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Abstract
We show that a linear homeomorphismwith the shadowing property of a Banach space
is hyperbolic if and only if the set of points with bounded orbit is closed. The proof
is based on an auxiliary type of shadowing called bounded shadowing property. We
give examples where our result can be applied.
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1 Introduction

The relationship between hyperbolicity and shadowing for linear homeomorphisms on
Banach spaces has been explored in the literature. For instance, every hyperbolic linear
homeomorphismhas the shadowing property (and conversely in finite dimension [12]).
Examples of non-hyperbolic linear homeomorphismwith the shadowingpropertywere
found recently in [2]. Also recently, it was proved a fundamental equivalence between
the following two properties for linear homeomorphisms L (Theorem 11 in [1]):

(a) L is hyperbolic
(b) L is expansive and has the shadowing property.

The goal of this paper is to further explore this relationship. Indeed, we prove that a
linear homeomorphismwith the shadowing property of a Banach space L is hyperbolic
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if and only if the set of points with bounded orbit is closed. The proof is based on an
auxiliary type of shadowing called bounded shadowing property. Some examples will
be given. Let us state our result in a precise way.

Hereafter X will denote a (complex) Banach space.GL(X) denotes the set of linear
homeomorphisms L : X → X . The spectral radius operation is denoted by r(·). All
Banach spaces under consideration will be nontrivial, i.e. different from 0.

Definition 1 Wesay that L ∈ GL(X) ishyperbolic if its spectrumdoes not intersect the
unitary complex circle. Equivalently, if there is a direct sum decomposition X = S⊕U
formed by closed subspaces S and U such that

L(S) = S, L−1(U ) = U , r(L|S) < 1 and r(L−1|U ) < 1. (1)

Definition 2 We say that L has the shadowing property if for every ε > 0 there is
δ > 0 such that for every sequence (xn)n∈Z satisfying ‖L(xn) − xn+1‖ ≤ δ (∀n ∈ Z),
there is x ∈ X such that ‖Ln(x) − xn‖ ≤ ε (∀n ∈ Z).

These definitions are very important in the theory of dynamical systems [9]. We
will relate them through the following result. Denote by Ec = Ec(L) the set of vectors
with bounded orbits under L namely

Ec =
{
x ∈ X : sup

n∈Z
‖Ln(x)‖ < ∞

}
.

Clearly Ec is a subspace of X which is invariant, i.e. L(Ec) = Ec. The topological
version of Ec will be considered in (2).

With these definitions we can state our result.

Theorem 3 A linear homeomorphism with the shadowing property of a Banach space
L : X → X is hyperbolic if and only if Ec is closed.

This paper is organized as follows. In Sect. 2 we introduce an useful variation
of shadowing called bounded shadowing property. Some properties of this kind of
shadowing will be proved. As a consequence we obtain Theorem 3. In Sect. 3 we
give some short examples where this result can be applied. Some problems posed by
anonymous referees will be presented.

2 Bounded Shadowing Property: Proof of Theorem 3

It is very important in computer simulations that approximate trajectories be approx-
imated by true ones. When this happen we say that the system has the shadowing
property. The shadowing propertywas discovered byBowen in his study of the omega-
limit sets for Axiom A diffeomorphisms [3]. Its precise definition is as follows: We
say that a homeomorphism of a metric space g : Y → Y has the shadowing property
if for every ε > 0 there is δ > 0 such that every δ-pseudo orbit (i.e. sequence (xn)n∈Z
with d(g(xn), xn+1) ≤ δ for n ∈ Z) can be ε-shadowed (i.e. there is x ∈ Y such that
d(gn(x), xn) ≤ ε for n ∈ Z).
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Several variations of this property have been proposed in the literature. Here we
will consider a variation for which not every pseudo orbit but the bounded ones can
be shadowed.

Definition 4 A homeomorphism g : Y → Y has the bounded shadowing property
if for every ε > 0 there is δ > 0 such that every bounded δ-pseudo orbit can be
ε-shadowed.

