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Abstract
In this paper, we apply the strongly continuous cosine family of bounded linear opera-
tors to study the explicit representation of solutions for second order linear impulsive
differential equations, and we give sufficient conditions for asymptotical stability of
solutions. In addition we study the exponential stability of the linear perturbed prob-
lem. Existence and uniqueness of solutions of the initial value problem for nonlinear
second order impulsive differential equations is obtained andwe presentUlam–Hyers–
Rassias stability results. Examples are provided to illustrate the applicability of our
results.
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1 Introduction

The states of many evolutionary processes are often subject to instantaneous perturba-
tions and experience abrupt changes at certainmoments of time.Usually the duration of
the changes is very short and negligible in comparison with the duration of the process
considered so as a result it is natural to study differential equations with instantaneous
impulses. The mathematical investigation of impulsive ordinary differential equations
began with Milman and Myshkis [1] where some general concepts of systems with an
impulse effect were given and also results for the stability of solutions were presented.
Inspired by [1] a number of results on the qualitative analysis for impulsive differential
equations appeared in the literature, see [2–7].

As a very important branch of control theory, stability has a wide range of appli-
cations in various fields, such as nonlinear control, biological mathematics, gene
network, chaos control and synchronization, etc. To study the approximate behav-
iors in dynamic systems, stability is a first question which one needs to study. In 1986,
Hopfield reapplies the energy function to neural networks, and studies the asymptotic
behavior of neural networks. This work pioneered neural optimization computing and
associative memory, precedent for neural optimization calculations and associative
memory, and plays an important role in the worldwide upsurge of neural network [8].
In particular, it is well known that exponential stability is closely related to Lyapunov
exponents, exponential dichotomies, periodic solutions and so on, and the notion of
exponential dichotomy plays a central role in the Hadamard-Perron theory of invariant
manifolds for dynamical systems. In addition, some prior contributions have shown
the relationship between exponential dichotomy and Hyers–Ulam stability for linear
continuous/discrete differential systems, see [9–13]. Therefore, our work can broaden
some of the results on other topics related to stability.

In [5], Samoilenko and Perestyuk considered the following linear impulsive system
with constant coefficients, ⎧

⎨

⎩

dx

dt
= Ax, t �= τi ,

�x(τi ) = Bx,
(1)

where A and B are constant matrices, τi are impulsive points, and τi → ∞ as i → ∞.
They assume that A and B are interchangeable, and, in Theorem 32, they obtained
asymptotically stable result of (1) provided that

max
j

λ j (A) + 1

θ0
ln max

j
|1 + λ j (B)| < 0,

and some other conditions, where θ0 is a related constant, λ j (·) denotes the eigenvalue.
Then they also considered a special class of nonconstant coefficients linear impulsive
system ⎧

⎨

⎩

dx

dt
= Ax + P(t)x, t �= τi ,

�x(τi ) = Bx + Ii x,
(2)
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in Theorem 12 and achieved the stable result if the solutions of linear system (1) are
stable and ∫ ∞

t0
‖P(t)‖dt < ∞ and

∏

τi>t0

(1 + ‖Ii‖) < ∞.

Following the linear problems, naturally, in Theorem 39, they considered the stability
of solutions for first order approximation of nonlinear impulsive system, that is

⎧
⎨

⎩

dx

dt
= Ax + g(t, x), t �= τi ,

�x(τi ) = Bx + Ii x .
(3)

Up to date, the literature concentrates on the stability of first order impulsive sys-
tem. For existence and stability results on first order impulsive differential equations,
one can see [5, 7, 14–31]. In [19] the authors considered general first order non-
instantaneous impulsive ordinary differential equations and they obtain the stability
of zero solutions of linear problems, the exponential stability of perturbed problems,
existence, uniqueness of solutions and Ulam–Hyers–Rassias stability of nonlinear
systems.

Inspired by the above results, in this paper, we aim to generalize the three results
above to second order impulsive differential equations. We study the following initial
problems of second order impulsive differential equations.

(i): Asymptotical stability of second order linear impulsive differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

(4)

where A, B1 and B2 are constant n×n matrixes satisfying AB1 = B1A, AB2 = B2A,
B1B2 = B2B1, 0 = t0 < t1 < · · · < ti < · · · and ti → ∞ are impulsive points.

(i i): Exponential stability of the linear perturbed problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + P(t)u(t), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

(5)

where A, B1, B2, ti are as in (4) and P is a continuous matrix in R+ outside ti .
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(i i i): Existence, uniqueness and Ulam–Hyers–Rassias stability of solutions for
nonlinear second order impulsive differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + f (t, u(t)), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

(6)

where A, B1, B2, ti are as in (4) and f : [0,+∞) × R
n → R

n is continuous.
Section 2 presents some lemmas and corollaries needed in the paper. In Sect. 3, we

derive an explicit expression of (4) via mathematical induction, and then we consider
the asymptotical stability of (4). Section 4 is devoted to the exponentially stability of
(5). Finally, in Sect. 4, we study existence and uniqueness of solutions for (6) using the
contraction mapping principle, and then we discuss the Ulam–Hyers–Rassias stability
of solutions. In addition examples are provided to illustrate the applicability of our
results.

2 Preliminary

In this section, we consider initial value problems of the second order linear differential
equation {

u′′(t) = Au(t), 0 ≤ t ≤ T ,

u(0) = u0, u′(0) = u1,
(7)

and the second order linear nonhomogeneous differential equation

{
u′′(t) = Au(t) + f (t), 0 ≤ t ≤ T ,

u(0) = u0, u′(0) = u1,
(8)

where X is a Banach space, A is the infinitesimal generator of a uniformly continuous
cosine family C(t) on X , u0, u1 ∈ D(A) and f : [0, T ] → R is continuous.

Lemma 2.1 (see [32]) Let A be an operator such that R(λ2; A) exists in the half plane
	λ > ω, C(t) an operator valued function strongly continuous in t ≥ 0 and such that

||C(t)|| ≤ C0e
ωt (t ≥ 0).

Assume that, for each u ∈ X,

∫ ∞

0
e−λtC(t)udt = λR(λ2; A)u (	λ > ω). (9)

Then the Cauchy problem (7) is uniformly well posed in t ≥ 0, and C(|t |) is the
solution operator of (7).
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Lemma 2.2 (see [32]) Let A be a bounded linear operator in a Banach space E. Then
the Cauchy problem (7) is uniformly well posed in −∞ < t < +∞. The cosine
function C(t) generated by A is given by

C(t) =
∞∑

n=0

t2n

(2n)! A
n, (10)

and the series (10) is uniformly convergent on compact subsets of −∞ < t < +∞.
The other propagator S(t) is given by

S(t) =
∞∑

n=0

t2n+1

(2n + 1)! A
n, (11)

and the series (11) converging in the same sense of (10).

