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Abstract
In this work, Lie symmetry method is employed to obtain invariant solutions of KP-
BBM equation. It represents propagation of bidirectional small amplitude waves in
nonlinear dispersive medium. The infinitesimal generators and their commutative
relations are derived using invariance under one parameter transformation. These
infinitesimal generators lead to reductions of KP-BBM equation into ODEs under two
stages and thus exact solutions are constructed consisting several arbitrary constants.
To analyze the physical phenomena, these solutions are expanded graphically with
numerical simulation. Consequently, multisoliton, doubly soliton, compacton, soli-
ton fusion, parabolic nature and annihilation profiles of solutions are demonstrated to
validate these obtained results with physical phenomena andmake the findingsworthy.

Keywords KP-BBM equation · Lie symmetry method · Symmetry reductions ·
Invariant solutions

1 Introduction

The study of nonlinear partial differential equations (NPDEs) are widely growing for
its direct relevance with various physical phenomena like plasma physics, nonlinear
optics, fluid mechanics, elastic media, optical fibers etc. [1–12]. Due to high nonlinear
behavior, these NPDEs do not follow superposition principles and are difficult to
be analyzed. To obtain their exact solution plays a vital role in understanding the
phenomena physically. Therefore, a number of effective tools such as tanh method
[1,2], extended mapping method [3], bifurcation method [4,5], Exp-function method
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[6], (G
′
/G)-expansion method [7], Hirota’s method [8,9] and Lie symmetry method

[10,11], [13–28] have been evolved for reliable treatments of these NPDEs.
The motive with present study is to obtain invariant solutions of (2+1)-dimensional

KP-BBM equation

(ut + ux − a(u2)x − buxxt )x + kuyy = 0 (1.1)

where a, b, k are constants while u represents wave amplitude. It describes propagation
of bidirectional small amplitude waves in nonlinear dispersive medium. The KP-
BBM equation was first discovered by A.M. Wazwaz [1] by combining Kadomtsov-
Petviashvili (KP) and Benjamin-Bona-Mahony (BBM) equations

(ut +auux +uxxx )x +uyy = 0 and ut +ux −a(u2)x −buxxt = 0 respectively. The
KP equation is weakly two dimensional integrable generalization of unidirectional
KdV equation [29]. It represents propagation of long waves and admits quadratic
nonlinearity with dissipation [30]. While, BBM equation is unidirectional dispersive
long-wave equation, known as associative KdV equation for small amplitude, long
surface wave propagation. [31].

A.M. Wazwaz [1] investigated KP-BBM equation and its generalized form as well
as derived some exact solutions using tanh and sine-cosine methods. Continuing,
A.M Wazwaz [2] used extended tanh method to extract soliton solutions of Eq. (1.1).
Some periodic wave solutions were found by M.A. Abdou [3]. Tang et al. [4] studied
generalized KP-BBM equation and extracted soliton solutions with aid of bifurcation
theory. Proceeding with same spirit, Song et al. [5] employed bifurcation method
and listed some new soliton solution of Eq. (1.1). Moreover, some exact periodic
solutions were constructed by Yu and Ma [6]. Alam and Akbar [7] proposed (G

′
/G)-

expansionmethod and used it to derive travellingwave solutions ofKP-BBMequation.
Thereafter,Manafian et al. [8] usedHirota’s method to derive bilinear form of Eq. (1.1)
and analyzed its stability. Proceeding with same methodology, Manafian et al. [9]
described the intraction between solitons and lumps. Recently, Tanwar and Wazwaz
[10] derived optimal system via Lie symmetries and generated some exact soliton
solution of Eq. (1.1). Some more solutions were found by Kumar et al. [11]. Apart,
Mekki and Ali [12] analyzed numerical results of KP-BBM equation using finite
difference scheme and Crank-Nicholson method.

