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Abstract
This article is concerned with the existence of positive ground state solutions for
an asymptotically periodic quasilinear Schrödinger equation. By using a Nehari-type
constraint, we get the existence results which improve the ones in Shi and Chen
(Comput Math Appl 71:849–858, 2016). Moreover, we give an application of our
results, which extends the results in Li (Commun Pure Appl Anal 14:1803–1816,
2015).

Keywords Quasilinear Schrödinger equation · Ground state solutions ·
Asymptotically periodic · Nehari manifold

1 Introduction andMain Result

We are concerned with the existence of solutions for the following generalized quasi-
linear Schrödinger equation

− div( f 2(u)∇u) + f (u) f ′(u)|∇u|2 + V (x)u = g(x, u), x ∈ R
N , (1.1)

where f ∈ C1(R,R+) is even, f ′(s) ≥ 0 for all s ≥ 0, the potential V (x) is positive.
Solutions of (1.1) are related to the solitary wave solutions for quasilinear Schrödinger
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equation of the form

i
∂ψ

∂t
= −�ψ + W (x)ψ − g(x, ψ) − �ρ(|ψ |2)ρ′(|ψ |2)ψ, (1.2)

where W : R
N → R is a given potential, and ρ is a real function. The form of

(1.2) have been derived as models of several physical phenomena corresponding to
various types of ρ(s), see [14, 15, 18] for an explanation. Seeking solutions of the
type stationary waves, namely, the solutions of the form ψ(t, x) = exp(−i Et)u(x),
E ∈ R and u is a real function, equation (1.2) can be reduce to the corresponding
equation of elliptic type

− �u + V (x)u − �ρ(u2)ρ′(u2)u = g(x, u), x ∈ R
N , (1.3)

where V (x) = W (x) − E is the new potential function. If f 2(u) = 1 + [ρ(u2)′]2
2 ,

equation (1.3) turns into equation (1.1) (see [19]).
If we take ρ(s) = s, i.e., f 2(u) = 1 + 2u2, we get the superfluid film equation in

plasma physics

− �u + V (x)u − �(u2)u = g(x, u), x ∈ R
N . (1.4)

If we set ρ(s) = √
1 + s, i.e., f 2(u) = 1 + u2

2(1+u2)
, we get the equation

− �u + V (x)u − u

2
√
1 + u2

�(
√
1 + u2) = g(x, u), x ∈ R

N , (1.5)

which models the self-channeling of a high-power ultrashort laser in matter (see [5]).
Problem (1.4) has been studied by many authors. To the best of our knowledge, the

first existence results for problem (1.4) due to [18], where the authors obtained the
existence results by using a constrained minimization argument. Since then, there are
many results for problem (1.4) depending on the different assumptions on the potential
V , such as radially symmetric potential, coercive potential, periodic potential, and so
on (see [4, 11, 12, 14, 15, 17, 22, 23] and references therein).

The results of problem (1.5) are not too many, one can see references [2, 3, 6, 7, 20]
for details. Under some appropriate assumptions on the nonlinear term, some results
are obtained by different methods, such as a change of variables (see [2, 3, 7, 20]) and
a perturbation method (see [6]). Especially, Chu and Liu in [3] studied problem (1.5)
for the case g(x, u) = μg(u), μ > 0 is a parameter. They proved that (1.5) has at
least a positive solution by using the monotonicity trick and a priori estimate. It is a
little surprising that no condition is assumed on the nonlinear term g(u) near infinity.

We point out that problem (1.4) and (1.5) are special cases in equation (1.1). A
natural question is whether there is a unified method to research equation (1.1) with
general functions f (u)? Fortunately, Shen andWang in [19] have given an affirmative
answer and obtained the existence of positive solution for (1.1) with a general function
f (u). Since then, some results on general equations have appeared, such as [5, 9, 21].
In [5], they found the related critical exponents for equation (1.1) and obtained the
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solitary wave solutions by using a change of variables and the variational argument. In
[9], by employing the minimax theorems, they got the existence results of the positive
solution. Moreover, they gave two applications of their results, which improved the
results in [1]. Reference [21] established the existence of positive solutions for equation
(1.1) with asymptotically periodic potential. The methods they used are the mountain
mass theorem and the concentration compactness principle. In this paper, we will use
the variable replacement in [19] to study equation (1.1) with asymptotically periodic
potential, which is different from that in [21].

Denote G(x, s) := ∫ s
0 g(x, t)dt , we observe that the natural variational functional

J (u) = 1

2

∫

RN
f 2(u)|∇u|2dx + 1

2

∫

RN
V (x)u2dx −

∫

RN
G(x, u)dx,

corresponding to equation (1.1), may be not well defined in the space H1(RN ). To
find a suitable functional space to obtain the critical point corresponding to J (u), we
can use a change of variable constructed by Shen and Wang in [19], as

v := F(u) =
∫ u

0
f (t)dt .

After the change of variable, we get a new variational functional

I (v) = 1

2

∫

RN
(|∇v|2 + V (x)|F−1(v)|2)dx −

∫

RN
G(x, F−1(v))dx .

Then I (v) = J (u) = J (F−1(v)) and I is well defined in H1(RN ), I ∈
C1(H1(RN ),R) (see [5, 19]).

If u is a weak solution of problem (1.1), then it should satisfy

∫

RN

[
f 2(u)∇u · ∇ϕ + f (u) f ′(u)|∇u|2ϕ + V (x)uϕ − g(x, u)ϕ

]
dx = 0, (1.6)

for all ϕ ∈ C∞
0 (RN ). Let ϕ = ψ

f (u)
, then it can be checked (see [19]) that (1.6) is

equivalent to the following equality

〈I ′(v), ψ〉 =
∫

RN

(
∇v · ∇ψ + V (x)

F−1(v)

f (F−1(v))
ψ − g(x, F−1(v))

f (F−1(v))
ψ

)
dx = 0.

