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Abstract
In this paper, we systematical study the rich dynamics and complex bifurcations of a
non-monotonic predator–prey system with a constant releasing rate for the predator.
We prove that the system can have at most three positive equilibria, and can undergo a
sequence of bifurcations, including transcritical, saddle-node, Hopf, degenerate Hopf,
double limit cycle, saddle-node homoclinic bifurcation (or homoclinic loop with a
saddle-node), cusp bifurcation of codimension 2, and Bogdanov–Takens bifurcation
of codimension 2 and 3. And the system can generate very rich dynamics, such as the
existence of a semi-stable limit cycle, multiple coexistent periodic orbits, homoclinic
loops, etc. Moreover, our results show that the dynamical behaviors highly rely on the
constant releasing rate of predators and the initial conditions. That is, there exists a
critical value of the constant releasing rate of predators such that (i) when the constant
releasing rate is greater than the critical value, the prey goes to extinction for all
admissible initial populations of both species; (ii) when the constant releasing rate is
less than the critical value, the prey can always coexist with the predator. Numerical
simulations are presented to verify the main results.
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1 Introduction

It is well known that the predator–prey systems are used for analyzing the interactions
between two species. Based on different biological backgrounds, various kinds of
response functions (i.e., Holling type I to IV functional responses) are proposed to
describe the interactions between the predator and the prey.Many existing studies have
extensively investigated the rich dynamic behaviors and complex bifurcations of the
predator–prey systems with the different functional responses [1–5]. Particularly, in
the study [3], Ruan and Xiao deeply investigated the global dynamics and bifurcations
of the predator–prey system with group defense (i.e., the Holling type IV functional
response), including the saddle-node bifurcation, Hopf bifurcation and Bogdanov–
Takens bifurcation of codimension 2. Group defense is usually characterized as the
ability of preys to better defend or hide themselves from predators when they are more
numerous [6]. There are many good examples in population ecology: Small herds of
musk ox (2 to 6 animals) are attacked but with rare success and no successful attacks
have been observed in larger herds [7]; Large swarms of insects are able to escape
from the identification of their predators [8]. Group defense has become an important
focus of research and analyzed mathematically in detail [3,5].

Considering the integrated pest management (IPM) [9], the predator–prey systems
are extended to many novel models, particularly to different kinds of dynamical sys-
tems. Usually, there can be three kinds of control strategies: constant releasing of
predators, pulse or state-dependent impulsive control [10,11], and piecewise inter-
ventions [12–14]. This can induce lots of novel dynamical behaviors, such as sliding
equilibrium, sliding dynamics, sliding bifurcation, and the order-k periodic solutions
[15,16]. In this study, considering the releasing of the natural enemy to control the
growth of pests, we extend the predator–prey system with group defense (i.e., the
Holling type IV functional response) in [3] to the following system

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)

dt
= r x

[
1 − x

K

]
− βxy

1 + ωx2
,

dy(t)

dt
= ηβxy

1 + ωx2
− δy + τ,

(1.1)

where x and y represent the densities of prey and predator population, respectively. r
denotes the intrinsic growth rate, K the carrying capacity of the prey species, δ the death
rate of the predator species, η ∈ (0, 1] the efficiency rate with which captured prey are
converted to the predators,

βx

1 + ωx2
is the Holling type IV functional response, β > 0

is the maximal growth rate of the predator species and ω > 0 is the handling time. τ
represents the constant recruitment of the predator species. It is worth mentioning that
τ can not only represent the constant releasing rate of the nature enemy in the IPM
[14], but also an external source of effector cells such as LAK or TIL cells for treating
tumors [17,18]. Note that, when the death rate of the predator species is smaller than
the intrinsic growth rate of the prey species, i.e., δ < r , it would be good situation
for the predator (natural enemy) to control the prey (pest). However, if the death rate
of the predator species is larger than the intrinsic growth rate of the prey species, i.e.,
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δ > r , then the predator (nature enemy) might not be able to successfully control the
prey (pest) by itself. Therefore, the recruitment of the natural enemy can be a good
choice to reverse the situation. The main purpose of this study is to analyze the impact
of the constant releasing rate of predators by investigating the dynamics and complex
bifurcations of the proposed model.

