induced with a large increment inξ . The non-Newtonian

third grade viscoelastic parameter, ξ = υ2(τ 2+τ 3)

μ2λ̄4
. It features in both the momen-

tum Eq. (25) in the term, +6ξ
(
du
dy

)2
d2u
dy2

and also in the energy Eq. (26) in the
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Fig. 13 Behavior of ξ2 on temperature profile

Fig. 14 Behavior of ξ1 on temperature profile

term,+2Brξ
(
du
dy

)4
. As observed earlier, higher values of ξ lead to a deceleration

in the flow. This enables a faster thermal diffusion rate in the viscoelastic liquid which

increases temperaturemagnitudes. Also, the term,+2Brξ
(
du
dy

)4
is also increasedwith

greater ξ which also contributes to a heating effect.
Figure 10 shows that as the Brinkman number Br increases, the temperature pro-

file is very strongly enhanced. Increment in Brinkman number greatly amplifies the
viscous heating (and Joule heating) effect. It also magnifies the non-Darcy dissipation
effects simulated in the supplementary terms in the energy Eq. (26). This contributes to
an accentuation in the viscous heating relative to the heat conduction process. Temper-
atures are therefore strongly modified. It is noteworthy that inclusion of the viscous
dissipation (and associated effects) is very important since it achieves significantly
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Fig. 15 Behavior of Ha on temperature profile

Fig. 16 Effect of multiple parameters on Nusselt number profile
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different temperature values (they are much higher) than when viscous heating is
neglected (Br = 0). As with the velocity profiles computed earlier, there is symmetry
in the temperature profiles across the micro-channel and the peak temperature always
arises at the centre (y= 0). At the plate boundaries, temperatures vanish in accordance
with the boundary conditions prescribed in Eq. (27).

Figure 11 illustrates that increasing the Darcy parameter, Da increases the temper-
ature profile, although the impacts are minimal. A slight elevation in temperature is
induced with greater Darcy parameter, which is maximized at the centre of the micro-
channel. As noted earlier, when Da is elevated, the permeability is reduced. There are
therefore less solid matric fibers in the regime. However thermal conduction is still
greater than for the case of Da = 0 and the latter is associated with the lowest temper-
atures since there are no solid matrix fibers present for infinite permeability (purely
viscoelastic fluid in the regime). Temperature is also influenced by the dissipative Dar-
cian term in the energy conservation Eq. (26), +Br Dau2, which has been included
in the modified formulation adopted, and is usually neglected in simpler models of
porous media.

The impact of Forchheimer number DF i.e. non-Darcian effect on the temperature
profile is depicted in Fig. 12. Here, it should be noticed that the temperature profile is
enhanced weakly with Forchheimer number. There is a direct contribution of Forch-
heimer number to the temperature field via the term,+Br DFu3 in the energy Eq. (26).
This induces a slight heating effect in the regime which is also associated with viscous
dissipation. Clearly for the Darcian case (DF = 0) temperature is minimized.

Figure 13 shows the behavior of ξ2 on temperature profile. In terms of physics, this
parameter describes the relationship between Joule heating and heat conduction. As
can be seen in this graph, increasing this parameter results in a significant increase in
the temperature profile along the entire channel length. ξ2 = σ2λ̄2E2

(Tm−Ts )kT
arises in the

term, +ξ2 in the energy Eq. (26). This assists the thermal diffusion field and indicates
that the transverse magnetic field (Joule dissipation) generates strong heating in the
regime which dominates thermal conduction.

Figure 14 demonstrates that by increasing the value of ξ1 there is a decrement in
the temperature profile. This parameter arises in the negative term,−ξ1u in the energy
Eq. (26) which inhibits thermal diffusion. Physically, ξ1 = υ2λ̄(c0+2σ BE)

(Tm−Ts )kT
represents

the effects of heat generation on heat conduction due to the interaction of magnetic and
electric fields. When this parameter is absent i. e. ξ1 = 0, the heat generation effect on
thermal conduction due to the combined electromagnetohydrodynamic effect vanishes
and temperatures are amaximum.The implication is that the parameter ξ1 has a cooling
effect on the regime since when it is increased there is a suppression in the thermal
conduction modification by dual electrical and magnetic field action.