Proof We prove this result using Lemma 2.1. Therefore, the first task is to show that
R(λ2; A) exists in a certain half plane. Now A is an bounded linear operator, and we
assume that ||A|| ≤ M ; here M is a positive constant. By Neumman’s theorem, we
see that the operator λ2 I − A is regular if |λ2| > M . Hence R(λ2; A) exists in the half

plane 	λ > M
1
2 . Define the cosine functions C(t) as in (10). Since ||A|| ≤ M we see

that C(t) is well-defined, and C(t) is an operator valued function strongly continuous
in t ≥ 0, and

||C(t)|| ≤ C0e
M

1
2 t (t ≥ 0).

We verify next that C(t) defined by (10) satisfied (9). Let u ∈ D(A) = E , and T > 0.
Now A is a closed operator. Using a well known result on closed operators [33] and
integration by parts, we have

A · 1
λ

∫ T

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
nudt = 1

λ

∫ T

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
n+1udt

=
∞∑

n=0

1

λ

[

e−λT T 2n+1

(2n + 1)! A
n+1u + λ

∫ T

0
e−λt t2n+1

(2n + 1)! A
n+1udt

]

=
∞∑

n=0

1

λ

[

e−λT T 2n+1

(2n + 1)! A
n+1u + λe−λT T 2n+2

(2n + 2)! A
n+1u

+λ2
∫ T

0
e−λt t2n+2

(2n + 2)! A
n+1udt

]

.

Let T → ∞ and we have

A · 1
λ

∫ ∞

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
nudt = λ2 · 1

λ

∫ ∞

0
e−λt ·

∞∑

n=0

t2n+2

(2n + 2)! A
n+1udt
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= λ2 · 1
λ

∫ ∞

0
e−λt

( ∞∑

n=0

t2n

(2n)! A
nu − u

)

dt

= λ2 · 1
λ

∫ ∞

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
nudt − u,

and hence,

(λ2 I − A) · 1
λ

∫ ∞

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
nudt = u (	λ > M

1
2 ).

Let u ∈ D(A) ⊂ E . Since A is a closed, densely defined operator, for all u ∈ E , there
exists a sequence {uk} ⊂ D(A) such that

uk → u

in the norm of E . For all uk ∈ D(A) we have

(λ2 I − A) · 1
λ

∫ ∞

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
nukdt = uk (	λ > M

1
2 ).

Taking the limit of both sides with respect to k, we have

(λ2 I − A) · 1
λ

∫ ∞

0
e−λt ·

∞∑

n=0

t2n

(2n)! A
nudt = u (	λ > M

1
2 ).

Therefore, by Lemma 2.1, the Cauchy problem (7) is uniformly well posed in −∞ <

t < +∞, and C(t) is a solution operator of (7) with u(0) = u0, u′(0) = 0. Now,
S(t)u1 = ∫ t

0 C(s)u1ds, in other words,

S(t) =
∞∑

n=0

t2n+1

(2n + 1)! A
n,

which converges in the same sense of (10) is the solution operator of (7) with u(0) = 0,
u′(0) = u1. �
Remark 2.1 If we assume the existence of square roots of A and the existence of the
inverse of square roots of A, then the series (10) and (11) in Theorem 2.2 can be
expressed as

C(t) = cosh A
1
2 t,

and
S(t) = A− 1

2 sinh A
1
2 t,

respectively.
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For A a constant matrix we have the following corollary.

Corollary 2.1 Let A be a nonsingular constant matrix, and the square roots of A exist.
Then the Cauchy problem (7) is uniformly well posed in −∞ < t < +∞, and the
solutions of (7) is given by

u(t) = cosh A
1
2 tu0 + A− 1

2 sinh A
1
2 tu1. (12)

Remark 2.2 Although the square roots of A are not unique, the expression (12) is well-
defined. In fact, if A1 and A2 both are the square roots of A and satisfy the assumptions
of Corollary 2.1, we have

cosh A1tu0 =
∞∑

n=0

t2n

(2n)! A
2n
1 =

∞∑

n=0

t2n

(2n)! A
2n
2 = cosh A2tu0,

and

A−1
1 sinh A1tu0 =

∞∑

n=0

A−1
1

t2n+1

(2n + 1)! A
2n
1 =

∞∑

n=0

t2n+1

(2n + 1)! A
2n
2 = A−1

2 sinh A2tu0.

Lemma 2.3 (see [32]) Assume that u0, u1 ∈ D(A) and f (t) ∈ D(A), f (t), A f (t) are
continuous in 0 ≤ t ≤ T . Then the following initial value problem

{
u′′(t) = Au(t) + f (t),

u(0) = u0, u′(0) = u1

has a solution

u(t) = C(t)u0 + S(t)u1 +
∫ t

0
S(t − s) f (s)ds, 0 ≤ t ≤ T ,

where C(t), t ∈ R is a strongly continuous cosine family in X with infinitesimal
generator A and associated sine function S(t), t ∈ R.

Lemma 2.4 (see [5, 34]) Let X be a Banach space with norm || · || and let F be a
mapping of the ball ||x || ≤ h (here h > 0) in the space X into the space X and assume

||F(x) − F(y)|| ≤ ρ||x − y||, 0 < ρ < 1;

here x, y ∈ X. Also assume
||F(0)|| ≤ h(1 − ρ).

Then the mapping F has a unique fixed point x0 (i.e. F(x0) = x0).

Lemma 2.5 (see [19]) Let | · | be a norm on R
n and B be an n × n matrix. Then for

any ε > 0 there exists TB,ε ≥ 1 such that ||Bk || ≤ TB,ε(ρ(B) + ε)k , where ρ(B) is
the spectral radius of B.
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Lemma 2.6 (see [35])Let u(t), k(t, s) and its partial derivative kt (t, s) be nonnegative
continuous functions for α ≤ s ≤ t , and suppose

u(t) ≤ a +
∫ t

α

k(t, s)u(s)ds, t ≥ α,

where a ≥ 0 is a constant. Then

u(t) ≤ a exp
( ∫ t

α

k(t, s)ds
)
, t ≥ α.

Lemma 2.7 For any a > 0, 0 < t0 < t1 < t2 < · · · < tk < · · · < ∞ and

lim
i→∞ inf(ti+1 − ti ) �= 0.

Then +∞∑

i=1

e−ati ≤ 1

λa
,

here λ = inf{ti+1 − ti |i ∈ N}.
Proof Note

λ

+∞∑

i=1

e−ati ≤
+∞∑

i=1

(ti+1 − ti )e
−ati ≤

+∞∑

i=1

∫ ti+1

ti
e−atdt ≤ 1

a
.