(1.7)

Therefore, in order to find the solutions of problem (1.1), it suffices to study the
existence of solutions of the following equation

− �v + V (x)
F−1(v)

f (F−1(v))
= g(x, F−1(v))

f (F−1(v))
, x ∈ R

N . (1.8)
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In the following, we consider the existence of ground state solutions for problem
(1.8) with asymptotically periodic condition. Denote

F0 := {k(x) : ∀ε > 0, lim|y|→∞meas{x ∈ B1(y) : |k(x)| ≥ ε} = 0},
F := {h(x, s) : ∀ε > 0, lim|y|→∞meas{x ∈ B1(y) : |h(x, s)| ≥ ε} = 0

uniformly for |s| bounded}.

Then, we give some assumptions on the function f (t), the potential V (x) and the
nonlinear term g(x, t).

(f) f ∈ C1(R,R+) is even, f ′(t) ≥ 0 for all t ≥ 0, f (0) = 1, limt→+∞ f (t) = a
for some a ≥ 1.

(V) 0 < Vmin ≤ V (x) ≤ V0(x) ∈ L∞(RN ), V (x) − V0(x) ∈ F0, and V0 satisfies
V0(x + z) = V0(x) for all x ∈ R

N and z ∈ Z
N .

The function g ∈ C(RN × R
+,R) satisfies

(g1) limt→0+ g(x,t)
t = 0 uniformly for x ∈ R

N .

(g2) limt→∞ g(x,t)
t2∗−1 = 0 uniformly for x ∈ R

N .

(g3) t �→ g(x,t)
f (t)F(t) is nondecreasing on (0,+∞).

(g4) there exists g0 ∈ C(RN × R
+,R+) such that

(1) g(x, t) ≥ g0(x, t) for all (x, t) ∈ R
N × R

+ and g(x, t) − g0(x, t) ∈ F .
(2) g0(x + z, t) = g0(x, t) for all (x, t) ∈ R

N × R
+ and z ∈ Z

N .
(3) t �→ g0(x,t)

f (t)F(t) is nondecreasing on (0,+∞).

(4) limt→∞ G0(x,t)
t2

= +∞ uniformly for x ∈ R
N .

Because we are searching for the positive solution, we can assume that g(x, t) =
g0(x, t) = 0 for all (x, t) ∈ R

N × R
−. Now we state our main results.

Theorem 1.1 Suppose that conditions (f), (V) and (g1)− (g4) are satisfied, then prob-
lem (1.1) possesses a positive ground state solution.

In the particular case: V (x) = V0(x), g(x, t) = g0(x, t), we can get a solution for
the periodic problem from Theorem 1.1. That is, considering the problem

− div( f 2(u)∇u) + f (u) f ′(u)|∇u|2 + V0(x)u = g0(x, u), x ∈ R
N , (1.9)

under the hypothesis:
(V0) the function V0(x) satisfies 0 < infx∈RN V0(x) ≤ V0(x) ∈ L∞(RN ) and

V0(x + z) = V0(x) for all x ∈ R
N and z ∈ Z

N .
We can obtain the existence result for the periodic problem.

Corollary 1.2 Suppose that (f) and (V0) hold, g0(x, t) = g(x, t) satisfies (g1) − (g4).
Then equation (1.9) possesses a positive ground state solution.

Remark 1.3 As far as we know, there are no other results concerning problem (1.1)
where the potential V (x) is asymptotically periodic except reference [21]. Here, we
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consider a new reformative condition which unify the asymptotic processes of V , g at
infinity, which meansF andF0 contain more elements than those in [21]. Moreover,
in [21] the authors obtained the existence of nontrivial solutions for problem (1.1) by
using the mountain pass theorem. Here, with the aid of a Nehari-type constraint, we
consider the ground state solution, which has great physical interests.

Remark 1.4 To the best of our knowledge, even for the periodic case, our result for
problem (1.1) is new. In [10], Li et al. studied the existence of infinitely many geo-
metrically distinct solutions for problem (1.1). Our result is different from the result
there.

Now, we give an application of Theorem 1.1.
For f 2(u) = 1+ u2

2(1+u2)
, by a direct calculation, we know f (u) satisfies condition

(f) with a =
√

3
2 , we can get the following results directly.

Theorem 1.5 Suppose that conditions (V) and (g1) − (g4) are satisfied, then problem
(1.5) possesses a positive ground state solution.

As a by-product of our calculations we can obtain a weak solution for the periodic
problem.

Corollary 1.6 Suppose that (V0) holds, g0(x, t) = g(x, t) satisfies (g1) − (g4). Then
equation

−�u + V0(x)u − u

2
√
1 + u2

�(
√
1 + u2) = g0(x, u), x ∈ R

N ,

possesses a positive ground state solution.

Remark 1.7 It is worth pointing out that there is no result for equation (1.5) when the
potential is asymptotically periodic. For the periodic potential, there are references [7,
8], they discussed the following equation

− �u + V0(x)u − [�(1 + u2)α/2] αu

2(1 + u2)(2−α)/2
= g0(x, u), (1.10)

where α is a parameter. Jalilian [7] considered equation (1.10) with 1.36 < α ≤ 2 and
proved that (1.10) had infinitely many geometrically distinct solutions. Li [8] proved
the existence of a ground state solution for equation (1.10) with 1 ≤ α ≤ 2 if g0
satisfies some conditions and

(g5) g(x, t) := 1
4α g0(x, t)t − G0(x, t) > 0, |g0(x, t)|σ ≤ a1g(x, t)|t |σ , for some

a1 > 0, σ > max{1, α − 1} and for all (x, t) ∈ R
N × R with t large enough.

In fact, (g5) plays a crucial role in getting a bounded (PS) sequence. Here, we do
not need such condition. Even for the periodic case for equation (1.5), our result is
also new.

Notation: In this paper, we use the following notations.
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• H1(RN ) is the usual Hilbert space endowed with the norm

‖u‖2H =
∫

RN

(
|∇u|2 + u2

)
dx .

• Ls(RN ) is the usual Banach space endowed with the norm

‖u‖ss =
∫

RN
|u|sdx, ∀s ∈ [1,+∞).

• ‖u‖∞ = ess supx∈RN |u(x)| denotes the usual norm in L∞(RN ).

• E = {u ∈ H1(RN ) : ∫
RN V (x)u2dx < ∞} is endowed with the norm

‖u‖2 =
∫

RN

(
|∇u|2 + V (x)u2

)
dx .