The above findings [1–12]motivate us to derive some exact solutionswith aid of Lie
point symmetries. The main idea of method is based on invariance under various sym-
metries. The method reduces the independent variables. Thus, repeated applications
lead to determining ODEs, which result into exact solutions. These exact solutions
describe doubly soliton, multisoliton, compacton, soliton fusion and parabolic nature.
Solitons are localized solitary wave packets retaining their shapes when propagating
with constant velocity. It is experimentally reported as result of balancing in dispersion
effect and nonlinearity. Solitons are widely used in shallowwater waves, long-distance
transmission and optical switching device due to its high stability. The compactons
are newly evolved class of solitons having compact support without exponential tails
or wings [32]. It shows the completely elastic interaction behavior similar to solitons.
Compactons have wide applications in super deformed nuclei, cluster in hydrody-
namic models, inertial fusion and the fission of liquid drops. Substantially, the non
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elastic behavior of solitons are observed in some specific phenomena. It may show
fusion of two or more solitons in one soliton as well as fission of one soliton into two
or more.

The remaining paper is organized as: Sect. 2 deals with Lie symmetries. The exact
invariant solutions are reported in Sect. 3. In Sect. 4, the obtained results are analyzed.
The conclusions and remarks are furnished in the end.

2 Lie Symmetries

In this section, we aim to discuss about basic terminology to produce infinitesimal
generators. For, one parameter transformations are

t∗ = t + εξ t + O(ε2)

y∗ = y + εξ y + O(ε2)

x∗ = x + εξ x + O(ε2)

u∗ = u + εθ + O(ε2)

where ξ t , ξ y , ξ x , θ are corresponding infinitesimals to keep PDEs invariant.
The associated vector field is

ψ = ξ t
∂

∂t
+ ξ y ∂

∂ y
+ ξ x

∂

∂x
+ θ

∂

∂u
.

Employing prolongation Pr (3)(�) = 0 on Eq. (1.1), the invariant surface is

θ xt + θ xx − 2a(u θ xx + uxx θ) − 4aux θ x − b θ xxxt + k θ yy = 0 (2.1)

where

θ x = Dxθ − ux Dxξ
x − uy Dyξ

y − ut Dtξ
t

θ xx = D2
xθ − 2uxx Dxξ

x − ux D
2
xξ

x − 2uxy Dxξ
y

− uy D
2
xξ

y − 2uxt Dxξ
t − ut D

2
xξ

t

θ yy = D2
yθ − 2uxy Dyξ

x − ux D
2
yξ

x − 2uyy Dyξ
y

− uy D
2
yξ

y − 2uyt Dyξ
t − ut D

2
yξ

t

θ xt = Dx Dtθ − uxx Dtξ
x − uxt Dxξ

x − ux Dx Dtξ
x

− uxy Dtξ
y − uyt Dxξ

y − uy Dx Dtξ
y − uxt Dtξ

t

− utt Dxξ
t − ut Dx Dtξ

t

θ xxt = D2
x Dtθ − ux D

2
x Dtξ

x − uxt D
2
xξ

x − 2uxx Dx Dtξ
x

− 2uxxt Dxξ
x − uxxx Dtξ

x − uy D
2
x Dtξ

y − uyt D
2
xξ

y
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Table 1 Commutative table [αi α j ] α1 α2 α3 α4

α1 0 0 0 0

α2 0 0 0 α2

α3 0 0 0 2 α3

α4 0 −α2 −2 α3 0

− 2uxyDx Dtξ
y − 2uxyt Dxξ

y − uxxy Dtξ
y − ut D

2
x Dtξ

t

− utt D
2
xξ

t − 2uxt Dx Dtξ
t − 2uxtt Dxξ

t − uxxt Dtξ
t

with total derivatives Dt , Dy , Dx .
Using these extensions in Eq. (2.1), we get desired infinitesimals

ξ x = b1, ηy = b2 + b4y, ξ t = b3 + 2b4t, θ = b4(
1

a
− 2u).

with real constants b1, b2, b3 and b4.
The symmetry analysis for Eq. (1.1) is associated with following vectors

α1 = ∂

∂x
, α2 = ∂

∂ y
, α3 = ∂

∂t
, α4 = y

∂

∂ y
+ 2t

∂

∂t
+ (

1

a
− 2u)

∂

∂u
.

The commutative relations of these vectors are given in Table 1, where (i, j)th entry
of commutator table are represented by Lie brackets [αi , α j ] = αiα j − α jαi .