This implies the result. �

3 Solutions of Linear Second Order Impulsive Differential Equations

In this section, we present an expression of the solution of the second order linear
impulsive system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

where A, B1 and B2 are constant n×n matrixes satisfying AB1 = B1A, AB2 = B2A,
B1B2 = B2B1, 0 = t0 < t1 < · · · < ti < · · · and ti → ∞ are impulsive points,
and we discuss the stability of solutions. For the sake of convenience in writing, we

always set A
1
2 t = x , A

1
2 ti = xi , I + B1+B2

2 = A1,
B1−B2

2 = A2,

cosh xu0 + A− 1
2 sinh xu1 = H(x), cosh xu0 − A− 1

2 sinh xu1 = G(x).
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Theorem 3.1 For all t ∈ (tk, tk+1], the solution u(t) of (4) with initial value condition
u(0) = u0, u′(0) = u1 is given as follows:

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak
1H(x) + Ak−1

1 A2

∑

1≤i11≤k

G(x − 2xi11) + Ak−2
1 A2

2

∑

1≤i21<i22≤k

H(x − 2xi22 + 2xi21)

+ · · · + A1A
k−1
2

∑

1≤ik−1,1<ik−1,2<···<ik−1,k−1≤k

G(x − 2xik−1,k−1 + 2xik−1,k−2 − · · · − 2xik−1,1)

+ Ak
2H(x − 2xk + 2xk−1 − · · · + 2x1), if k is even,

Ak
1H(x) + Ak−1

1 A2

∑

1≤i11≤k

G(x − 2xi11) + Ak−2
1 A2

2

∑

1≤i21<i22≤k

H(x − 2xi22 + 2xi21)

+ · · · + A1A
k−1
2

∑

1≤ik−1,1<ik−1,2<···<ik−1,k−1≤k

H(x − 2xik−1,k−1 + 2xik−1,k−2 − · · · − 2xik−1,1)

+ Ak
2G(x − 2xk + 2xk−1 − · · · + 2x1), if k is odd.

(13)

Proof We use mathematical induction to show the result. For the case of k = 0,
Corollary 2.1 shows (13) holds. Without loss of generality, assume (13) holds for
k = 2i , that is

u(t) = A2i
1 H(x) + A2i−1

1 A2

∑

1≤i11≤k

G(x − 2xi11) + A2i−2
1 A2

2

∑

1≤i21<i22≤k

H(x − 2xi22 + 2xi21) + · · ·

+ A1A
2i−1
2

∑

1≤ik−1,1<ik−1,2<···<ik−1,k−1≤k

G(x − 2xik−1,k−1 + 2xik−1,k−2

− · · · − 2xik−1,1) + A2i
2 H(x − 2xk + 2xk−1 − · · · + 2x1), t ∈ (t2i , t2i+1].

(14)

Next we show that (13) holds for k = 2i + 1. By a direct calculation, we have

cosh(x − xi )H(y(x))(I + B1) + A− 1
2 sinh(x − xi )H

′(y(xi ))(I + B2)

= A1H(y(x)) + A2G(x − xi − y(xi )), (15)

cosh(x − xi )G(y(x))(I + B1) + A− 1
2 sinh(x − xi )G

′(y(xi ))(I + B2)

= A1G(y(x)) + A2H(x − xi − y(xi )), (16)
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where y(x) = x−const. Hence for all t ∈ (t2i+1, t2i+2], from Corollary 2.1, we have

u(t) = cosh(x−x2i+1)u(t2i+1)(I+B1)+A− 1
2 sinh(x−x2i+1)u(t2i+1)(I+B2). (17)

Combine (14), (15), (16) with (17), so we see (13) holds for k = 2i + 1. �

Remark 3.1 Obviously, if A2 = 0, i.e., B1 = B2, then for all t ∈ (tk, tk+1], we have

u(t) = Ak
1H(x); (18)

if A1 = 0, that is B1 = −2I − B2, then for all t ∈ (tk, tk+1], we have

u(t) =
{
Ak
2G(x − 2xk + 2xk−1 − · · · + 2x1), if k is odd,

Ak
2H(x − 2xk + 2xk−1 − · · · + 2x1), if k is even;

if A1 = A2, i.e., B2 = −I , this means u′(ti ) = 0, where ti ∈ (0, t) are impulsive
points. Then for all t ∈ (tk, tk+1], we have

u(t) = (I + B1)
k cosh(x − xk)

k∏

i=2

cosh(xi − xi−1)
(
cosh x1u0 + A− 1

2 sinh x1u1
)

;

if A1 = −A2, that is B1 = −I , thismeans u(ti ) = 0,where ti ∈ (0, t) are impulsive
points. Then for all t ∈ (tk, tk+1], we have

u(t) = (I + B2)
k sinh(x − xk)

k∏

i=2

cosh(xi − xi−1)
(
sinh x1u0 + A− 1

2 cosh x1u1
)

.

Definition 3.1 The zero solution of the second order impulsive initial value problem
is called stable if for any ε > 0 there exists δ(t0, ε) > 0 such that if ||u0|| + ||u1|| <

δ(t0, ε) then ||u(t, t0, u0, u1)|| + ||u′(t, t0, u0, u1)|| < ε. The zero solution of the
second order impulsive initial value problem is called asymptotically stable if it is
stable and attractive, that is

lim
t→∞ u(t, t0, u0, u1) = lim

t→∞ u′(t, t0, u0, u1) = 0.

Now we give sufficient conditions to guarantee the stability of (4).

Theorem 3.2 Assume that the following conditions hold

ρ

(

I + B1 + B2

2

)

+ ρ

(
B1 − B2

2

)

< 1, lim
t→∞ inf

i(0, t)

t
= p < ∞; (19)
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here i(0, t) is the number of impulsive points which belong to (0, t). Then (4) is
asymptotically stable provided that the following inequality

ϒ = √
ρ(A) + p ln

(

ρ

(

I + B1 + B2

2

)

+ ρ

(
B1 − B2

2

))

< 0 (20)

is satisfied.

Proof For all t ≥ 0, from Lemma 2.2, we find

S(t) = A− 1
2 sinh A

1
2 t,

and
C(t) = cosh A

1
2 t .

Making use of Lemma 2.5, for t ≥ 0, and any constant a, we have

‖A− 1
2 sinh A

1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=0

|t − 2a|2n+1

(2n + 1)! (ρ(A) + ε)n,

if t − 2a ≥ 0, then we have

‖A− 1
2 sinh A

1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=0

(t − 2a)2n+1

(2n + 1)! (ρ(A) + ε)n

≤ TA,ε√
ρ(A) + ε

e
√

ρ(A)+ε(t−2a)

≤ TA,ε√
ρ(A) + ε

e
√

ρ(A)+εt ,

(21)

if t − 2a ≤ 0, we find

‖A− 1
2 sinh A

1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=0

(2a − t)2n+1

(2n + 1)! (ρ(A) + ε)n

≤ TA,ε√
ρ(A) + ε

e
√

ρ(A)+ε(2a−t).

(22)

Similarly,

‖ cosh A
1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=0

|t − 2a|2n
(2n)! (ρ(A) + ε)n,
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if t − 2a ≥ 0, then we have

‖ cosh A
1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=0

|t − 2a|2n
(2n)! (ρ(A) + ε)n

≤ TA,εe
√

ρ(A)+ε(t−2a)

≤ TA,εe
√

ρ(A)+εt ,

(23)

if t − 2a ≤ 0, we get

‖ cosh A
1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=0

|t − 2a|2n
(2n)! (ρ(A) + ε)n

≤ TA,εe
√

ρ(A)+ε(2a−t).