• Br (y) := {x ∈ R
N : |x − y| < r}.

• u+ = max{u, 0}, u− = max{−u, 0}.
• |
| denote the Lebesgue measure of the set 
.
• C,C1,C2, · · · denote various positive (possibly different) constants.

2 Some Preliminary Results

Lemma 2.1 The functions f (t), F(t), g(x, t),G(x, t) enjoy the following properties
under the assumptions (f) and (g3).

(1) F(t) is uniquely defined and invertible, F(t) and F−1(t) are odd;
(2) f ′(t)t

f (t) ≥ 0 for all t ∈ R;

(3) 1 ≤ f (t) ≤ a and t
a ≤ F−1(t) ≤ t for all t ≥ 0;

(4) F−1(t)
t → 1 as t → 0;

(5) F−1(t)
t → 1

a as t → ∞;

(6) g(x,t)F(t)
f (t) − 2G(x, t) ≥ 0 for all t ≥ 0;

(7) The function t
f (t)F(t) is strictly decreasing for all t ≥ 0.

Proof The proof of the items (1) and (2) follow from the definition of F and the
assumption (f) directly.

(3) By the mean value theorem, we know

F(t) =
∫ t

0
f (s)ds = f (ξ)t,

for some ξ ∈ [0, t]. Note that, f is nondecreasing and F(t) is increasing, then

t = f (0)t ≤ F(t) = f (ξ)t ≤ at,
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so that t
a ≤ F−1(t) ≤ t .

The items (4) and (5) can be obtained by the L′Hospital rule immediately.
(6) Let L(x, t) := g(x,t)F(t)

f (t) − 2G(x, t), by the condition (g3), one has

∂

∂t
L(x, t) = F2(t)

∂

∂t

{
g(x, t)

f (t)F(t)

}
≥ 0,

when t ≥ 0.Then, L(x, t) is non-decreasing in (0,+∞). Hence, L(x, t) = g(x,t)F(t)
f (t) −

2G(x, t) ≥ L(x, 0) = 0 for all t ≥ 0.
(7) Let l(t) = t

f (t)F(t) . Since f (t) is nondecreasing in (0,+∞), one has

0 ≤ F(t) =
∫ t

0
f (s)ds ≤ t f (t). (2.1)

Then using item (2) and (2.1), we obtain

l ′(t) = F(t) − t f (t) − f ′(t)t
f (t) F(t)

f (t)F2(t)
≤ F(t) − t f (t)

f (t)F2(t)
≤ 0.

The above inequality proves item (7). ��
Lemma 2.2 ([13]) Suppose that condition (V) holds. Then there are two positive con-
stants d1 and d2 such that d1‖u‖2H ≤ ‖u‖2 ≤ d2‖u‖2H for all u ∈ E.

Remark 2.3 From the above Lemma 2.2 and the Sobolev embedding, we get that the
embedding E ↪→ Lα(RN ) is continuous for any α ∈ [2, 2∗].
Lemma 2.4 Assume that (f), (V), (g1)−(g4) hold. If {un} is bounded in E and un → 0
in Lα

loc(R
N ) for α ∈ [2, 2∗), one has

An1 :=
∫

RN

(
V (x) − V0(x)

)
|F−1(un)|2dx = on(1). (2.2)

An2 :=
∫

RN

[
G(x, F−1(un)) − G0(x, F

−1(un))

]
dx = on(1). (2.3)

Proof Firstly, we give some useful inequalities which can be deduced by conditions
(g1), (g2), (g4) directly. For any δ > 0, there exist rδ > 0, Cδ > 0 and α ∈ (2, 2∗)
such that

0 ≤ g0(x, t) ≤ g(x, t) ≤ δ|t |, ∀(x, t) ∈ R
N × [−rδ, rδ], (2.4)

0 ≤ g0(x, t) ≤ g(x, t) ≤ δ|t | + Cδ|t |2∗−1, ∀(x, t) ∈ R
N × R, (2.5)

0 ≤ g0(x, t) ≤ g(x, t) ≤ Cδ|t | + δ|t |2∗−1, ∀(x, t) ∈ R
N × R, (2.6)

0 ≤ g0(x, t) ≤ g(x, t) ≤ δ(|t | + |t |2∗−1) + Cδ|t |α−1, ∀(x, t) ∈ R
N × R,

(2.7)
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(i) The proof of (2.2).
When k(x) ∈ F0, for any ε > 0, there exists Rε > 0 such that

∫

|k(x)|≥ε

u2dx ≤ C0

∫

BRε+1(0)
u2dx + C1ε

2/N‖u‖2H , ∀u ∈ E, (2.8)

whereC0,C1 are positive constants and independent on ε. Inequality (2.8) has already
been proved in [13], we omit it here.

Let k(x) := V (x) − V0(x) ∈ F0, then, |k(x)| ≤ 2|V0(x)| ≤ 2‖V0‖∞, by using
Lemma 2.1-(3) and (2.8), we have

|An1| ≤
∫

RN
|k(x)||F−1(un)|2dx ≤

∫

RN
|k(x)u2n|dx

=
∫

|k(x)|≥ε

|k(x)u2n|dx +
∫

|k(x)|<ε

|k(x)u2n|dx

≤ 2‖V0‖∞

[

C0

∫

BRε+1(0)
u2ndx + C1ε

2
N ‖un‖2H

]

+ ε

∫

RN
|un|2dx

= on(1) + C2ε
2
N + C3ε.

Let ε → 0, (2.2) is proved.
(ii)The proof of (2.3).
Set h(x, s) := g(x, s) − g0(x, s) ∈ F . For any ε > 0, there is Rε > 0 such that

meas{x ∈ B1(y) : |h(x, s)| ≥ ε} < ε, ∀|y| ≥ Rε, |s| ≤ 1/ε.

CoveringRN by balls B1(yi ), i ∈ N, in such a way that each point ofRN is contained
in at most N+1 balls (see [24]).Without loss of generality, we suppose that |yi | < Rε ,
i = 1, 2, · · · , nε and |yi | ≥ Rε , i = nε + 1, nε + 2, · · · ,+∞. By the mean value
theorem, there exists tn ∈ [0, 1] such that

G(x, F−1(un)) − G0(x, F
−1(un)) = [g(x, tn F−1(un)) − g0(x, tn F

−1(un))]F−1(un).

