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Abstract
Under investigation in this paper is a generalized (2+1)-dimensional dispersive long-
wave system, describing the nonlinear and dispersive long gravity waves in two
horizontal directions in the shallow water of a wide channel of finite depth or an open
sea. Via symbolic computation, we derive the same bilinear forms as those reported,
but through a different method. Four sets of the similarity reductions are obtained,
each of which leads to a known ordinary differential equation. The results rely on the
coefficients in the original system, with respect to the horizontal velocity and wave
elevation above the undisturbed water surface.

Keywords Oceanic water waves · Generalized (2+1)-dimensional dispersive
long-wave system · Bilinear forms · Hirota method · Similarity reductions ·
Symbolic computation

1 Introduction

Studies on fluids have been reported [1–14]. For investigating the nonlinear and dis-
persive long gravity waves in two horizontal directions, especially those in the shallow
water of a wide channel or an open sea with finite depth, Ref. [15] has proposed the
following generalized (2+1)-dimensional dispersive long-wave system:
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with u(x, y, t) as the horizontal velocity, v(x, y, t) as the wave elevation above the
undisturbed water surface, u(x, y, t) and v(x, y, t) as the real differentiable functions
in respect of the variables x , y and t , the subscripts as the partial derivatives, α �= 0,
β and δ �= 0 implying the real constants, while t and (x, y) denoting the time and
propagation plane, separately. Also in Ref. [15], some special cases which can report
the applications of System (1) have been listed.

Ref. [15] has derived two sets of the bilinear forms of System (1), i.e.,

(Dt ± αδD2
x ) f · g = 0, (2a)[

DyDt ± αδD2
x Dy ± α

δ
(θ4 + β)Dx

]
f · g = 0, (2b)

in which θ4 indicates a real constant, f (x, y, t) and g(x, y, t) imply the C∞ functions
of x , y and t , while Dx , Dy and Dt represent the Hirota operators defined as [16]
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with x ′, y′ and t ′ denoting the formal variables, while m, r and n meaning three non-
negative integers. Besides, Ref. [15] has also obtained certain scaling transformations,
hetero-Bäcklund transformations and N -soliton solutions for System (1), where N is
a positive integer. For System (1), Ref. [17] has constructed certain hetero- and auto-
Bäcklund transformations with some soliton solutions, while Ref. [18] has given out
some similarity reductions.1

To System (1), contributions of this paper could be introduced in the following
aspects:

• Background: Nowadays, many nonlinear evolution equations/systems have been
put into use in some physical studies, e.g., optical fibers, fluids and plasmas [17–
28].

• Motivations: On the one hand, we plan to construct the same bilinear forms as
Bilinear Forms (2) with a different method, to confirm the correctness of Bilinear
Forms (2). On the other hand, we would like to find out more similarity reduc-
tions, which link System (1) to some ordinary differential equations (ODEs), to
complement the existing results.

• Novelty andoutlines:Bäcklund transformations and solutions of System (1) could
be derived via the bilinear forms [15]. In comparison with the Bell polynomials in
Ref. [15], the Hirota method may give rise to more potential bilinear forms [29].
Besides, similarity reductions in this paper, which are different from those in Ref.
[18], might fit some other situations.

• Originality: To date, for System (1), similarity reductions different from those
in Ref. [18] have not been investigated. In Sect. 2, we will derive two sets of the

1 Note that ODE (14) and ODE (15d) in Ref. [18] are wrong, and we need to correct them to p′′ − 3
2 p

2 −
1
2 p

3 + (φ1z + φ2 − 1)p + (φ1z + φ2 − φ3) = 0.
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bilinear forms, which are the same as those in Ref. [15], but through a different
method, i.e., theHirotamethod [16, 30–33]. In Sect. 3,with symbolic computation2

[34–38], we will obtain four sets of the similarity reductions for System (1), which
are different from those in Ref. [18]. Conclusions will be given in Sect. 4.

• Significance and potential applications: This paper could be of some use for the
future studies on the nonlinear and dispersive long gravity waves in two horizontal
directions, especially those in the shallow water of a wide channel or an open sea
with finite depth.