Clearly, every homeomorphismwith the shadowing property has the bounded shad-
owing property. These properties are equivalent on bounded spaces (like the compact
ones). We do not know however if they are equivalent in general. Nevertheless, we
will prove that these properties are equivalent for linear homeomorphisms on finite
dimensional Banach spaces (Proposition 11 below).

The main motivation for this definition is the elementary lemma below. Given
g : Y → Y as above we define

Ec = {y ∈ Y : the orbit (gn(y))n∈Z of y is bounded}. (2)

Clearly Ec is an invariant set, i.e. g(Ec) = Ec.

Lemma 5 If a homeomorphism of a metric space g : Y → Y has the bounded shad-
owing property, then the restriction g|Ec : Ec → Ec has the bounded shadowing
property too.

Proof Let ε > 0 be given and δ be from the bounded shadowing property of g. Let
(xcn)n∈Z be a bounded sequence in Ec such that d(g(xcn), x

c
n+1) ≤ δ for every n ∈ Z.

Then, the bounded shadowing property of g provides y ∈ Y such that

d(gn(y), xcn) ≤ ε, ∀n ∈ Z.

Since (xcn)n∈Z is bounded, there is � > 0 such that

d(xc1, x
c
n) ≤ �, ∀n ∈ Z.

Then,

d(gn(y), xc1) ≤ d(gn(y), xcn) + d(xcn, x
c
1) ≤ ε + �, ∀n ∈ Z,

so (gn(y))n∈Z is bounded. Then, y ∈ Ec and so g|Ec has the bounded shadowing
property. This completes the proof. 	


To apply this lemma we will need two more lemmas. The first is the invariance of
the bounded shadowing property under certain topological conjugacies.

Lemma 6 Let Y , Z be metric spaces and H : Z → Y be a Lipeomorphism (i.e.
Lipschitz homeomorphism with Lipschitz inverse). If P : Z → Z is a homeomorphism
with the bounded shadowing property, then so does H ◦ P ◦ H−1 : Y → Y .
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Proof Take ε > 0. Since every Lipschitz map is uniformly continuous, there is ε′ > 0
such that

a, b ∈ Z and d(a, b) ≤ ε′ implies d(H(a), H(b)) ≤ ε.

For this ε′ we take δ′ from the bounded shadowing property of P and, for this δ′, we
take δ > 0 such that

c, d ∈ Y and d(c, d) ≤ δ implies d(H−1(c), H−1(d)) ≤ δ′.

Now, let (yn)n∈Z be a bounded sequence in Y such that

d(H ◦ P ◦ H−1(yn), yn+1) ≤ δ, ∀n ∈ Z.

Then, d(P(H−1(yn)), H−1(yn+1)) ≤ δ′ for n ∈ Z. Since

d(H−1(yn), H
−1(y0)) ≤ Lip(H−1)d(yn, y0)

(where Lip(H−1) is the Lipschitz constant of H−1) and (yn)n∈Z is bounded, we also
have that (H−1(yn))n∈Z is bounded. Then, the bounded shadowing property provides
z ∈ Z such that

d(Pn(z), H−1(yn)) ≤ ε′, ∀n ∈ Z.

It follows that d(H(Pn(z)), yn) ≤ ε so y = H(z) satisfies

d((H ◦ P ◦ H−1)n(y), yn) = d(H(Pn(z)), yn) ≤ ε, ∀n ∈ Z,

proving the result. 	


To state the next lemma we need the following concept.

Definition 7 A linear isometry of a Banach space X is a linear homeomorphism L :
X → X such that ‖L(x)‖ = ‖x‖ for every x ∈ X .

It is known that a linear isometry of a Banach space does not have the shadowing
property (Lemma 2 in [10]). Replacing shadowing by bounded shadowing in this
assertion we obtain the following one.

Lemma 8 A linear isometry of a Banach space does not have the bounded shadowing
property.