(24)

Next we show that
lim
t→∞ u(t, 0, u0, u1) = 0. (25)

It follows from Lemma 2.5, (13), (21), (22), (23) and (24) that

||u(t, 0, u0, u1)||
≤ 2max

{
1√

ρ(A) + ε
, 1

}

TA,ε‖Ak
1‖e

√
ρ(A)+εt (||u0|| + ||u1||)

+ 2C1
k max

{
1√

ρ(A) + ε
, 1

}

TA,ε||Ak−1
1 A2||e

√
ρ(A)+εt (||u0|| + ||u1||)

+ · · ·
+ 2Ck−1

k max

{
1√

ρ(A) + ε
, 1

}

TA,ε||A1A
k−1
2 ||e

√
ρ(A)+εt (||u0|| + ||u1||)

+ 2max

{
1√

ρ(A) + ε
, 1

}

TA,ε||Ak
2||e

√
ρ(A)+εt (||u0|| + ||u1||)

≤ �1e
√

ρ(A)+εt
[

(ρ(A1) + ε)k + C1
k (ρ(A1) + ε)k−1(ρ(A2) + ε)

+ · · · + Ck−1
k (ρ(A1) + ε)(ρ(A2) + ε)k−1 + (ρ(A2) + ε)k

]

(||u0|| + ||u1||)

≤ �1e
√

ρ(A)+εt (ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)
= �1e

(√
ρ(A)+ε+ k

t ln(ρ(A1)+ρ(A2)+2ε)
)
t
(||u0|| + ||u1||), (26)

where �1 = 2max{ 1√
ρ(A)+ε

,
√

ρ(A) + ε}T 3
ε , Tε = max{TA,ε, TA1,ε, TA2,ε} and k =

i(0, t) is the number of impulsive points which belong to (0, t). If (19) holds, we have

i(0, t)

t
> p − ε
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for any t > 0 large enough. Consequently, using ρ
(
I + B1+B2

2

)
+ ρ

(
B1−B2

2

)
< 1

and (26), we have

||u(t, 0, u0, u1)|| ≤ �1e

(√
ρ(A)+ε+(p−ε) ln(ρ

(
I+ B1+B2

2

)
+ρ

(
B1−B2

2

)
+2ε)

)
t
(||u0||+||u1||).

(27)
For ε > 0 sufficiently small, from (20), we have

√
ρ(A) + ε + (p − ε) ln

(
ρ

(

I + B1 + B2

2

)

+ ρ

(
B1 − B2

2

)

+ 2ε
)

<
ϒ

2
< 0.

Thus, from (27), we have that

||u(t, 0, u0, u1)|| ≤ �1e
ϒ
2 t (||u0|| + ||u1||),

for any t > 0 large enough. Hence, (25) holds. Since for t ∈ (tk, tk+1],

‖A 1
2 sinh A

1
2 (t − 2a)‖ ≤ TA,ε

∞∑

n=1

|t − 2a|2n−1

(2n − 1)! (ρ(A) + ε)n

≤ TA,ε

√
ρ(A) + εe

√
ρ(A)+εt ,

where a = ti j − ti j−1 + · · · ± ti1 , i < i1 < i2 < · · · < i j ≤ k. Using the same method
as that of u(t, 0, u0, u1), we also have

‖u′(t, t0, u0, u1)‖ ≤ �1e
ϒ
2 t (||u0|| + ||u1||). (28)

for any t > 0 large enough. Therefore,

lim
t→∞ u′(t, t0, u0, u1) = 0.

�
Remark 3.2 Theorem 3.2 show that second order differential systems instable can be
stable by adding an impulsive impact.

In the following example we provide an application of Theorem 3.2.

Example 3.1 Consider (4) with

A =
( 1

9 0
0 1

16

)

, B1 = B2 =
(− 1

2 0
0 − 1

2

)

, (29)

and the initial value

u0 =
(
0
1

)

, u1 =
(
1
0

)

(30)
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Fig. 1 Red line denotes u(t) and blue line denotes û(t) in (31), respectively

respectively. Let ti = i . Clearly, (19) holds. In addition, we have

ϒ = √
ρ(A) + p ln

(

ρ

(

I + B1 + B2

2

)

+ ρ

(
B1 − B2

2

))

≈ −0.36 < 0.

Hence, Theorem 3.2 implies the solution of (4) with (29) and (30) is asymptotical
stability. Indeed, from (18), the solution of (4) with (29) and (30) is

u(t) =
(
û(t)
u(t)

)

=
( 1

2 0
0 1

2

)[t] (
3 sinh t

3
cosh t

4

)

. (31)

It is easy to see u(t) is asymptotical stability in [0,+∞) (see Fig. 1).

4 Second Order Linear Perturbed Problem

In this section, we study the exponential stability of the linear perturbed problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + P(t)u(t), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

where A, B1, B2, ti are as in (4) and P is a continuous matrix in R outside ti .
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To this end, we present an explicit solutions of the following second order linear
nonhomogeneous initial value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + f (t), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

(32)

here f : (ti , ti+1] → R is continuous.

Theorem 4.1 For all t ∈ (tk, tk+1], the solutions u(t) of (32) have the following form

u(t) = W (A, t, u0, u1) +
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s) f (s)ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s) f (s)ds,

(33)

where W (A, t, u0, u1) is the solution of the initial value problem (4), and

Wi (A, t, s) = Ak−i
1 A− 1

2 sinh A
1
2 (t − s) − Ak−i−1

1 A2A
− 1

2
∑

i+1≤i11≤k

sinh A
1
2 (t − 2ti11 + s)

+ Ak−i−2
1 A2

2A
− 1

2
∑

i+1≤i21<i22≤k

sinh A
1
2 (t − 2ti22 + 2ti21 − s) + · · · + (−1)k−i−1A1A

k−i−1
2

A− 1
2

∑

i+1≤ik−1,1<ik−1,2<···<ik−1,k−1≤k

sinh A
1
2 (t − 2tik−1,k−1 + 2tik−1,k−2 − · · · ± 2tik−1,1 ∓ s)

+ (−1)k−i Ak−i
2 A− 1

2 sinh A
1
2 (t − 2tk + 2tk−1 − · · · ± 2ti+1 ∓ s), i = 0, 1, · · · , k − 1.

Proof It follows from Lemma 2.3 that (33) holds for k = 0.Without loss of generality,
assume that (33) holds for k = 2m − 1, that is

u(t) =A2m−1
1 H(x) + A2m−2

1 A2

∑

1≤i11≤2m−1

G(x − 2xi11) + A2m−3
1 A2

2

∑

1≤i21<i22≤2m−1

H(x − 2xi22 + 2xi21)

+ · · · + A1A
2m−2
2

∑

1≤ik−1,1<ik−1,2<···<ik−1,k−1≤2m−1

H(x − 2xik−1,k−1

+ 2xik−1,k−2 − · · · − 2xik−1,1)

+ A2m−1
2 G(x − 2xk + 2xk−1 − · · · + 2x1) +

2m−2∑

i=0

∫ ti+1

ti
Wi (A, t, s) f (s)ds

+ A− 1
2

∫ t

t2m−1

sinh A
1
2 (t − s) f (s)ds. (34)
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Note

(I + B1) cosh A
1
2 (t − tk) sinh A

1
2 (tk − 2a + s) + (I + B2) sinh A

1
2 (t − tk)

cosh A
1
2 (tk − 2a + s)

= A1 sinh A
1
2 (t − 2a + s) − A2 sinh A

1
2 (t − 2tk + 2a − s),

(35)

where a is an arbitrary constant. Thus combining (35), (34) with Lemma 2.3, we see
that (33) holds for k = 2m. �
Definition 4.1 System (32) is uniformly exponentially stable if there exists N > 0
and α > 0 such that the solution of (32) satisfies the estimate

||u(t)|| ≤ Ne−αt , ||u′(t)|| ≤ Ne−αt , t ∈ [0,+∞)\{ti }, i ∈ N.