Set


1 := {x ∈ B1(yi ) : |h(x, tn F
−1(un))| < ε},


2 := {x ∈ B1(yi ) : |tn F−1(un)| ≤ 1/ε, |h(x, tn F
−1(un))| ≥ ε},


3 := {x ∈ B1(yi ) : |tn F−1(un)| > 1/ε, |h(x, tn F
−1(un))| ≥ ε}.

Then we have

|An2| ≤
∫

RN
|[g(x, tn F−1(un)) − g0(x, tn F

−1(un))]F−1(un)|dx

=
∫

RN
|h(x, tn F

−1(un))F
−1(un)|dx
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≤
nε∑

i=1

∫

B1(yi )
|h(x, tn F

−1(un))F
−1(un)|dx

+
+∞∑

i=nε+1

∫

B1(yi )
|h(x, tn F

−1(un))F
−1(un)|dx

=
nε∑

i=1

∫

B1(yi )
|h(x, tn F

−1(un))F
−1(un)|dx

+
+∞∑

i=nε+1

∫


1
|h(x, tn F

−1(un))F
−1(un)|dx

+
+∞∑

i=nε+1

∫


2
|h(x, tn F

−1(un))F
−1(un)|dx

+
+∞∑

i=nε+1

∫


3
|h(x, tn F

−1(un))F
−1(un)|dx

:= I1 + I2 + I3 + I4.

It follows from (2.6) and Lemma 2.1-(3) that

I1 ≤ (N + 1)
∫

BRε+1(0)
|h(x, tn F

−1(un))F
−1(un)|dx

≤ (N + 1)
∫

BRε+1(0)
2
[
Cδ|tn F−1(un)| + δ|tn F−1(un)|2∗−1]|F−1(un)|dx

≤ 2(N + 1)Cδ

∫

BRε+1(0)
|un|2dx + 2(N + 1)δ

∫

BRε+1(0)
|un|2∗

dx

= on(1) + C4δ

Let


11 := {x ∈ B1(yi ) : |h(x, tn F
−1(un))| < ε, |tn F−1(un)| ≤ rδ},


12 := {x ∈ B1(yi ) : |h(x, tn F
−1(un))| < ε, |tn F−1(un)| > rδ}.

By using (2.4) and Lemma 2.1-(3), we obtain

I2 =
+∞∑

i=nε+1

∫


11
|h(x, tn F

−1(un))F
−1(un)|dx

+
+∞∑

i=nε+1

∫


12
|h(x, tn F

−1(un))F
−1(un)|dx
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≤
+∞∑

i=nε+1

∫


11
2δ|tn F−1(un)F

−1(un)|dx +
+∞∑

i=nε+1

∫


12

ε

rδ
|F−1(un)|2dx

≤ 2δ
+∞∑

i=nε+1

∫


11
|un|2dx + ε

rδ

+∞∑

i=nε+1

∫


12
|un|2dx

≤ 2(N + 1)δ
∫

RN
|un|2dx + (N + 1)ε

rδ

∫

RN
|un|2dx

≤ C5δ + C6ε.

It follows from (2.6), Lemma 2.1-(3), the Hölder and Sobolev inequalities that

I3 ≤
+∞∑

i=nε+1

∫


2
2

[
Cδ|F−1(un)|2 + δ|F−1(un)|2∗

]
dx

≤
+∞∑

i=nε+1

[
2Cδ

∫


2
|un|2dx + 2δ

∫


2
|un|2∗

dx

]

≤ 2Cδ

+∞∑

i=nε+1

|
2| 2
N

( ∫


2
|un|2∗

dx

) N−2
N + 2(N + 1)δ

∫

RN
|un|2∗

dx

≤ 2Cδε
2
N

+∞∑

i=nε+1

C
∫


2
(|∇un|2 + |un|2)dx + C7δ

≤ 2Cδε
2
N (N + 1)C

∫

RN
(|∇un|2 + |un|2)dx + C7δ

= C8ε
2
N + C7δ.

Thanks to (2.7) and Lemma 2.1-(3) that

I4 ≤
+∞∑

i=nε+1

∫


3
2

[
δ|F−1(un)|2 + δ|F−1(un)|2∗ + Cδ|F−1(un)|α

]
dx

≤
+∞∑

i=nε+1

∫


3
2

[
δ|un|2 + δ|un|2∗ + Cδ|un|α

]
dx

≤ 2δ(N + 1)
∫

RN
(|un|2 + |un|2∗

)dx + 2Cδε
2∗−α

+∞∑

i=nε+1

∫


3
|un|2∗

dx

≤ C9δ + C10ε
2∗−α.

Hence we have

|An2| ≤ on(1) + C4δ + C5δ + C6ε + C8ε
2
N + C7δ + C9δ + C10ε

2∗−α.
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Let ε → 0 and then δ → 0, we complete the proof of (2.3). ��
Lemma 2.5 Assume that (f), (V), (g1), (g2) and (1) of (g4) hold, {un} ⊂ E is bounded,
|zn| → +∞. Then for any ϕ ∈ C∞

0 (RN ), one has

Bn1 :=
∫

RN
(V (x) − V0(x))

F−1(un)

f (F−1(un))
ϕ(x − zn)dx = on(1) (2.9)

Bn2 :=
∫

RN
[g(x, F−1(un)) − g0(x, F

−1(un))] ϕ(x − zn)

f (F−1(un))
dx = on(1)

(2.10)

Proof (i) The proof of (2.9).
Since ϕ ∈ C∞

0 (RN ), we get that

∫

BRε+1(0)
|ϕ(x − zn)|2dx = on(1). (2.11)

Let k(x) := V (x) − V0(x) ∈ F0, by using Lemma 2.1-(3), (2.8), (2.11) and the
Hölder inequality, we have

|Bn1| ≤
∫

|k|≥ε

|k(x)F
−1(un)

f (F−1(un))
ϕ(x − zn)|dx +

∫

|k|<ε

|k(x)F
−1(un)

f (F−1(un))
ϕ(x − zn)|dx

≤ 2‖V0‖∞
∫

|k|≥ε

|unϕ(x − zn)|dx + ε

∫

|k|<ε

|unϕ(x − zn)|dx

≤ 2‖V0‖∞‖un‖2
( ∫

|k|≥ε

|ϕ(x − zn)|2dx
)1/2

+ ε‖un‖2‖ϕ‖2

≤ C11

(
C0

∫

BRε+1(0)
|ϕ(x − zn)|2dx + C1ε

2/N‖ϕ‖2H
)1/2

+ C12ε

= on(1) + C13ε
1/N + C12ε.