Proof Suppose that there is a Banach space X and L ∈ GL(X) with the bounded
shadowing property. Take δ > 0 from this property for ε = 1, and let x ∈ X be an
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arbitrary point. Choose a sequence 0 = q0, q1, · · · , qr = x such that ‖qi+1 −qi‖ ≤ δ

for 0 ≤ i ≤ r − 1. Define (pi )i∈Z by

pi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Li (q0), if i < 0

Li (qi ), if 0 ≤ i ≤ r

Li (qr ), if r < i .

Since

sup
i<0

‖Li (q0)‖ = ‖q0‖ < ∞ and sup
i>r

‖Li (qr )‖ = ‖qr‖ < ∞,

the sequence (pi )i∈Z is bounded. Moreover,

‖L(pi ) − pi+1‖ = ‖Li+1(qi ) − Li+1(qi+1)‖ = ‖qi+1 − qi‖ ≤ δ, ∀0 ≤ i ≤ r − 1,

so ‖L(pi ) − pi+1‖ ≤ δ for i ∈ Z thus there is z ∈ X such that

‖Li (z) − pi‖ ≤ 1, ∀i ∈ Z.

Since L is a linear isometry,

‖z − qi‖ = ‖z − L−i (pi )‖ = ‖Li (z) − pi‖ ≤ 1, ∀0 ≤ i ≤ r .

In particular, ‖z‖ = ‖z − 0‖ = ‖z − q0‖ ≤ 1 and ‖z − x‖ = ‖z − qr‖ ≤ 1 so

‖x‖ ≤ ‖z‖ + ‖z − x‖ ≤ 2, ∀x ∈ X

hence X = {0} a contradiction. This completes the proof. 	

The key to prove Theorem 3 is given below. To state it we will use the following

definition.

Definition 9 A linear homeomorphism of a Banach space L : X → X is expansive if
for every x ∈ X with ‖x‖ = 1 there is n ∈ Z such that ‖Ln(x)‖ ≥ 2.

With this definition we can state the following proposition.

Proposition 10 If L ∈ GL(X) has the bounded shadowing property and Ec is closed,
then L is expansive.

Proof By Item (c) of Proposition 19 in [2] it suffices to prove Ec = {0}. Suppose by
contradiction that Ec �= {0}. Clearly Ec is a subspace and so Ec is a closed subspace
with L(Ec) = Ec. Then, the restriction L|Ec ∈ GL(Ec) is well defined. Define the
Banach space Z = (Ec, ‖ ·‖)where ‖ ·‖ is the induced norm from X and P ∈ GL(Z)

is just the restriction P = L|Ec .
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Since L has the bounded shadowing property, P has the bounded shadowing prop-
erty by Lemma 5. We now construct a second Banach space Y as follows. By the
definition of Ec one has

sup
n∈Z

‖Pn(z)‖ < ∞, ∀z ∈ Z .

Then,

sup
n∈Z

‖Pn‖ < ∞ (3)

by the Banach-Steinhouse Theorem. Now define the new norm ‖ · ‖′ in Z by

‖z‖′ = sup
n∈Z

‖Ln(z)‖, ∀z ∈ Z .

Clearly ‖z‖ ≤ ‖z‖′ for z ∈ Z . Define

M = sup
n∈Z

‖Pn‖.

Then, (3) implies 0 < M < ∞. Moreover, ‖z‖′ ≤ M‖z‖ for all z ∈ Z namely

‖z‖ ≤ ‖z‖′ ≤ M‖z‖, ∀z ∈ Z . (4)

Put Y = (Z , ‖ · ‖′). It follows from (4) that Y is a Banach space.
Next we define H : Z → Y as the identity of Z . It follows from (4) that H is a

Lipeomorphism. Since P has the bounded shadowing property, so does H ◦ P ◦ H−1

by Lemma 6. Moreover,

‖H ◦ P ◦ H−1(z)‖′ = ‖L(z)‖′ = sup
n∈Z

‖Ln(L(z))‖ = sup
n∈Z

‖Ln(z)‖ = ‖z‖′,

for every z ∈ Y = E so H ◦ P ◦ H−1 is a linear isometry of Y . This contradicts
Lemma 8 completing the proof. 	