Theorem 4.2 Assume that (19) hold. Suppose

||P(t)|| < (ρ(A1) + ρ(A2))
i , ∀t ∈ (ti , ti+1], i ∈ N

and p in (19) satisfies

� = �1

2
+ √

ρ(A) + p ln(ρ(A1) + ρ(A2)) < 0. (36)

Then, the solution of (5) is exponentially stable.

Proof According to Theorem 4.1, the solution u(t) of (5) can be expressed in the
following form,

u(t) =W (A, t, u0, u1) +
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)P(s)u(s)ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s)P(s)u(s)ds.

(37)

Following the proof process of (26), we have

||W (A, t, u0, u1)|| ≤ �1e
√

ρ(A)+εt (ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||). (38)

Next, we give an estimate on ||Wi (A, t, s)||. For all i < i1 < i2 < i3 ≤ k, if
t − 2ti2 + 2ti1 − s ≥ 0, t − 2ti3 + 2ti2 − 2ti1 + s ≥ 0, we have

t − 2ti2 + 2ti1 − s ≤ t − s,

t − 2ti3 + 2ti2 − 2ti1 + s ≤ t − s.



Stability Analysis of Second Order Impulsive... Page 17 of 30 54

If t − 2ti2 + 2ti1 − s ≤ 0, t − 2ti3 + 2ti2 − 2ti1 + s ≤ 0, we have

2ti2 − 2ti1 − t + s ≤ t − s,

2ti3 − 2ti2 + 2ti1 − t − s ≤ t − s.

Therefore, for any i < i1 < i2 < · · · < i j ≤ k, we have

|t − 2ti j + 2ti j−1 − · · · ± 2ti1 ∓ s| ≤ t − s. (39)

Hence, making use of Lemma 2.5 and (39), we deduce

||A− 1
2 sinh A

1
2 (t − 2a ± s)|| ≤ TA,ε

∞∑

n=0

|t − 2a ± s|2n+1

(2n + 1)! (ρ(A) + ε)n

≤ TA,ε

∞∑

n=0

(t − s)2n+1

(2n + 1)! (ρ(A) + ε)n

≤ TA,ε√
ρ(A) + ε

e
√

ρ(A)+ε(t−s),

(40)

where a = ti j − ti j−1 + · · · ± ti1 , i < i1 < i2 < · · · < i j ≤ k. Therefore, using (40)
and Lemma 2.5, for s ∈ (ti , ti+1], i ∈ N, we find

||Wi (A, t, s)|| ≤ TA,ε√
ρ(A) + ε

(
||Ak−i

1 || + C1
k−i ||Ak−2

1 A2||+

· · · + Ck−i−1
k−i ||A1A

k−2
2 || + ||Ak−i

2 ||
)
e
√

ρ(A)+ε(t−s)

≤ T 3
ε√

ρ(A) + ε

(
ρ(A1) + ρ(A2) + 2ε

)k−i
e
√

ρ(A)+ε(t−s).

(41)

Therefore, using (38), (40) and (41), we have

||u(t)|| ≤ ||W (A, t, u0, u1)|| +
k−1∑

i=0

∫ ti+1

ti
‖Wi‖ · ||P(s)u(s)||ds

+
∫ t

tk
||A− 1

2 sinh A
1
2 (t − s)|| · ||P(s)u(s)||ds

≤ �1e
√

ρ(A)+εt (ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)

+ T 3
ε√

ρ(A) + ε

k−1∑

i=0

∫ ti+1

ti
(ρ(A1) + ρ(A2) + 2ε)k−i

e
√

ρ(A)+ε(t−s)‖P(s)u(s)‖ds
+ TA,ε√

ρ(A) + ε

∫ t

tk
e
√

ρ(A)+ε(t−s)‖P(s)u(s)‖ds
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≤ �1e
√

ρ(A)+εt (ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)

+ T 3
ε√

ρ(A) + ε

∫ t

0
(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+ε(t−s)‖u(s)‖ds

≤ �1e
√

ρ(A)+εt (ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)

+ T 3
ε√

ρ(A) + ε

∫ t

0
e
√

ρ(A)+ε(t−s)(ρ(A1) + ρ(A2) + 2ε)
k(t−s)

t ‖u(s)‖ds

≤ �1e
θ t (‖u0‖ + ‖u1‖) + T 3

ε√
ρ(A) + ε

∫ t

0
eθ(t−s)‖u(s)‖ds, (42)

where

θ = √
ρ(A) + ε + k

t
ln(ρ(A1) + ρ(A2) + 2ε).

Multiply both sides of (42) by e−θ t , and we find

e−θ t ||u(t)|| ≤ �1(||u0|| + ||u1||) + �1

2

∫ t

0
e−θs ||u(s)||ds.

Using Bellman’s inequality, we have

e−θ t ||u(t)|| ≤ �1(||u0|| + ||u1||)e
�1
2 t ,

hence,

||u(t)|| ≤ �1(||u0|| + ||u1||)e(θ+ �1
2 )t . (43)

It follows from condition (36) that one can choose ε small enough such that

√
ρ(A) + ε + k

t
ln(ρ(A1) + ρ(A2) + 2ε) + �1

2
≤ �

2
< 0.

Then, (43) implies

||u(t)|| ≤ �1(||u0|| + ||u1||)e�
2 t → 0 for t → ∞. (44)

Since

‖ cosh A
1
2 (t − 2a ± s)‖ ≤

∞∑

n=0

|t − 2a ± s|2n
(2n)! ‖An‖

≤ TA,ε

∞∑

n=0

(t − s)2n

(2n)! (ρ(A) + ε)n

≤ TA,εe
√

ρ(A)+ε(t−s), t ∈ (tk, tk+1],

(45)

where a = ti j − ti j−1 + · · · ± ti1 , i < i1 < i2 < · · · < i j ≤ k, using a similar method
used in the process of (44), we also can show that

||u′(t)|| → 0 for t → ∞, (46)
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we omit the details. It follows from (44), (46) that the solution of (5) is exponentially
stable. �

5 Existence, Uniqueness and Ulam–Hyers–Rassias Stability of
Solutions for Nonlinear Problem

In this section, we study the existence, uniqueness and Ulam–Hyers–Rassias stability
of solutions for second order semilinear impulsive differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + f (t, u(t)), t ∈ J ′ = J \ {ti }, i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ), i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ), i ∈ N,

u(0) = u0, u′(0) = u1,

where A, B1, B2, ti are as in (4) and f : J ′ ×R
n → R

n is continuous, J = [0,+∞).
In addition, we assume the impulsive points fulfill

lim
i→∞(ti+1 − ti ) �= 0.