Let ε → 0, (2.9) is proved.
(ii)The proof of (2.10).
Set h(x, s) := g(x, s) − g0(x, s) ∈ F . As the proof of Lemma 2.4, we can cover

R
N by balls B1(yi ). Let


4 := {x ∈ B1(yi ) : |h(x, F−1(un))| < ε},

5 := {x ∈ B1(yi ) : |F−1(un)| ≤ 1/ε, |h(x, F−1(un))| ≥ ε},

6 := {x ∈ B1(yi ) : |F−1(un)| > 1/ε, |h(x, F−1(un))| ≥ ε}.

Then, one has

|Bn2| ≤
∫

RN
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx
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≤
nε∑

i=1

∫

B1(yi )
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

+
+∞∑

i=nε+1

∫

B1(yi )
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

=
nε∑

i=1

∫

B1(yi )
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

+
+∞∑

i=nε+1

∫


4
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

+
+∞∑

i=nε+1

∫


5
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

+
+∞∑

i=nε+1

∫


6
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

:= I5 + I6 + I7 + I8.

It follows from (2.6), Lemma 2.1-(3), (2.11) and the Hölder inequality that

I5 ≤ (N + 1)
∫

BRε+1(0)
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

≤ (N + 1)
∫

BRε+1(0)
2

[
Cδ|F−1(un)| + δ|F−1(un)|2∗−1

]
| ϕ(x − zn)

f (F−1(un))
|dx

≤ 2(N + 1)

[
Cδ

∫

BRε+1(0)
|unϕ(x − zn)|dx + δ

∫

BRε+1(0)
|un|2∗−1|ϕ(x − zn)|dx

]

≤ 2(N + 1)

[
Cδ‖un‖2

(∫

BRε+1(0)
|ϕ(x − zn)|2dx

)1/2

+ δ‖un‖2∗−1
2∗ ‖ϕ‖2∗

]

= on(1) + C14δ.

Thanks to Lemma 2.1-(3), we obtain

I6 =
+∞∑

i=nε+1

∫


4
|h(x, F−1(un))

ϕ(x − zn)

f (F−1(un))
|dx

≤ ε(N + 1)
∫

RN
|ϕ(x − zn)|dx

= C15ε.
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It follows from (2.6), Lemma 2.1-(3) and the Hölder, Young and Sobolev inequalities
that

I7 ≤
+∞∑

i=nε+1

∫


5
2

[
Cδ|F−1(un)| + δ|F−1(un)|2∗−1

]
| ϕ(x − zn)

f (F−1(un))
|dx

≤
+∞∑

i=nε+1

∫


5
2Cδ|unϕ(x − zn)|dx +

+∞∑

i=nε+1

∫


5
2δ|un|2∗−1|ϕ(x − zn)|dx

≤ 2Cδ

+∞∑

i=nε+1

|
5| 2
N

( ∫


5
|unϕ(x − zn)| N

N−2 dx

) N−2
N + 2(N + 1)δ‖un‖2∗−1

2∗ ‖ϕ‖2∗

≤ 2Cδε
2
N

+∞∑

i=nε+1

( ∫


5
(
|un|2∗

2
+ |ϕ(x − zn)|2∗

2
)dx

) N−2
N + C16δ

≤ 2Cδε
2
N

+∞∑

i=nε+1

2
N−2
N

[(
1

2

∫


5
|un|2∗

dx

) N−2
N

+
(
1

2

∫


5
|ϕ(x − zn)|2∗

dx

) N−2
N

]
+ C16δ

≤ 2Cδε
2
N (N + 1)C

[ ∫

RN
(|∇un|2 + |un|2)dx

+
∫

RN
(|∇ϕ(x − zn)|2 + |ϕ(x − zn)|2)dx

]
+ C16δ

= C17ε
2
N + C16δ.

By using (2.7), Lemma 2.1-(3) and the Hölder inequality, one has

I8 ≤
+∞∑

i=nε+1

∫


6
2

[
δ|F−1(un)| + δ|F−1(un)|2∗−1 + Cδ|F−1(un)|α−1

]
| ϕ(x − zn)

f (F−1(un))
|dx

≤
+∞∑

i=nε+1

∫


6
2

[
δ|un| + δ|un|2∗−1 + Cδ|un|α−1

]
|ϕ(x − zn)|dx

≤ 2δ(N + 1)

( ∫

RN
|unϕ(x − zn)|dx +

∫

RN
|un|2∗ |ϕ(x − zn)|dx

)

+2Cδε
2∗−α

+∞∑

i=nε+1

∫


6
|un|2∗−1|ϕ(x − zn)|dx

≤ 2δ(N + 1)

(
‖un‖2‖ϕ‖2 + ‖un‖2∗−1

2∗ ‖ϕ‖2∗
)

+ 2Cδε
2∗−α‖un‖2∗−1

2∗ ‖ϕ‖2∗

= C18δ + C19ε
2∗−α.
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Hence we obtain

|Bn2| ≤ on(1) + C14δ + C15ε + C17ε
2
N + C16δ + C18δ + C19ε

2∗−α.

Let ε → 0 and then δ → 0, we complete the proof. ��

3 Proof of Theorem 1.1

Define

N = {u ∈ E : 〈I ′(u), u〉 = 0, u �= 0}, N0 = {u ∈ E : 〈I ′
0(u), u〉 = 0, u �= 0},

c = inf
u∈N

I (u), c0 = inf
u∈N0

I0(u),

where

I (u) = 1

2

∫

RN

[
|∇u|2 + V (x)|F−1(u)|2

]
dx −

∫

RN
G(x, F−1(u))dx,

I0(u) = 1

2

∫

RN

[
|∇u|2 + V0(x)|F−1(u)|2

]
dx −

∫

RN
G0(x, F

−1(u))dx .