Now we prove our result.

Proof of Theorem 3 Let X be a Banach space and L ∈ GL(X) with the shadowing
property such that Ec is closed. In particular, L has the bounded shadowing property.
So, L is expansive by Proposition 10. Thus, L is hyperbolic by [1]. This completes
the proof. 	


Now, we present three results about linear homeomorphisms with the bounded
shadowing property having their own interest. The first is the equivalence between the
bounded shadowing and shadowing properties for linear homeomorphisms on finite
dimensional Banach spaces. More precisely, we have the following result.
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Proposition 11 A linear homeomorphism of a finite dimensional Banach space has
the bounded shadowing property if and only if it has the shadowing property.

Proof We just need to prove the necessity. Let L ∈ GL(X) where X is a finite dimen-
sional Banach space be with the bounded shadowing property. Since X is finite, Ec is
closed and so L is expansive by Proposition 10. Since hyperbolicity and expansivity
are equivalent for finite dimensional linear homeomorphisms [12], we have that L is
hyperbolic. Since hyperbolic operators have the shadowing property, we are done. 	


Proposition 10 suggests the study of expansive linear homeomorphisms with the
bounded shadowing property onBanach spaces. By [1] it is reasonable is to believe that
they are hyperbolic. If this were true, then such homeomorphisms would be uniformly
expansive. Recall that a linear homeomorphism L ∈ GL(X) is uniformly expansive
if there is N ∈ N such that ‖LN (x)‖ ≥ 2‖x‖ or ‖L−N (x)‖ ≥ 2‖x‖ for every x ∈ X .
It is well known that a linear homeomorphism is uniformly expansive if and only if
its approximate point spectrum does not intersect the unit circle [8]. As in Theorem
27 of [2] we obtain the following result.

Proposition 12 An expansive linear homeomorphism with the bounded shadowing
property of a Banach space is uniformly expansive.

Proof Let L ∈ GL(X) be expansive with the bounded shadowing property for some
Banach space X . If L were not uniformly expansive, then its approximate point spec-
trum would intersect the unit complex circle at some λ (see [8]). We take δ from
the bounded shadowing property for ε = 1

2 . Since λ is an approximate eigenvalue,
there is x ∈ X with ‖x‖ = 1 such that ‖L(x) − λx‖ < δ. By taking xn = λnx for
n ∈ Z one has ‖L(xn) − xn+1‖ = |λn|‖L(x) − λx‖ < δ for every n ∈ Z. Since
‖xn‖ = ‖λnx‖ = ‖x‖ = 1 for n ∈ Z we also have that (xn)n∈Z is bounded. Then, the
bounded shadowing property provides y ∈ X such that ‖Ln(y) − xn‖ < 1

2 for n ∈ Z.
Therefore, 12 < ‖Ln(y)‖ < 3

2 for all n ∈ Z contradicting that L is expansive (c.f. [2]).
This completes the proof. 	


The following is a corollary of the proof of Proposition 10. Recall that a homeo-
morphism of a metric space g : Y → Y is equicontinuous if the family {gn : n ∈ Z}
is equicontinuous i.e. for every ε > 0 there is δ > 0 such that if y, y′ ∈ Y and
d(y, y′) ≤ δ, then d(gn(y), gn(y′)) < ε for every n ∈ Z.

It was proved in [10] that an equicontinuous linear homeomorphism of a Banach
space does not have the shadowing property. A direct corollary of the methods above
is that the same result is true for linear homeomorphisms with the bounded shadowing
property. More precisely, we have the following result.

Corollary 13 An equicontinuous linear homeomorphism of a Banach space does not
have the bounded shadowing property.

Proof Let L be the operator in the statement. Since L is equicontinuous, we can see
that

M = sup
n∈Z

‖Ln‖ < ∞.



61 Page 8 of 13 K. Lee et al.

This allows to reproduce the proof of Proposition 10 to obtain a Lipeomorphism
conjugating L to a linear isometry. Now we apply Lemmas 6 and 8 to conclude the
proof. 	