Let PC(I ,Rn) denote the Banach space of piecewise continuous on interval I ,
that is PC(I ,Rn) = {u : I → R

n|u ∈ C((tk−1, tk],Rn) for k ∈ N and there
exists u(t−k ) and u(t+k ), k ∈ N with u(tk) = u(t−k )} equipped with the Chebyshev
PC-norm ||u||PC := sup{||u(t)|| : t ∈ I }, PCB(I ,Rn) is the Banach space of all
bounded functions in PC(I ,Rn) equipped with the Bielecki PCB-norm ||u||PCB :=
sup{||u(t)||e−ωt : t ∈ I } for some ω ∈ R.

Consider the following second order linear nonhomogeneous initial value problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + f (t), t ∈ J ′,
u(t+i ) = u(t−i ) + B1u(t−i ) + gi , i = 1, 2, · · · ,m,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ) + gi , i = 1, 2, · · · ,m,

u(0) = u0, u′(0) = u1,

(47)

where A, B1, B2, ti are as in (4), and f : J → R
n is continuous, g1, g2, · · · , gm is a

number sequence.

Theorem 5.1 If t ∈ (tk, tk+1], then the solutions u(t) of linear impulsive differential
equations (47) is given as follows:

u(t) = W (A, t) + W (A, t, u0, u1) +
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)h(s)ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s)h(s)ds,
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where W (A, t, u0, u1), Wi (A, t, s) is given in (33) and

W (A, t) =
k∑

i=1

gi
(
Ak−i
1 H(x − xi ) + Ak−i−1

1 A2

∑

i< j11≤k

G(x − 2x j11 + xi )

+ Ak−i−2
1 A2

2

∑

i< j21< j22≤k

H(x − 2x j22 + 2x j21 − xi ) + · · · + Ak−i
2

G(x − 2xk + 2xk−1 − · · · ± xi )(or H(x − 2xk + 2xk−1 − · · · ± xi ))
)
.

(48)

Proof The proof is essentially similar to that of Theorem 4.1, so we omit it. �

We list for convenience the following assumption.
(H) f ∈ C(J × R

n,Rn) and there exists a constant L f > 0 such that

|| f (t, y2) − f (t, y1)|| ≤ L f ||y2 − y1||,

for all t ∈ J and y1, y2 ∈ R
n . Moreover || f ||∞ := maxt∈J || f (t, 0)|| < ∞.

Theorem 5.2 Suppose that (H), (19) hold, and for any fixed 0 < ε ≤ 1 used in Lemma
2.5, L f satisfies

L f ≤ ρ(A) + ε

T 3
ε

(49)

Then (6) has a unique solution u ∈ PCB(J ,Rn) and ω = √
ρ(A) + 1.

Proof For all t ∈ (tk, tk+1], we define the mapping S : PC(J ,Rn) → PC(J ,Rn) by

Su(t) = W (A, t,u0, u1) +
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s) f (s, u(s))ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s) f (s, u(s))ds.

Clearly, S : PC(J ,Rn) → PC(J ,Rn) is continuous. FromTheorem 4.1, the solution
of (6) is equivalent to the fixed point of S.
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For any u, u ∈ PCB(J ,Rn) and t ∈ (tk, tk+1], according to condition (H) and
(41), we have

||Su − Su|| = ||
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)

(
f (s, u(s)) − f (s, u(s))

)
ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s)

(
f (s, u(s)) − f (s, u(s))

)
ds||

≤ L f T 3
ε√

ρ(A) + ε

∫ t

0
e
√

ρ(A)+ε(t−s)ds‖u − u‖PCB

≤ L f T 3
ε

ρ(A) + ε
e
√

ρ(A)+εt‖u − u‖PCB

Thus,

e−√
ρ(A)+1t ||Su − Su|| <

L f T 3
ε

ρ(A) + ε
‖u − u‖PCB .

From (49), S : PCB(J ,Rn) → PC(J ,Rn) is a contraction mapping. Also, we have

||S0|| ≤ ||W (A, t, u0, u1)|| + ||
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s) f (s, 0)ds||

+ ||A− 1
2

∫ t

tk
sinh A

1
2 (t − s) f (s, 0)ds||

≤ �1e
ϒ
2 t (||u0|| + ||u1||) + T 3

ε ‖ f ‖∞√
ρ(A) + ε

∫ t

0
e
√

ρ(A)+ε(t−s)ds

≤ �1e
ϒ
2 t (||u0|| + ||u1||) + T 3

ε ‖ f ‖∞
ρ(A) + ε

e
√

ρ(A)+εt

≤ �1(‖u0‖ + ‖u1‖) + T 3
ε ‖ f ‖∞

ρ(A) + ε
e
√

ρ(A)+1t ,

which implies

e−√
ρ(A)+1t ||S0|| ≤ �1(||u0|| + ||u1||) + T 3

ε ‖ f ‖∞
ρ(A) + ε

.

Thus

||S0||PCB ≤ �1(||u0|| + ||u1||) + T 3
ε ‖ f ‖∞

ρ(A) + ε
.

From Lemma 2.4, S : PCB(J ,R) → PCB(J ,R) has a unique fixed point, which is
the solution of system (6). �
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Let ε∗ > 0, ψ > 0 and ϕ(t) ∈ PC(J ,R+) be a nondecreasing function. We
consider the following inequalities:

⎧
⎪⎪⎨

⎪⎪⎩

||v′′(t) − Av(t) − f (t, v(t))|| ≤ ε∗(ρ(A1) + ρ(A2) + 2ε)iϕ(t), t ∈ (ti , ti+1], i ∈ N

�v(ti ) − B1v(t−i ) ≤ ε∗(ρ(A1) + ρ(A2) + 2ε)iψ, i ∈ N,

�v′(ti ) − B2v
′(t−i ) ≤ ε∗(ρ(A1) + ρ(A2) + 2ε)iψ, i ∈ N.

(50)
and we take the vector space

X := PC2(J ,Rn).

Definition 5.1 The equation (6) is Ulam–Hyers–Rassias stable with respect to (ϕ, ψ),
if there exists constants c, c > 0 such that for each function v̂ ∈ X satisfying (50),
there exists a solution v ∈ X of (6) with

||v̂(t) − v(t)|| ≤ ε∗c(ρ(A1) + ρ(A2) + 2ε)i (ϕ(t) + ψ), t ∈ (ti , ti+1], (51)

||v̂′(t) − v′(t)|| ≤ ε∗c(ρ(A1) + ρ(A2) + 2ε)i (ϕ(t) + ψ), t ∈ (ti , ti+1]. (52)

Remark 5.1 A function v̂ ∈ X is a solution of (50) if and only if there is G ∈ X , and
a sequence gi , i ∈ N, such that:

(a) ||G(t)|| ≤ ε∗(ρ(A1) + ρ(A2) + 2ε)iϕ(t), t ∈ (ti , ti+1], i ∈ N,
||gi || ≤ ε∗(ρ(A1) + ρ(A2) + 2ε)iψ , t ∈ (ti , ti+1], i ∈ N;

(b) v̂′′(t) = Av̂(t) + f (t, v̂(t)) + G(t), t ∈ (ti , ti+1], i ∈ N;
(c) �v̂(ti ) = B1v̂(t−i ) + gi , i ∈ N;
(d) �v̂′(ti ) = B2v̂

′(t−i ) + gi , i ∈ N.