Lemma 3.1 Suppose that conditions (f), (V) and (g1) − (g4) hold, then for each u ∈
E, u �= 0, there is a unique tu > 0 such that tuu ∈ N . Moreover, the maximum of
I (tu) for t ≥ 0 is achieved at tu .

Proof By the inequality (2.5), Lemma 2.1-(3), one has

G(x, F−1(tu)) ≤ δ

2
|F−1(tu)|2 + Cδ

2∗ |F−1(tu)|2∗ ≤ δ

2
t2u2 + Cδ

2∗ t
2∗
u2

∗
. (3.1)

It follows from Lemma 2.1-(3), (3.1) and the Sobolev inequality and Lemma 2.2 that

h(t) = I (tu) = 1

2

∫

RN

[
|∇(tu)|2 + V (x)|F−1(tu)|2

]
dx −

∫

RN
G(x, F−1(tu))dx

≥ t2

2

∫

RN
|∇u|2dx + t2

2a2

∫

RN
V (x)u2dx − t2δ

2

∫

RN
u2dx − t2

∗
Cδ

2∗

∫

RN
u2

∗
dx

≥ t2

2a2
‖u‖2 − t2δ

2
C1‖u‖2 − t2

∗
C2‖u‖2∗

,

for some positive constants C1,C2. We choose δ > 0 small enough, such that 1
2a2

−
δ
2C1 > 0. Therefore, we can get h(t) > 0 whenever t > 0 is small enough.

By Lemma 2.1-(3) and G(x, s) ≥ G0(x, s), we have

h(t)

t2
≤ 1

2

∫

RN
|∇u|2dx + 1

2

∫

RN
V (x)u2dx −

∫

RN
G0(x, F

−1(tu))dx
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≤ 1

2
‖u‖2 −

∫

u �=0

G0(x, F−1(tu))

|F−1(tu)|2 · |F−1(tu)|2
(tu)2

· u2dx

Thanks to (4) of (g4) and Lemma 2.1-(5), we can deduce that the last integral on the
right-hand side above tends to infinity with t . Hence, h(t) → −∞ as t → ∞ and h
has a positive maximum.

The condition h′(t) = 0 is equivalent to

∫

RN
|∇u|2dx =

∫

u �=0

[
g(x, F−1(tu))

tu f (F−1(tu))
− V (x)F−1(tu)

f (F−1(tu))tu

]
u2dx .

Let

Z(s) := g(x, s)

f (s)F(s)
− V (x)s

f (s)F(s)
.

By (g3) and Lemma 2.1-(7), s �→ Z(s) is strictly increasing for s > 0, so there
is a unique tu > 0 such that h′(tu) = 0. The conclusion is true since h′(t) =
t−1〈I ′(tu), tu〉. ��

As the argument in [24] (Theorem 4.2), we obtain the following lemma.

Lemma 3.2 Suppose that (f), (V) hold, g satisfies (g1) − (g4), then

c = inf
u∈N

I (u) = inf
u∈E max

t>0
I (tu) = inf

γ∈�
max
t∈[0,1] I (γ (t)),

where � = {γ ∈ C([0, 1], E) : γ (0) = 0, I (γ (t)) < 0}.
Remark 3.3 The conclusions of Lemmas 3.1 and 3.2 are also suitable for the periodic
functional I0.

Next, we will give the boundedness of the Cerami sequences.

Lemma 3.4 Suppose that (f), (V) and (g1) − (g4) hold. Let {un} ⊂ E be a (C)c
sequence for the functional I . Then {un} is bounded in E .

Proof Suppose by contradiction that {un} ⊂ E be a sequence such that ‖un‖ → ∞,
I (un) → c and (1+ ‖un‖)‖I ′(un)‖ → 0. Set vn := un‖un‖ , then, there is a v ∈ E such

that vn⇀v in E , vn → v in L2
loc(R

N ) and vn(x) → v(x) a.e. in R
N . If v �= 0, let


∗ = {x ∈ R
N : v(x) > 0}, then |
∗| > 0. For a.e. x ∈ 
∗, one has

un(x) → +∞ as ‖un‖ → +∞,

since vn(x) = un(x)‖un‖ → v(x) > 0 for a.e. x ∈ 
∗, from Lemma 2.1-(5) and the fact

that F−1(t) is strictly increasing, we can deduce that for a.e. x ∈ 
∗,

F−1(un) → +∞ as ‖un‖ → +∞.
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It follows from Lemma 2.1-(3)(5) and (g4) − (1)(4) that

0 = lim sup
n→∞

I (un)

‖un‖2

≤ lim sup
n→∞

1
2‖un‖2 − ∫

RN G0(x, F−1(un))dx

‖un‖2

= 1

2
− lim inf

n→∞

∫

∗ G0(x, F−1(un))dx

‖un‖2

= 1

2
− lim inf

n→∞

∫


∗

G0(x, F−1(un))

|F−1(un)|2 · |F−1(un)|2
u2n

· v2ndx

= −∞.

A contradiction, thus v = 0. Define

β := lim sup
n→∞

sup
z∈RN

∫

B1(z)
v2ndx .

If β = 0, by the Lions lemma [24] (Lemma 1.21), we get vn → 0 in Lα(RN ) for
α ∈ (2, 2∗). It follows from (2.7) and Lemma 2.1-(3) that

∫

RN
G(x, F−1(tvn))dx ≤ δ

2

∫

RN
|F−1(tvn)|2dx + δ

2∗

∫

RN
|F−1(tvn)|2∗

dx

+Cδ

α

∫

RN
|F−1(tvn)|αdx ≤ δ

2
t2

∫

RN
|vn|2dx

+ δ

2∗ t
2∗

∫

RN
|vn|2∗

dx + Cδ

α
tα

∫

RN
|vn|αdx

= on(1)(δ → 0).