3 Examples and Questions

First we present some short examples where our result can be applied. The first is
precisely the equivalence between shadowing and hyperbolicity in finite dimension
[12]: This follows form our theorem and the fact that every finite dimensional subspace
is closed.

Example 14 A linear homeomorphism of a finite dimensional Banach space is hyper-
bolic if and only if it has the shadowing property.

Another consequence is as follows. Given a Banach space X and L ∈ GL(X) we
define

Ecs =
{
x ∈ X : sup

n≥0
‖Ln(x)‖ < ∞

}
, Ecu =

{
x ∈ X : sup

n≥0
‖L−n(x)‖ < ∞

}
.

Clearly Ecs and Ecu are subspaces which are invariant, i.e. L(Ecs) = Ecs and
L(Ecu) = Ecu . With these definitions we can state simple proposition below.

Proposition 15 If L is hyperbolic, then L has the shadowing property and both Ecs

and Ecu are closed.

Proof Since L is hyperbolic, L has the shadowing property and is uniformly expansive.
From this expansivity and the characterization of Ecs and Ecu given in Proposition 2
of [1] we obtain the result. 	


As a corollary of our result we will obtain the converse of the above proposition.

Example 16 A linear homeomorphism of a Banach space L : X → X is hyperbolic if
and only if it has the shadowing property and both Ecs and Ecu are closed.

Proof The necessity follows from the previous proposition. For the sufficiencywe note
that if Ecu and Ecu are closed, then Ec = Ecs ∩ Ecu also is and then L is hyperbolic
by Theorem 3. 	


A third example is related to the new form of hyperbolicity for linear homeomor-
phisms defined as follows.

Definition 17 We say that L ∈ GL(X) is generalized hyperbolic if there is a direct
sum decomposition X = S ⊕U formed by closed subspaces S and U such that

L(S) ⊂ S, L−1(U ) ⊂ U , r(L|S) < 1 and r(L−1|U ) < 1.
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Notice that this definition is obtained by replacing the equalities in (1) by inclu-
sions. In particular, every hyperbolic linear homeomorphism is generalized hyperbolic.
Further remarks are as follows.

Remark 18 (a) This concept was implicitly introduced in 2018 ( [2]). It reappeared
with the name ”generalized hyperbolic” in [4]. It is known that every general-
ized hyperbolic linear homemorphism has the shadowing property [2]. Also, a
number of interesting properties were obtained in [4]. All known examples of
linear homeomorphisms with the shadowing property are generalized hyperbolic.
This motivates the question if, conversely, every linear homeomorphism with the
shadowing property is generalized hyperbolic [6].

(b) The question was answered positively for certain operators. These include the
weighted shifts [1] (to be defined below) and also a large class of L p-operators [6,
7].

About these homeomorphism we obtain the following example.

Example 19 A generalized hyperbolic linear homeomorphism L is hyperbolic if and
only if Ec is closed.

Theorem 3 motivates the analysis of Ec in specific examples. The natural ones are
the weighted shifts.

Given aBanach space X wedefine XZ as the set ofmaps x : Z → X . If 1 ≤ p < ∞,
we define

l p(X) =
{
x ∈ XZ :

∑
n∈Z

‖x(n)‖p < ∞
}

.

It follows that l p(X) is a Banach space if endowed with the norm

‖x‖ =
(∑
n∈Z

‖x(n)‖p

) 1
p

.

Fix ω ∈ C
Z (the set of maps ω : Z → C) with

0 < inf
n∈Z |ω(n)| ≤ sup

n∈Z
|ω(n)| < ∞. (5)

Define the linear homeomorphisms Bω, Fω : l p(X) → l p(X) by

Bω(x)(n) = ω(n + 1)x(n + 1), Fω(x)(n) = ω(n − 1)x(n − 1)

These operators are called backward (resp. forward) weighted shifts. They are conju-
gated each other so we concentrate on Bω only. We have the following example for
X = C.
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Example 20 If Bw has the shadowing property, then either Ec = {0} or Ec is dense in
l p(X).