Theorem 5.3 Assume that all the assumptions in Th 5.2 hold (so the solution of (6) is
unique), and there exists a constant τ > 0 such that

∫ t

0
e−√

ρ(A)sϕ(s)ds ≤ τϕ(t), ∀t ≥ 0, (53)

and p is as in (16) and L f satisfies

� = �1L f

2
+ √

ρ(A) + p ln(ρ(A1) + ρ(A2)) < 0. (54)

Then the equation (6) is Ulam–Hyers–Rassias stable with respect to (ϕ, ψ).

Proof Let v̂ ∈ X be a solution of (50), and from Remark 5, v̂(t) satisfies the following
impulsive differential equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u′′(t) = Au(t) + f (t, u(t)) + G(t), t ∈ (ti , ti+1], i ∈ N,

u(t+i ) = u(t−i ) + B1u(t−i ) + gi , i ∈ N,

u′(t+i ) = u′(t−i ) + B2u
′(t−i ) + gi , i ∈ N,

u(0) = u0, u′(0) = u1,

(55)
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here G(t) and gi satisfy

||G(t)|| ≤ ε∗(ρ(A1) + ρ(A2))
iϕ(t), t ∈ (ti , ti+1], (56)

||gi || ≤ ε∗(ρ(A1) + ρ(A2))
iψ. (57)

Using Theorem 5.1 we have

v̂(t) = W (A, t) + W (A, t, u0, u1) +
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)

(
f (s, v̂(s)) + G(s)

)
ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s)

(
f (s, v̂(s)) + G(s)

)
ds, t ∈ (tk, tk+1].

From (40) and (45), for any t ≥ 0, we have

||H(x − 2a ± xi )|| ≤ 2max

{
1√

ρ(A) + ε
, 1

}

TA,εe
√

ρ(A)+ε(t−ti )(||u0|| + ||u1||),
(58)

||G(x − 2a ± xi )|| ≤ 2max

{
1√

ρ(A) + ε
, 1

}

TA,εe
√

ρ(A)+ε(t−ti )(‖u0‖ + ‖u1‖),
(59)

where a = ti j − ti j−1 +· · ·± ti1 , i < i1 < i2 < · · · < i j ≤ k. Hence, using (58), (59),
for any t ∈ (tk, tk+1], we have

||W (A, t)||

≤
k∑

i=0

2||gi ||
[

T 2
ε (ρ(A1) + ε)k−i max

{
1√

ρ(A) + ε
, 1

}

e
√

ρ(A)+ε(t−ti )

+ C1
k−i T

3
ε (ρ(A1) + ε)k−i−1(ρ(A2) + ε)max

{
1√

ρ(A) + ε
, 1

}

e
√

ρ(A)+ε(t−ti )

+ · · · + T 2
ε (ρ(A2) + ε)k−i max

{
1√

ρ(A) + ε
, 1

}

e
√

ρ(A)+ε(t−ti )
]

(||u0|| + ||u1||)

≤ ε∗ψ�1(ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)
k∑

i=1

e
√

ρ(A)+ε(t−ti ).

(60)
Let u(t) be the unique solution of (6) (see Theorem 5.2). Then using Lemma 2.7, (40),
(41), (53), (56), (57) and (60), for all t ∈ (tk, tk+1], we have

||u − v̂|| = ||
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)

(
f (s, u(s)) − f (s, v̂(s)) − G(s)

)
ds

+ A− 1
2

∫ t

tk
sinh A

1
2 (t − s)

(
f (s, u(s)) − f (s, v̂(s)) − G(s)

)
ds − W (A, t)||
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≤ ||
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)

(
f (s, u(s)) − f (s, v̂(s))

)
ds||

+ ||A− 1
2

∫ t

tk
sinh A

1
2 (t − s)

(
f (s, u(s)) − f (s, v̂(s))

)
ds||

+ ||
k−1∑

i=0

∫ ti+1

ti
Wi (A, t, s)G(s)ds|| + ||A− 1

2

∫ t

tk
sinh A

1
2 (t − s)G(s)ds|| + ||W (A, t)||

≤ L f T 3
ε√

ρ(A) + ε

k−1∑

i=0

∫ ti+1

ti
(ρ(A1) + ρ(A2) + 2ε)k−i e

√
ρ(A)+ε(t−s)||u − v̂||ds

+ L f Tε√
ρ(A) + ε

∫ t

tk
e
√

ρ(A)+ε(t−s)||u − v̂||ds

+ ε∗T 3
ε√

ρ(A) + ε
(ρ(A1) + ρ(A2) + 2ε)k

∫ t

0
e
√

ρ(A)+ε(t−s)ϕ(s)ds

+ ε∗ψ�1(ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)
k∑

i=1

e
√

ρ(A)+ε(t−ti )

≤ �1L f

2

∫ t

0
e
√

ρ(A)+ε(t−s)||u − v̂||ds + ε∗�1

2
(ρ(A1)

+ ρ(A2) + 2ε)k
∫ t

0
e
√

ρ(A)+ε(t−s)ϕ(s)ds

+ ε∗ψ�1

λ
√

ρ(A) + ε
(||u0|| + ||u1||)(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+εt

≤ �1L f

2

∫ t

0
e
√

ρ(A)+ε(t−s)||u − v̂||ds + ε∗�1τ

2
(ρ(A1)

+ ρ(A2) + 2ε)ke
√

ρ(A)+εt (ϕ(t) + ψ)

+ ε∗�1

λ
√

ρ(A) + ε
(||u0|| + ||u1||)(ϕ(t) + ψ)(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+εt ,

(61)

here λ is the minimum length of the interval, i.e. λ = inf{ti+1 − ti |i ∈ N}. Multiply
both sides of (61) by e−√

ρ(A)+εt and we find

e−√
ρ(A)+εt ||u − v̂|| ≤ �1L f

2

∫ t

0
e−√

ρ(A)+εs ||u − v̂||ds

+ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1) + ρ(A2) + 2ε)k .
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Since ϕ ∈ PC(J ,R+) is a nondecreasing function, using Bellman’s inequality, we
have

e−√
ρ(A)+εt ||u − v̂|| ≤ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1)

+ ρ(A2) + 2ε)ke
�1L f t

2 ,

(62)

which implies

||u − v̂|| ≤ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

e
(√

ρ(A)+ε+ �1L f
2 + k

t ln(ρ(A1)+ρ(A2)+2ε)
)
t
.