2 Two Sets of the Bilinear Forms for System (1) through the Hirota
Method

Since our goal is to construct some bilinear forms for System (1) in respect of f (x, y, t)
and g(x, y, t), the Hirota method brings about the assumptions

u(x, y, t) = ζ1

[
ln

(
f

g

)]
x

, (3a)

v(x, y, t) = ζ2

[
ln

(
f

g

)]
xy

+ ζ3[ln ( f g)]xy + ζ4 , (3b)

where ζ2 and ζ4 are two real constants, while ζ1 and ζ3 imply two real non-zero
constants.

Integrating Eq. (1a) once in respect of x and y, respectively, with the integration
function vanishing, we get
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(4)

To bring in the Hirota operators, based on the following formulae [16]:

[
ln

(
f

g

)]
x

= Dx f · g
f g

, (5a)

[
ln

(
f

g

)]
t
= Dt f · g

f g
, (5b)

[ln ( f g)]xx = D2
x f · g
f g

−
(
Dx f · g

f g

)2

, (5c)

2 More relevant studies on symbolic computation could been found in Refs. [39–53].
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with the assumption that

ζ2 = 0 , ζ3 = 1

2
ζ 2
1 , (6)

we convert Eq. (1a) into

(
Dt + 1

2
αζ1D

2
x

)
f · g = 0 . (7)

Similarly, we integrate Eq. (1b) once in respect of x with the integration function
vanishing, to find

ζ2

[
ln

(
f

g

)]
yt

+ ζ3 [ln ( f g)]yt + αζ1ζ2

[
ln

(
f

g

)]
x

[
ln

(
f

g

)]
xy

+ αζ1ζ3

[
ln

(
f

g

)]
x
[ln ( f g)]xy + αζ1ζ4

[
ln

(
f

g

)]
x

+ αβζ1

[
ln

(
f

g

)]
x

+ αζ1δ
2
[
ln

(
f

g

)]
xxy

= 0 . (8)

According to Formulae (5) and the following formulae [16]:

[ln ( f g)]xy = Dx Dy f · g
f g

− Dx f · g
f g

Dy f · g
f g

, (9a)

[ln ( f g)]yt = DyDt f · g
f g

− Dy f · g
f g

Dt f · g
f g

, (9b)
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xxy

= D2
x Dy f · g

f g
− 2

Dx Dy f · g
f g

Dx f · g
f g

− D2
x f · g
f g

Dy f · g
f g

+ 2

(
Dx f · g

f g

)2 Dy f · g
f g

, (9c)

Eqs. (7) and (8) give rise to

ζ1 = ±2δ ,
[
DyDt ± αδD2

x Dy ± α

δ
(ζ4 + β)Dx

]
f · g = 0 . (10)

Based on the above derivation, we are able to come up with the theorem:

Theorem 2.1 In brief, via Assumptions (3), we construct the following bilinear forms
for System (1) via the Hirota method:

(Dt ± αδD2
x ) f · g = 0 , (11a)[

DyDt ± αδD2
x Dy ± α

δ
(ζ4 + β)Dx

]
f · g = 0 , (11b)

which are the same as Bilinear Forms (2) when ζ4 = θ4.
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3 Four Sets of the Similarity Reductions for System (1)

For obtaining some similarity reductions, we give rise to the assumptions3

u (x, y, t) = θ (x, y, t) + ω (x, y, t) p [z (x, y, t)] , (12a)

v (x, y, t) = γ (x, y, t) + κ (x, y, t) q [z (x, y, t)] , (12b)

where θ(x, y, t), ω(x, y, t) �= 0, γ (x, y, t), κ(x, y, t) �= 0 and z(x, y, t) �= 0
imply some real differentiable functions to be determined, while p[z(x, y, t)] and
q[z(x, y, t)] are two real differentiable functions of z.