Especially, set t = 4
√
c, we obtain

∫

RN
G(x, F−1(4

√
cvn))dx = on(1). (3.2)

By Lemma 2.1-(4), one has F−1(4
√
cvn) → 4

√
cvn , since 4

√
cvn → 0 a.e. in R

N .
Then, we can deduce that

∫

RN
V (x)

[
(4

√
cvn)

2 − F−1(4
√
cvn)

2
]
dx = on(1). (3.3)

Setting

k(x, s) = g(x, F−1(s))

f (F−1(s))
− V (x)

F−1(s)

f (F−1(s))
+ V (x)s,
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and

K (x, s) :=
∫ s

0
k(x, t)dt = G(x, F−1(s)) − 1

2
V (x)|F−1(s)|2 + 1

2
V (x)s2.

Then, thanks to (3.2) and (3.3), we can obtain that

∫

RN
K (x, 4

√
cvn)dx =

∫

RN
G(x, F−1(4

√
cvn))dx

+1

2

∫

RN
V (x)

[
(4

√
cvn)

2 − F−1(4
√
cvn)

2
]
dx = on(1).

By the continuity of I , there exists tn ∈ [0, 1] such that I (tnun) = max0≤t≤1 I (tun).

Since ‖un‖ → ∞, we have 4
√
c

‖un‖ ≤ 1 when n is large enough. Hence, one has

I (tnun) + on(1) ≥ I

(
4
√
c

‖un‖un
)

+ on(1) = I (4
√
cvn) + on(1)

= 8c‖vn‖2 −
∫

RN
K (x, 4

√
cvn)dx + on(1)

= 8c.

Note that I (un) → c, so 0 < tn < 1 and 〈I ′(tnun), tnun〉 = 0 when n is large enough.
By (g3) and Lemma 2.1-(7), the function

k(x, s)

s
= g(x, F−1(s))

f (F−1(s))s
− V (x)

F−1(s)

f (F−1(s))s
+ V (x)

is strictly increasing for s > 0. Since {un} is a Cerami sequence of I and the Mono-
tonicity of k(x,s)

s , we can conclude

c = I (un) + on(1)

= I (un) − 1

2
〈I ′(un), un〉 + on(1)

=
∫

RN

(
1

2
k(x, un)un − K (x, un)

)
dx + on(1)

≥
∫

RN

(
1

2
k(x, tnun)tnun − K (x, tnun)

)
dx + on(1)

= I (tnun) − 1

2
〈I ′(tnun), tnun〉 + on(1)

= I (tnun) + on(1)

≥ 8c,

which is a contradiction.
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If β > 0, by the definition of β, there is zn ∈ R
N such that

β

2
<

∫

B1(zn)
v2ndx .

If zn is bounded, there exists R > 0 such that

β

2
<

∫

BR(0)
v2ndx,

which is a contradiction with vn → 0 in L2
loc(R

N ).

If zn is unbounded, up to a subsequence, |zn| → ∞. Let wn(x) := vn(x + zn) =
un(x+zn)‖un‖ , we have

β

2
<

∫

B1(0)
w2
ndx . (3.4)

There is a functionw ∈ E such thatwn⇀w in E ,wn → w in L2
loc(R

N ) andwn(x) →
w(x) a.e. in R

N . Moreover, by (3.4), one has w(x) �= 0. Define 
∗∗ = {x ∈ R
N :

w(x) > 0}, then |
∗∗| > 0 and for a.e. x ∈ 
∗∗, we have

un(x) → +∞ as ‖un‖ → +∞.

Since F−1(t) is strictly increasing for t ≥ 0, by Lemma 2.1-(5), we can conclude that
for a.e. x ∈ 
∗∗,

F−1(un) → +∞ as ‖un‖ → +∞.

Then, one has

lim inf
n→∞

∫
RN G(x, F−1(un))dx

‖un‖2

≥ lim inf
n→∞

∫
RN G0(x + zn, F−1(un(x + zn)))dx

‖un‖2

≥ lim inf
n→∞

∫


∗∗

G0(x + zn, F−1(un(x + zn)))

|F−1(un(x + zn))|2
|F−1(un(x + zn))|2

(un(x + zn))2
w2
ndx

= +∞.

Hence

0 = lim sup
n→∞

I (un)

‖un‖2
≤ 1

2
− lim inf

n→∞
1

‖un‖2
∫

RN
G(x, F−1(un))dx
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= −∞,

this contradiction finished the proof. ��

Lemma 3.5 Suppose that conditions (f), (V) and (g1) − (g4) are satisfied. If u ∈ N
and I (u) = c, then u is a ground state solution of problem (1.1) (see [13, 16]).

Proof of Theorem 1.1. From Lemma 3.1, we see that I satisfies the mountain
pass geometry. Then, we can get a Cerami sequence on level c, where c =
infγ∈� maxt∈[0,1] I (γ (t)). We invoke Lemma 3.2 to get c = infu∈N I (u). Applying
Lemma 3.4, the (C)c sequence is bounded. Then, we may get, up to a subsequence,
un⇀u in E , un → u in L2

loc(R
N ) and un(x) → u(x) a.e. in R

N . By using the
Lebesgue dominated convergence theorem, through the standard discussion, we can
get that

0 = 〈I ′(un), φ〉 + on(1) = 〈I ′(u), φ〉,

for any φ ∈ C∞
0 (RN ), i.e. u is a weak solution of problem (1.1).

(i) The case u �= 0. Since u is a weak solution of problem (1.1), I (u) ≥ c. By
Lemma 2.1-(6), (2.1) and the Fatou lemma, one has

c = lim inf
n→∞

(
I (un) − 1

2
〈I ′(un), un〉

)

= lim inf
n→∞

[
1

2

∫

RN
V (x)

[
|F−1(un)|2 − F−1(un)

f (F−1(un))
un

]
dx

+
∫

RN

(
g(x, F−1(un))

2 f (F−1(un))
un − G(x, F−1(un))

)
dx

]

≥ 1

2

∫

RN
V (x)

[
|F−1(u)|2 − F−1(u)

f (F−1(u))
u

]
dx

+
∫

RN

(
g(x, F−1(u))

2 f (F−1(u))
u − G(x, F−1(u))

)
dx

= I (u) − 1

2
〈I ′(u), u〉

= I (u).