The commutative table shows the closure property of vectors under Lie brackets.

3 Invariant Solutions

The auxiliary equation to determine invariant solutions is given as

dx

b1
= dy

b2 + b4y
= dt

b3 + 2b4t
= du

b4(
1
a − 2u)

. (3.1)

Case (I): For b4 �= 0, the Eq. (3.1) can be written as

dx

B1
= dy

B2 + y
= dt

B3 + 2t
= du

( 1a − 2u)
.

with B1 = b1
b4
, B2 = b2

b4
and B3 = b3

b4
. Then, the similarity form is

u = 1

2a
+ P(ξ, η)

2t + B3
(3.2)
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where similarity function P(ξ, η) consists of variables

ξ = 2

B1
x − log(2t + B3) and η = (y + B2)

2

(2t + B3)
.

Availing Eq. (3.2) into Eq. (3.1), we have first reduction as

8b (Pξξξξ + η Pξξξη + Pξξξ ) − 4aB1(PPξξ + P2
ξ ) − 2B2

1 (Pξξ

+ηPξη + Pξ ) + kB3
1 (Pη + 2ηPηη) = 0 (3.3)

Again applying STM on Eq. (3.3) , the infinitesimals are obtained as

ξ̂ x = 1, ξ̂ y = 0, φ̂ = 0.

Thus, characteristic equation is

dξ

1
= dη

0
= dP

0

It follows similarity form

P = P1(χ)

with similarity variable χ = η. It transforms the Eq. (3.3) into

2χ ¯̄P1 + P̄1 = 0 (3.4)

which has the solution P1 = c1 χ
1
2 + c2.

Thus, KP-BBM equation has solution

u = 1

2a
+ c1(y + B2)

(2t + B3)
3
2

+ c2
(2t + B3)

(3.5)

Case (II): For b4 = 0 and b3 �= 0, the Eq. (3.1) can be written as

dx

B4
= dy

B5
= dt

1
= du

0

with B4 = b1
b3

and B5 = b2
b3
.The similarity form yields

u = P(ξ, η) (3.6)

where P(ξ, η) is function of

ξ = x − B4 t and η = y − B5 t
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The Eqs. (1.1) and (3.6) lead towards first reduction of KP-BBM equation

b (B4 Pξξξξ + B5 Pξξξη) + (1 − B4)Pξξ − B5 Pξη − 2a(PPξξ + P2
ξ ) + kPηη = 0

(3.7)

A particular solution of Eq. (3.7) is

P = c3 ξ + 2ac23
k

η2 + c4 η + c5

Thus, solution of Eq. (1.1) is

u = c3 (x − B4 t) + 2ac23
k

(y − B5 t)
2 + c4 (y − B5 t) + c5 (3.8)

To reduce Eq. (3.7) again, the characteristic equation is

dξ

b5
= dη

b6
= dP

0
(3.9)

Case (IIa): If b6 �= 0, the above characteristic is rewritten as

dξ

B6
= dη

1
= dP

0

such that P = P1(χ) with χ = ξ − B6 η and B6 = b5
b6
.

Thus, Eq. (3.7) is transformed to

b(B4 − B5B6)
¯̄̄̄
P1 − 2a(P1

¯̄P1 + P̄1
2
) + (1 − B4 + B5B6 + kB2

6 )
¯̄P1 = 0 (3.10)

Taking B4 − B5B6 = 0 and 1 + kB2
6 = 0, a particular solution is

P1 = √
c6 χ + c7.

Eventually, the solution of test equation is

u = √
c6 (x − B6 y) + c7. (3.11)

Furthermore, the thrice integration of Eq. (3.10) provides

P̄1
2 − B7(P

3
1 − 3B8P

2
1 + c9P + c10) = 0 (3.12)

where B7 = 2a
3b(B4−B5B6)

and B8 = 1−B4+B5B6−kB2
6

2a .
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Some solutions of Eq. (3.12) are addressed as follows:
Case (IIa1): For c9 = 3B8 and c10 = −B3

8 in Eq. (3.12), we have

P̄1
2 − B7(P1 − B8)

3 = 0 (3.13)

which has a solution

P1 = B8 + 4

B7(χ + c11)2
.