Proof If Ec �= {0}, Bw is not hyperbolic so

lim
n→∞

(
sup
k∈N

|ω(−k)ω(−k − 1) · · · ω(−k − n)|
) 1

n

< 1

and

lim
n→∞

(
inf
k∈N |ω(k)ω(k + 1) · · · ω(k + n)|

) 1
n

> 1

by Theorem 18 in [1]. This implies that Ec contains those x ∈ l p(X) such that
x(n) = 0 for all but finitely many n ∈ Z. Therefore, Ec is dense in l p(X). 	


Anonymous referees asked us about the dynamics of non-hyperbolic linear homeo-
morphismwith the shadowing property onBanach spaces L : X → X .More precisely,
they asked if L|Ec is topologically transitive or chaotic or frequently hypercyclic or if
Ec = X where Ec is the closure of Ec.

Recall that a linear homeomorphism of a Banach space T : Y → Y is frequently
hypercyclic provided there exists a vector y such that for every nonempty open subset
U of Y , the set of integers n such that T n(y) belongs to U has positive lower density.
All such homeomorphisms are topologically transitive, i.e. for every pair (U , V ) of
nonempty open subsets of Y there exists an integer n such that T n(U ) ∩ V �= ∅.

We do not have answers for such questions yet. However, we can exhibit examples
where positive answers hold.

Example 21 ByExample 20 andTheoremB in [2] there is Banach space X and an open
set of frequently hypercyclic (hence topologically transitive) linear homeomorphisms
with the shadowing property O of X such that Ec is dense in X for every L ∈ O.

Next we consider the multiplication operators. Let (X , μ) be a measure space, and
g ∈ L∞(X , μ). For any 1 ≤ p < ∞ we have the linear map Mg : L p(X , μ) →
L p(X , μ) defined by Mg( f ) = g · f . Since g ∈ L∞(X , μ), Mg is bounded with
‖Mg‖p ≤ ‖g‖∞. Also Mg ∈ GL(L p(X , μ)) if and only if 1/g ∈ L∞(X , μ) in
whose case (Mg)

−1 = M1/g . This will be assumed in what follows. In the following
lemma we will compute Ec for the multiplication operators Mg .

Lemma 22

Ec = { f ∈ L p(X , μ) : μ({x ∈ X : f (x) �= 0 and |g(x)| �= 1}) = 0}.
Proof Given f ∈ L p(X , μ) and k ∈ N we define

C+
k ( f ) =

{
x ∈ X : | f (x)| ≥ 1

k
and |g(x)| ≥ 1 + 1

k

}
and

C−
k ( f ) =

{
x ∈ X : | f (x)| ≥ 1

k
and |g(x)| ≤ 1 − 1

k

}
.
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These are disjoint sets and if Ck = C+
k ∪ C−

k then

{x ∈ X : f (x) �= 0 and |g(x)| �= 1} =
∞⋃
k=1

Ck . (6)

Now we have

μ(C+
k )

1

k p

(
1 + 1

k

)pn

≤
∫
C+
k

|g(x)|pn| f (x)|pdμ(x) ≤ ‖Mn
g ( f )‖p

p.

Likewise,

μ(C−
k )

1

k p

(
1 − 1

k

)−pn

≤ ‖Mn
g ( f )‖p

p.

Then, if f ∈ Ec we get

μ(C+
k ) ≤

(
sup
n∈Z

‖Mn
g ( f )‖

)p

k p
(
1 + 1

k

)−pn

→ 0 as n → ∞

so μ(C+
k ) = 0. Likewise μ(C−

k ) = 0 for every k ∈ N. Then, μ(Ck) = 0 for every
k ∈ N so μ({x ∈ X : f (x) �= 0 and |g(x)| �= 1}) = 0 by (6).