Making use of symbolic computation and inserting Assumptions (12) into Sys-
tem (1), we obtain that

χ0 pp
′′ + χ0 p

′2 + χ1 p
′′ + χ2 pp

′ + χ3 p
′ + χ4 p + χ5 p

2

+ χ6q
′′ + χ7q

′ + χ8q + χ9 = 0 , (13a)

τ0 p
′′′ + τ1 p

′′ + τ2 p
′ + τ3 p + τ4q

′ + τ5q

+ τ6 p
′q + τ6 pq

′ + τ7 pq + τ8 = 0 , (13b)

in which

χ0 = αω2zx zy , (14a)

χ1 = ωzt zy + αθωzx zy , (14b)

χ2 = 2αωωyzx + 2αωωx zy + αω2zxy , (14c)

χ3 = ωt zy + ztωy + ωzyt + αωθyzx + αωzyθx
+ αθωyzx + αθωx zy + αθωzxy, (14d)

χ4 = ωyt + αωyθx + αθyωx + αωθxy + αθωxy , (14e)

χ5 = αωyωx + αωωxy , (14f)

χ6 = 2ακz2x , (14g)

χ7 = 2αzxκx + ακzxx , (14h)

χ8 = ακxx , (14i)

χ9 = θyt + αθyθx + αθθxy + αγxx , (14j)

τ0 = αδ2ωzyz
2
x , (14k)

τ1 = αδ2ωyz
2
x + 2αδ2zyzxωx + 2αδ2ωzx zxy + αδ2ωzyzxx , (14l)

τ2 = αβωzx + αγωzx + 2αδ2ωx zxy + 2αδ2zxωxy + αδ2ωyzxx

+ αδ2zyωxx + αδ2ωzxxy , (14m)

τ3 = αωγx + αβωx + αγωx + αδ2ωxxy , (14n)

τ4 = κzt + αθκzx , (14o)

τ5 = κt + ακθx + αθκx , (14p)

3 similar to those in Refs. [54–61]
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τ6 = ακωzx , (14q)

τ7 = αωκx + ακωx , (14r)

τ8 = γt + αθγx + αβθx + αγ θx + αδ2θxxy, (14s)

χi ’s (i = 0, ..., 9) and τ j ’s ( j = 0, ..., 8) are some real differentiable functions with
respect to x , y and t , while the prime sign means d/dz. Because p(z) and q(z) are the
functions of z only, we are able to convert Eq. (13) into a set of the ODEs in respect
of p(z) and q(z). Each set of θ(x, y, t), ω(x, y, t), γ (x, y, t), κ(x, y, t) and z(x, y, t)
could lead to, at least, a similarity reduction of System (1). In this paper, we consider
the case of zx zy �= 0, so that χ0 �= 0 and τ0 �= 0, to obtain that

χi = �i (z)χ0 , τ j = � j (z)τ0 , (15)

with �i (z)’s and � j (z)’s as some real to-be-determined functions of z only.
For the sake of simplicity, we give out the assumption that4

z(x, y, t) = λ1x + λ2y + λ3t + λ4 , (16)

with λ1, λ2 and λ3 as the real non-zero constants, while λ4 as a real constant. Substi-
tuting Eqs. (14q), (14k) and (16) into Eqs. (15) turns to

κ(x, y, t) = δ2λ1λ2 , �6(z) = 1 . (17)

According to the second freedom of Remark 3 in Ref. [62], Eq. (14g) results in

ω(x, y, t) = ±δλ1 , �6(z) = 1 . (18)

With the first freedom of Remark 3 in Ref. [62], Eq. (14b) leads to

θ(x, y, t) = − λ3

αλ1
, �1(z) = 0 , (19)

and Eq. (14m) helps us derive

�2(z) = β + γ

δ2λ1λ2
. (20)

Based on the first and the second freedom of Remark 3 in Ref. [62], respectively, we
will obtain two branches of the results.

Branch 1: γ (x, y, t) = −β , �2(z) = 0
Inserting γ (x, y, t) = −β into Eqs. (14) brings about

�2(z) = �3(z) = �4(z) = �5(z) = �7(z) = �8(z) = �9(z) = 0 , (21a)

4 motivated by Refs. [54–58]
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�1(z) = �3(z) = �4(z) = �5(z) = �7(z) = �8(z) = 0 . (21b)

Eqs. (13) can turn into

pp′′ + p′2 + q ′′ = 0 , (22a)

p′′′ + p′q + pq ′ = 0 . (22b)