So, the required solution is

u = B8 + 4

B7[x − B6 y − (B4 − B5B6)t + c11]2 . (3.14)

Case (IIa2): For c9 = 9B2
8

4 and c10 = 0 in Eq. (3.12), we have

P̄1
2 − B7P1(P1 − 3B8

2
)2 = 0. (3.15)

The solution is

P1 = 3B8

2
tanh2

(1
2

√
3B7B8

2
χ + c12

)
.

So, the required solution is

u = 3B8

2
tanh2

(1
2

√
3B7B8

2
[x − B6 y − (B4 − B5B6)t] + c12

)
. (3.16)

Also, another solution is

u = 3B8

2
coth2

(1
2

√
3B7B8

2
[x − B6 y − (B4 − B5B6)t] + c13

)
. (3.17)

Case (IIa3): For c9 = 0 and c10 = 0 in Eq. (3.12), we have

P̄1
2 − B7P

2
1 (P1 − 3B8) = 0. (3.18)

Then, it raises the solution

P1 = 3B8 sec2
(√

3B7B8

2
χ + c14

)
.

So, the required solution is

u = 3B8 sec2
(√

3B7B8

2
[x − B6 y − (B4 − B5B6)t] + c14

)
. (3.19)
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Case (IIb): If b6 = 0, then Eq. (3.9) produces similarity function is P = P1(χ)

with χ = η. So, Eq. (3.7) is converted to ¯̄P1 = 0 and thus P1 = c15η + c16.
Consequently, Eq. (1.1) gets the solution

u = c15(y − B5 t) + c16. (3.20)

Case (III): For b2 = 0, b4 = 0 and b3 �= 0, the Eq. (3.1) is rewritten as

dx

B4
= dy

0
= dt

1
= du

0
.

The similarity form yields

u = P(ξ, η) (3.21)

where P(ξ, η) is function of

ξ = x − B4 t and η = y

The Eqs. (1.1) and (3.21) lead towards following reduction

b B4 Pξξξξ + (1 − B4)Pξξ − 2a(PPξξ + P2
ξ ) + kPηη = 0 (3.22)

A particular solution of Eq. (3.22) is

P = c17 ξ η + ac217
6k

η4 + c18 η + c19

Thus, solution of Eq. (1.1) is

u = c17 (x − B4 t) y + ac217
6k

y4 + c18 y + c19 (3.23)

An another solution is

u = c20 (x − B4 t) + ac220
k

y2 + c21 y + c22 (3.24)

To reduce Eq. (3.22) again, the characterstic equation is

dξ
(
b7 ξ
2 + b8

) = dη

b7 η + b9
= dP

b7
(

− P + 1−B4
2a

) (3.25)

For b7 �= 0, we have similarity form

P = 1 − B4

2a
+ P1(χ)

η + B10
with χ = ξ + 2B9

(η + B10)
1
2

such that B9 = b8
b7

, B10 = b9
b7

.
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Thus, Eq. (3.22) is transformed to

bB4
¯̄̄̄
P1 − 2a(P1

¯̄P1 + P̄1
2
) + k

4
(χ2 ¯̄P1 + 7χ P̄1 + 8P1) = 0 (3.26)

It has an exact solution

P1 = − k

2a
χ2

Consequently, the test equation has solution

u = 1 − B4

2a
+ k(x − B4t + 2B9)

2

2a(y + B10)2
. (3.27)

Another solution of Eq. (3.26) is

P1 = 6 b B4

a χ2 .

Thus, the test equation has solution

u = 1 − B4

2a
+ 6 b B4

a (x − B4t + 2B9)2
. (3.28)

4 Analysis of Results

Explicit expressions are much significant to interpret the phenomena physically. In
this section, we analyze graphical behavior of the solutions (3.5), (3.8), (3.14), (3.16),
(3.17), (3.19), (3.27) while the solutions listed in Eqs. (3.11), (3.20), (3.23), (3.24),
(3.28) are self-evident. All the derived results are new and never reported before. These
solutions involve free parameters therefore we perform the numerical simulation for
significant values of existing parameters as a = 0.6596, b = 0.5185, k = 0.9729
and rest are given in adjacent figures. The figures show doubly soliton, multisoliton,
compacton, soliton fusion and parabolic nature, which are analyzed as follows:

Figure 1: The non elastic behavior of solution (3.5) is expressed in this spatio-
temporal profile, which shows soliton fusion for B2 = 0.9516, B3 = 0.9203,
c1 = 0.0526, c2 = 0.7378. It is clearly exhibited in 2D view that solitons are fused
when interacting with others and show new phenomenon.