Conversely, suppose that f ∈ L p(X , μ) satisfies μ({x ∈ X : f (x) �=
0 and |g(x)| �= 1}) = 0. It follows that f (x) �= 0 ⇒ |g(x)| = 1. So,

‖Mn
g ( f )‖p

p =
∫
X

|g(x)|pn| f (x)|pdμ(x) =
∫
X

| f (x)|pdμ(x) = ‖ f ‖p
p, ∀n ∈ Z,

proving f ∈ Ec. This completes the proof. 	

With this lemma we obtain the following one yet about Mg .

Lemma 23 Ec is closed.

Proof Take a sequence fl ∈ Ec and f ∈ L p(X , μ) such that fl → f in L p. If
f /∈ Ec, we can assume by Lemma 22 that μ(C) > 0 where

C =
{
x ∈ X : | f (x)| ≥ 1

k
and |g(x)| ≥ 1 + 1

k

}

for some k ∈ N. Fix 0 < ε < 1
k and k′ > k such that 1

k′ < 1
k − ε.

Since fl → f in L p, fl → f in measure too. Then, there is l ∈ N such that

μ(C ∩ {| fl − f | ≥ ε}) <
μ(C)

2
.
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Now take x ∈ C ∩ {| fl − f | < ε}. Then,

| fl(x)| ≥ | f (x)| − | fl(x) − f (x)| >
1

k
− ε >

1

k′ .

Since k′ > k, we also have |g(x)| ≥ 1 + 1
k′ proving

C ∩ {| fl − f | < ε} ⊂ {x ∈ X : fl(x) �= 0 and |g(x)| �= 1}.

This implies

μ({x ∈ X : fl(x) �= 0 and |g(x)| �= 1}) ≥ μ(C ∩ {| fl − f | < ε}).

On the other hand,

μ(C ∩ {| fl − f | < ε) = μ(C) − μ(C ∩ {| fl − f | ≥ ε}) >
μ(C)

2
> 0

so μ({x ∈ X : fl(x) �= 0 and |g(x)| �= 1}) > 0 contradicting fl ∈ Ec by Lemma 22.
This completes the proof. 	


Therefore, we have the following characterization.

Example 24 Mg has the shadowing property if and only if Mg is hyperbolic.

Proof If Mg has the shadowing property, then Mg is hyperbolic by Theorem 3 and
Lemma 23. Since every hyperbolic linear homeomorphism has the shadowing prop-
erty, we are done. 	


Aparticular case of Example 24 is as follows. Given a Banach space X , andω ∈ C
Z

as in (5), we define the diagonal operator Dω : l p(X) → l p(X) by

Dω(x)(n) = ω(n)x(n), ∀x ∈ l p(X),∀n ∈ Z.

Example 25 Dω has the shadowing property if and only if Dω is hyperbolic.

This example is a direct consequence of Theorem 27 in [2].
The multiplication version of the spectral theorem (c.f. Theorem 4.6 in [5]) implies

that for every normal operator of a Hilbert space L : H → H there is a measure space
(X , μ) such that L is unitarily equivalent to a multiplication operator of L2(X , μ).
Then, Example 24 also implies the following well known result by Mazur (Theorem
1 in [11], see also Corollary 28 in [2]).

Example 26 An invertible normal operator on a Hilbert space has the shadowing prop-
erty if and only if it is hyperbolic.
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It is worth noting that multiplication operators were studied with a different
approach for p = 2 by Mazur [11].

An anonymous referee also asked if Theorem 3 holds in the non-invertible case.
More precisely, is a non-invertible operator with the positively shadowing property of
a Banach space L : X → X hyperbolic if and only if {x ∈ X : supn∈N ‖Ln(x)‖ < ∞}
is closed?

Recall that L has the positively shadowing property if for every ε > 0 there is δ > 0
such that for every sequence (xn)n≥0 with ‖L(xn) − xn+1‖ < δ for n ∈ N, there is
x ∈ X such that ‖Ln(x) − xn‖ < ε for n ≥ 0. Some parts of the proof of Theorem 3
holds in this setting as well. This and the fact that positively expansive operators with
the positively shadowing property are hyperbolic [1] looks to imply positive answer
for this question.
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