Figure 15 shows that with increment in the magnetic interaction parameter, Ha

there is a strong elevation in temperatures across the micro-channel. This behaviour
is primarily due to the term, +Br H2

a u
2 in the energy Eq. (25) i. e. Joule dissipation,

also known as Ohmic heating. The supplementary work expended in dragging the
viscoelastic fluid against the action of the transverse magnetic field is dissipated as
thermal energy. This heats the fluid and elevates the temperature. Again, the maximum
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temperatures are observed at the centre-line of the micro-channel and are inverse
parabolic profiles, with symmetry.

Figure 16 shows the Nusselt number magnitudes tabulated for selected parameters.
The Nusselt number is the ratio of convective to conductive heat transfer at the upper
plate of the micro-channel. It also quantifies the temperature gradient at the upper
plate and is a measure of the rate of heat transfer from the inner viscoelastic EMHD
fluid to the upper plate. Diffusion (conduction) and advection (fluid motion) are both
involved in convection. Due to an increase in the thermal Grashof number, Forch-
heimer number, third-grade fluid parameter, Darcy number, Brinkman number, and
magnetic interaction number, the Nusselt number magnitude is observed to increase.
Therefore, stronger thermal buoyancy, higher quadratic porous drag, stronger vis-
coelasticity, lower permeability, higher viscous heating and stronger magnetic field all
enhance the rate of heat transfer to the upper plate boundary.

5 Conclusions

A theoretical study of laminar, steady state fully developed viscoelastic natural con-
vection electro-magnetohydrodynamic (EMHD) flow in a microchannel containing a
porous medium has been presented Transverse magnetic field and axial electrical field
are considered. A modified Darcy–Brinkmann–Forchheimer model is deployed for
porous media effects. Viscous dissipation and Joule heating effects are included. The
primitive conservation equations are rendered into dimensionless coupled ordinary
differential equations with associated boundary conditions. The nonlinear ordinary
differential boundary value problem has been solved using He’s powerful HPM. Val-
idation with the MATLAB bvp4c numerical scheme has been included for Nusselt
number. Graphical plots are presented for velocity, temperature and Nusselt number
for the influence of emerging parameters. The computations show that:

(i) Increment in thermalGrashof number and electric field parameter enhance veloc-
ity whereas increment inmagnetic interaction parameter, third grade viscoelastic
parameter, Darcy parameter and Forchheimer number inhibit the flow.

(ii) Increasing Brinkman number and magnetic interaction number boost tempera-
tures and a weak elevation is also observed in temperatures with increment in
third-grade non-Newtonian parameter and Forchheimer number.

(iii) Increasing magnetic field slightly heats the regime as does an increase in elec-
trical parameter relating the Joule heating and heat conduction. However, there
is a reduction in temperatures across the micro-channel with the combined elec-
tromagnetic parameter relating heat generation to heat conduction due to the
interaction of magnetic and electric fields.

(iv) Nusselt number is also elevated with thermal Grashof number, Forchheimer
number, third-grade fluid (viscoelastic) parameter, Darcy parameter, Brinkman
number and magnetic number.

(v) The simultaneous presence of electromagnetohydrodynamic (EMHD) effects i.
e. Ha > 0 and Eh > 0, enables improved control of the microchannel regime
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compared to only electrohydrodynamic (EHD) (for which Ha = 0) or magneto-
hydrodynamic (MHD) designs (for which Eh = 0).

(vi) The fluid motion is significantly opposed by the strong influence of magnetic
field, and the third-grade fluid.

The present investigation has revealed some intriguing features of electromag-
netohydrodynamic non-Newtonian microchannel flows of relevance to for example
microscale thermal ducts. Future studies may consider alternative non-Newtonian
models such as the upper convected Maxwell (UCM) viscoelastic model or Eringen
micropolar model and will be communicated imminently.
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