Hence, I (u) = c and I ′(u) = 0, which implies that u is a ground state solution of
problem (1.1).

(ii) The case u = 0. Define

β := lim sup
n→∞

sup
z∈RN

∫

B1(z)
u2ndx .
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If β = 0, by the Lions lemma [24] (Lemma 1.21), we get un → 0 in Lα(RN ) for
α ∈ (2, 2∗). It is implied by (2.1) and condition (f) that

0 ≤ t2 − t F(t)

f (t)
→ 0(t → 0). (3.5)

Combining (3.5) with (2.7) and Lemma 2.1-(3), we obtain

c = I (un) − 1

2
〈I ′(un), un〉 + on(1)

= 1

2

∫

RN
V (x)

[
|F−1(un)|2 − F−1(un)

f (F−1(un))
un

]
dx +

∫

RN

1

2

g(x, F−1(un))

f (F−1(un))
undx

−
∫

RN
G(x, F−1(un))dx

≤ on(1) + 1

2

∫

RN

[
δ|F−1(un)| + δ|F−1(un)|2∗−1 + Cδ|F−1(un)|α−1

]
undx

≤ on(1) + δ

2

∫

RN
|un|2dx + δ

2

∫

RN
|un|2∗

dx + Cδ

2

∫

RN
|un|αdx

= on(1) + C20δ

→ 0(δ → 0).

A contradiction, thus β > 0. By the definition of β, up to a subsequence, there exist
R > 0 and zn ∈ Z

N such that

∫

BR(0)
u2n(x + zn)dx =

∫

BR(zn)
u2n(x)dx >

β

2
.

If zn is bounded, there is R′ > 0 such that

∫

BR′ (0)
u2ndx ≥

∫

BR(zn)
u2ndx >

β

2
,

which contradicts with un → u = 0 in L2
loc(R

N ). Thus, zn is unbounded, going if
necessary to a subsequence, |zn| → ∞. Let wn(x) := un(x + zn), then there exists a
functionw ∈ E\{0} such thatwn⇀w in E ,wn → w in L2

loc(R
N ) andwn(x) → w(x)

a.e. in RN .
It follows from (2.9) and (2.10) that, for any ϕ ∈ C∞

0 (RN ),

0 = 〈I ′(un), ϕ(x − zn)〉 + on(1)

=
∫

RN
∇un · ∇ϕ(x − zn)dx +

∫

RN
V (x)

F−1(un)

f (F−1(un))
ϕ(x − zn)dx

−
∫

RN

g(x, F−1(un))

f (F−1(un))
ϕ(x − zn)dx + on(1)
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=
∫

RN
∇un · ∇ϕ(x − zn)dx +

∫

RN
V0(x)

F−1(un)

f (F−1(un))
ϕ(x − zn)dx

−
∫

RN

g0(x, F−1(un))

f (F−1(un))
ϕ(x − zn)dx + on(1)

=
∫

RN
∇wn · ∇ϕdx +

∫

RN
V0(x)

F−1(wn)

f (F−1(wn))
ϕdx

−
∫

RN

g0(x, F−1(wn))

f (F−1(wn))
ϕdx + on(1)

=
∫

RN
∇w · ∇ϕdx +

∫

RN
V0(x)

F−1(w)

f (F−1(w))
ϕdx −

∫

RN

g0(x, F−1(w))

f (F−1(w))
ϕdx

i.e. w is a weak solution of the periodic equation (1.9).
On the one hand, by Lemma 3.1, for any u ∈ E\{0}, there exists a unique tu > 0

such that tuu ∈ N . Moreover, the maximum of I (tu) for t ≥ 0 is achieved at tu .
Thanks to V (x) ≤ V0(x) and G(x, s) ≥ G0(x, s), we obtain

c ≤ I (tuu) ≤ I0(tuu) ≤ max
t>0

I0(tu),

hence c ≤ infu∈E maxt>0 I0(tu). It follows from Remark 3.3 that c ≤ c0.
On the other hand, by (2.2), (2.3), V (x) ≤ V0(x), g(x, s) ≥ g0(x, s), Lemma 2.1-

(6), (2.1) and the Fatou lemma, we get

c = I (un) − 1

2
〈I ′(un), un〉 + on(1)

= 1

2

∫

RN
V (x)|F−1(un)|2dx − 1

2

∫

RN
V (x)

F−1(un)

f (F−1(un))
undx

+
∫

RN

1

2

g(x, F−1(un))

f (F−1(un))
undx −

∫

RN
G(x, F−1(un))dx + on(1)

≥ 1

2

∫

RN
V0(x)|F−1(un)|2dx − 1

2

∫

RN
V0(x)

F−1(un)

f (F−1(un))
undx

+
∫

RN

1

2

g0(x, F−1(un))

f (F−1(un))
undx −

∫

RN
G0(x, F

−1(un))dx + on(1)

= 1

2

∫

RN
V0(x)

[
|F−1(wn)|2 − F−1(wn)

f (F−1(wn))
wn

]
dx

+
∫

RN

[
g0(x, F−1(wn))

2 f (F−1(wn))
wn − G0(x, F

−1(wn))

]
dx + on(1)

≥ 1

2

∫

RN
V0(x)

[
|F−1(w)|2 − F−1(w)

f (F−1(w))
w

]
dx

+
∫

RN

[
g0(x, F−1(w))

2 f (F−1(w))
w − G0(x, F

−1(w))

]
dx
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= I0(w) − 1

2
〈I ′

0(w),w〉
= I0(w) ≥ c0.

Hence I0(w) = c0 = c. Lemma 3.1 implies that there is a unique tw > 0 such that
tww ∈ N . Then, we get

c ≤ I (tww) ≤ I0(tww) ≤ I0(w) = c,

i.e. c is achieved by tww. It follows fromLemma 3.5 that tww is a ground state solution
of problem (1.1).

From (i), (ii), we can obtain that problem (1.1) has a nonnegative ground state
solution u ∈ E . Furthermore, the maximum principle implies u > 0, this ends the
proof. ��

Data Availability No data, models, or code were generated or used during the study.
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