Figure 2: It demonstrates the parabolic nature of the solution profile (3.8) at
t = 0.7093. The values assigned to parameters are B4 = 0.6489, B5 = 0.8003,
c3 = 0.7546, c4 = 0.276, c5 = 0.6797. With passes of time, nonlinearity disappears
and results into straight stripe for t = 100.

Figure 3: It displays the intensive feature of solitary waves interacting with each
others. The values to remaining constants are provided as B4 = 0.6489, B5 = 0.8003,
B6 = 0.7546, B7 = 18.8491, B8 = 1.1839, c11 = 0.6537. The velocity component
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Fig. 1 Soliton fusion for Eq. (3.5)
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Fig. 2 Parabolic nature of solution (3.8)
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Fig. 3 Intensive multisoliton profile for Eq. (3.14)
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Fig. 5 Elastic multisoliton for Eq. (3.17)

u features minimum and maximum amplitude of multisoliton at t = 0.1076. The
minimum amplitude of wave is displayed in the centre and maximum amplitude in
sides in x − u and y − u views.

Figure 4: The multisoliton profile for Eq. (3.16) is analyzed in this figure for
B4 = 0.6489, B5 = 0.8003, B6 = 0.7546, B7 = 18.8491, B8 = 1.1839,
c12 = 0.4538 at t = 0.4598. The slowly decay in profile with time is concluded.
As time is bigger than t = 879, the solitons annihilate and profile becomes stationary.

Figure 5: The physical behavior of solution (3.17) is illustrated via this profile
at t = 0.3648. It shows multisoliton nature for B4 = 0.6489, B5 = 0.8003,
B6 = 0.7546, B7 = 18.8491, B8 = 1.1839, c13 = 0.6256. The solitons seem
completely elastic during mutual collision except phase shift, and the maximum and
minimum amplitude of waves is shown in y − u view.

Figure 6: The elastic compacton behavior of Eq. (3.19) is represented at t = 0.6554.
The values to constants are assigned as B4 = 0.6489, B5 = 0.8003, B6 = 0.7546,
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Fig. 7 Transition of doubly soliton in single soliton for (3.27)

B7 = 18.8491, B8 = 1.1839, c14 = 0.1711. The amplitude of compactons remains
unchanged during interaction with others and show its elastic behavior when the argu-
ment of cos lies in (−π

2 , π
2 ) displayed in y − u view.

Figure 7: The transition of doubly soliton into single soliton with passage of time
for Eq. (3.27) is recorded in this figure. It shows doubly soliton profile at t = 0.2769
for B4 = 0.6489, B9 = 0.0462, B10 = 0.0971. When time increases and passes over
t = 60, the dynamical change happens in doubly soliton and transforms to single
soliton.

5 Conclusions

In this work, Lie symmetry method is applied to construct infinitesimal genera-
tors, commutative relations and symmetry reductions of KP-BBM equation. The one
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parameter transformation enables to retain the invariance of PDEs under symmetry
reductions. The twice reductions of KP-BBM equation provide determining ODEs
and lead to exact solutions listed in Eqs. (3.5), (3.8), (3.11), (3.14), (3.16), (3.17),
(3.19), (3.20), (3.23), (3.24), (3.27) and (3.28). All these results are novel and never
reported earlier. Some of these results are examined graphically based on their numer-
ical simulation. Eventually, mutisoliton, doubly soliton, compacton, soliton fusion
and parabolic nature are analyzed to make these finding physically meaningful. Thus,
Lie symmetry method may be treated as effective and versatile tool to derive exact
solutions of highly nonlinear PDEs.
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