Making use of (19), there exists T > 0, such that

i(0, t)

t
> p − ε

for any t > T . In addition, according to (54), one can choose ε > 0 small enough
such that

√
ρ(A) + ε + �1L f

2
+ (p − ε) ln(ρ(A1) + ρ(A2) + 2ε) <

�

2
< 0.

Therefore, we have

||u − v̂|| ≤
(

�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

ε∗(ϕ(t) + ψ) (63)

for any t > T and t ∈ (tk, tk+1].
In the case of t ≤ T and t ∈ (tk, tk+1], from (62), we have

||u − v̂|| ≤ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1) + ρ(A2) + 2ε)ke
(√

ρ(A)+ε+ �1L f
2

)
T
.

Hence, (51) holds for

c = min

{(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1) + ρ(A2) + 2ε)−k,

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

e

(√
ρ(A)+ε+ �1L f

2

)
T
}

.
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Similarly, for any t ∈ (tk, tk+1], we also have

||W ′
(A, t)|| ≤ 2ε∗ψ max

{
√

ρ(A) + ε,
1√

ρ(A) + ε

}

T 3
ε (||u0|| + ||u1||)

(

ρ(A1)

+ ρ(A2) + 2ε
)k

k∑

i=1

e
√

ρ(A)+ε(t−ti )

=ε∗ψ�1 (ρ(A1) + ρ(A2) + 2ε)k (||u0|| + ||u1||)
k∑

i=1

e
√

ρ(A)+ε(t−ti ),

(64)
hence, making use of (56), (57) and (64), we have

||u′ − v̂′|| ≤ T 3
ε L f

k−1∑

i=0

∫ ti+1

ti
(ρ(A1) + ρ(A2) + 2ε)k−i e

√
ρ(A)+ε(t−s)||u − v̂||ds

+ L f Tε

∫ t

tk
e
√

ρ(A)+ε(t−s)||u − v̂||ds

+ ε∗T 3
ε (ρ(A1) + ρ(A2) + 2ε)k

∫ t

0
e
√

ρ(A)+ε(t−s)ϕ(s)ds

+ ε∗ψ�1(ρ(A1) + ρ(A2) + 2ε)k(||u0|| + ||u1||)
k∑

i=1

e
√

ρ(A)+ε(t−ti )

≤ �1L f

2

∫ t

0
e
√

ρ(A)+ε(t−s)||u − v̂||ds + ε∗�1

2
(ρ(A1) + ρ(A2) + 2ε)k

∫ t

0
e
√

ρ(A)+ε(t−s)ϕ(s)ds

+ ε∗ψ�1

λ
√

ρ(A) + ε
(||u0|| + ||u1||)(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+εt

≤ �1L f t

2

∫ t

0
e
√

ρ(A)+ε(t−s)||u′ − v̂′||ds

+ ε∗�1τ

2
(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+εt (ϕ(t) + ψ)

+ ε∗�1

λ
√

ρ(A) + ε
(||u0|| + ||u1||)(ϕ(t) + ψ)(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+εt

≤ ε∗(ϕ(t) + ψ)
(�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)
(ρ(A1) + ρ(A2) + 2ε)ke

√
ρ(A)+εt

+ �1L f t

2
e
√

ρ(A)+εt
∫ t

0
e−√

ρ(A)+εs ||u′ − v̂′||ds.
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Multiply both sides by e−√
ρ(A)+εt and we have

e−√
ρ(A)+εt ||u′ − v̂′|| ≤ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �2(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1) + ρ(A2) + 2ε)k + �1L f t

2

∫ t

0
e−√

ρ(A)+εs ||u′ − v̂′||ds,

hence, by Lemma 2.6 we have

e−√
ρ(A)+εt ||u′ − v̂′|| ≤ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1) + ρ(A2) + 2ε)ke
�1L f t

2

2 ,

so

||u′ − v̂′|| ≤ ε∗(ϕ(t) + ψ)

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

e
�1L f t

2

2 +k ln(ρ(A1)+ρ(A2)+2ε)+√
ρ(A)+εt . (65)

Note

�1L f t2

2
+ k ln(ρ(A1) + ρ(A2) + 2ε) + √

ρ(A) + εt

≤
(�1L f

2
+ k

t
ln(ρ(A1) + ρ(A2) + 2ε) + √

ρ(A) + ε
)
t, t ≤ 1,

and

�1L f t2

2
+ k ln(ρ(A1) + ρ(A2) + 2ε) + √

ρ(A) + εt

≤
(�1L f

2
+ k

t
ln(ρ(A1) + ρ(A2) + 2ε) + √

ρ(A) + ε
)
t2, t ≥ 1.

Therefore, from (54), we can choose ε > 0 small enough such that

e
�1L f t

2

2 +k ln(ρ(A1)+ρ(A2)+2ε)+√
ρ(A)+εt ≤ 1,

for any t > T large enough. Therefore, using the same method as in the previous
proof, we have

||u′ − v̂′|| ≤ cε∗(ϕ(t) + ψ)(ρ(A1) + ρ(A2) + 2ε)k, t ∈ (tk, tk+1], (66)
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which implies (52) holds for

c = min

{(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

(ρ(A1) + ρ(A2) + 2ε)−k,

(
�1τ

2
+ �1(||u0|| + ||u1||)

λ
√

ρ(A) + ε

)

e
(√

ρ(A)+ε+ �1L f
2

)
T
}

.

Hence, system (6) is Ulam–Hyers–Rassias stable with respect to (ϕ, ψ). �
Example 5.1 Consider the second order impulsive differential equation (6) with

f (t, u(t)) =
√
2
2 sin u(t), ti = i , i = 0, 1, 2, · · · and

A =
(
1 0
0 2

)

, B1 = B2 =
(
e−3 − 1 0

0 e−3 − 1

)

,

and the initial value

u0 =
(
0
1

)

, u1 =
(
1
0

)

.

Define

sin u(t) = (sin u1(t), sin u2(t), · · · , sin un(t))
T ,

∀u(t) = (u1(t), u2(t), · · · , un(t))
T ∈ R

n .

Let Rm×n be the usual matrix space with the norm ||A|| = max
j

∑m
i=1 |ai, j |, and set

ε = 1 in Lemma 2.5, then we can pick TA,ε = TA1,ε = TA2,ε = 1. Note

|| f (t, u) − f (t, v)|| ≤
√
2

2
||u − v||,

for allu, v ∈ R
N . Thus conditions (19) and (49) hold, and (H) is fulfilled for L f =

√
2
2 .

Hence, (6) has a unique solution u ∈ PCB(J ,Rn) with ω = √
3. Furthermore, let

ϕ(t) = et , ψ = 1, and τ = 1, and v(t) be a solution of (50). Then

� = �1L f

2
+ √

ρ(A) + p ln(ρ(A1) + ρ(A2)) =
√
6

2
+ √

2 − 3 < 0.

Then all the assumptions of Theorem 5.3 is fulfilled, and therefore equation (6) is
Ulam–Hyers–Rassias stable with respect to (et , 1).
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