Then we integrate ODE (22a) twice about z, to obtain

q = −1

2
p2 + φ1z + φ2 , (23)

with φ1 and φ2 being two real constants of integration. Integrating ODE (22b) once in
respect of z and considering ODE (23), we can transfer ODEs (22) to a simple ODE,
written as

p′′ − 1

2
p3 + (φ1z + φ2)p + φ3 = 0 , (24)

where φ3 denotes a real constant of integration.
Thus, we derive two sets of the similarity reductions for System (1), i.e.,

u(x, y, t) = − λ3

αλ1
± δλ1 p[z(x, y, t)] , (25a)

v(x, y, t) = −β − δ2λ1λ2

{
1

2
p2[z(x, y, t)] − φ1z − φ2

}
, (25b)

z(x, y, t) = λ1x + λ2y + λ3t + λ4 , (25c)

p′′ − 1

2
p3 + (φ1z + φ2)p + φ3 = 0 . (25d)

ODE (25d) is a known ODE, reported in Ref. [63].

Branch 2: γ (x, y, t) = δ2λ1λ2 − β , �2(z) = 1
When γ (x, y, t) = δ2λ1λ2 − β, we propose to derive

�2(z) = �3(z) = �4(z) = �5(z) = �7(z) = �8(z) = �9(z) = 0 , (26a)

�1(z) = �3(z) = �4(z) = �5(z) = �7(z) = �8(z) = 0 . (26b)

Eqs. (13) are converted into

pp′′ + p′2 + q ′′ = 0 , (27a)

p′′′ + p′ + p′q + pq ′ = 0 . (27b)

Similarly, we integrate ODE (27a) twice about z to find

q = −1

2
p2 + φ4z + φ5 , (28)
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with φ4 and φ5 as two real constants of integration. Integrating ODE (27b) once about
z and considering ODE (28) could develop into

p′′ − 1

2
p3 + (φ4z + φ5 + 1)p + φ6 = 0 , (29)

with φ6 as a real constants of integration.
Thus, we require into another two sets of the similarity reductions for System (1),

i.e.,

u(x, y, t) = − λ3

αλ1
± δλ1 p[z(x, y, t)] , (30a)

v(x, y, t) = δ2λ1λ2 − β − δ2λ1λ2

{
1

2
p2[z(x, y, t)] − φ4z − φ5

}
, (30b)

z(x, y, t) = λ1x + λ2y + λ3t + λ4, (30c)

p′′ − 1

2
p3 + (φ4z + φ5 + 1)p + φ6 = 0 . (30d)

ODE (30d) is a known ODE, reported in Ref. [63].
With respect to the horizontal velocity and the wave elevation above the undis-

turbed water surface, we derive the following theorem about System (1), describing
the nonlinear and dispersive long gravity waves in two horizontal directions in the
shallow water of a wide channel of finite depth or an open sea.

Theorem 3.1 Similarity Reductions (25) and Similarity Reductions (30), both of which
are different from those in Ref. [18], depend on all the constant coefficients in
System (1), i.e., α, β and δ. The reason why there are two sets of Similarity Reduc-
tions (25)/Similarity Reductions (30) is the existence of “±" sign.

4 Discussions

We have noticed that both Similarity Reductions (25) and Similarity Reductions (30)
are different from those in Ref. [18], while both ODE (25d) and ODE (30d) are the
known ODEs. Our results have been shown to depend on α, β and δ, all the constant
coefficients in System (1), and might be of some use in the studies on the nonlinear
and dispersive long gravity waves in two horizontal directions in the shallow water of
a wide channel of finite depth or an open sea.

5 Conclusions

As for a generalized (2+1)-dimensional dispersive long-wave system in respect of the
horizontal velocity and the wave elevation above the undisturbed water surface, i.e.,
System (1), we have obtained the following:
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• Two sets of the bilinear forms, i.e., Bilinear Forms (11), which are the same as
Bilinear Forms (2), but through a different method, i.e., the Hirota method. Thus,
the correctness of Bilinear Forms (2) can be confirmed.

• Four sets of the similarity reductions for System (1), i.e., Similarity Reduc-
tions (25), from System (1) to ODE (25d), and Similarity Reductions (30), from
System (1) to ODE (30d).
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