With the constant releasing rate, we find that, except all the dynamic behaviors
and bifurcations shown in [3], we prove that the extended system can present much
more novel dynamical behaviors and bifurcations, including the co-existence of three
positive equilibria, the existence of double limit cycle bifurcation [19] (or called the
saddle-node bifurcation of limit cycles [20]), saddle-node homoclinic bifurcation [21]
(or called the homoclinic bifurcation with a saddle-node), cusp bifurcation of codi-
mension 2 [21], andBogdanov–Takens (cusp type) bifurcation of codimension 3 [5,22]
which is a very complex bifurcation phenomenon. For simplicity, we convert system
(1.1) to a topologically equivalent non-dimensionalized system. Let

u = x

K
, v = β

r
y, t1 = r t,

and still denote (u, v, t1) as (x, y, t), then system (1.1) becomes the following equiv-
alent system

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)

dt
= x(1 − x) − xy

1 + ax2
.= P(x, y),

dy(t)

dt
= bxy

1 + ax2
− cy + d

.= Q(x, y),
(1.2)

where a
.= K 2ω > 0, b

.= ηβK
r > 0, c

.= δ
r > 0 and d

.= βτ

r2
> 0, which are the

parameters after simplification and do not have specific biological significance.
This paper is organized as follows. In Sect. 2, we analyze the existence and the

stability of the equilibria, where the types for all the possible equilibria are deeply dis-
cussed. In Sect. 3, we prove all the possible bifurcations, including the transcritical,
saddle-node, Hopf, degenerate Hopf of codimension 2, cusp bifurcation of codimen-
sion 2, and Bogdanov–Takens (cusp type) bifurcation of codimension 3. In Sect. 4,
we numerically verify all the bifurcations through bifurcation diagrams. Finally, we
make the conclusions and discussions in Sect. 5.

2 Equilibria and Their Types

In this section, we discuss the existence and the stability of the equilibria of system
(1.2). By the biological implications, we only analyze the dynamics of system (1.2) in
the regionR+

2 = {(x, y)|x ≥ 0, y ≥ 0}. It is easy to verify that all solutions of system
(1.2) are non-negative bounded and we first present a lemma.

Lemma 2.1 All solutions of system (1.2) starting from the first quadrant are positively
bounded in R+

2 .
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Proof Given a sufficiently large positive number M0 >
b(c+1)

c + d
c , we construct a

trapezoidal area G which contains all equilibria of system (1.2), and it is surrounded
by four line segments:

L1 := {(x, y)|x = 0, 0 ≤ y ≤ M0}, L2 := {(x, y)|0 ≤ x ≤ 1, y = 0},
L3 := {(x, y)|x = 1, 0 ≤ y ≤ −b + M0},
L4 := {(x, y)|0 ≤ x ≤ 1, y = −bx + M0},

where L1 is a part of one trajectory of system (1.2). By simple calculation, we have

dL2

dt

∣
∣
(1.2)

= d > 0 and
dL3

dt

∣
∣
(1.2)

= − y

1 + a
< 0.

Furthermore,

dL4

dt

∣
∣
(1.2)

= −bx2 + b(c + 1)x + (d − cM0) ≤ b(c + 1) + d − cM0 < 0.

Thus, G is a positively invariant subset of system (1.2) in R+
2 , and all solutions of

system (1.2) in R+
2 enter convex set G as t tends to +∞. The proof is completed. ��

2.1 The Existence of Equilibria

Through some straightforward calculations, we find that, unlike the classical predator–
prey systems [1,3,5,23], (K , 0) and (0, 0) are not the equilibria of system (1.2) anymore
when we include the constant releasing rate. Instead, E0(0, d

c ) is always a boundary
equilibrium of system (1.2). The interior equilibria satisfy the following equations

⎧
⎪⎨

⎪⎩

(1 − x) − y

1 + ax2
= 0,

bxy

1 + ax2
− cy + d = 0.

(2.1)

It follows from the first equation that any positive equilibrium must satisfy 0 < x < 1
and y = (1+ax2)(1− x). Re-arranging the second equation of (2.1), we obtain when
exists, the x - coordinator of the positive equilibrium is the root of

acx3 − (ac + b)x2 + (b + c)x + (d − c) = 0. (2.2)

Equation (2.2) can have at most three positive roots, and we denote the three possible
roots as x1, x2 and x3 with x1 ≤ x2 ≤ x3, respectively. Then, we have a detailed
discussion on the existence of the positive roots of Eq. (2.2).
Let

F(x)
.= acx3 − (ac + b)x2 + (b + c)x + (d − c), (2.3)
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Fig. 1 The distribution of positive roots for Eq. (2.2) on the plane of (d, c). There can be 0, 1, 2 and 3
simple positive roots in different parameter spaces, where x∗

1 and x∗
2 (x∗

1 ≤ x∗
2 ) are the extreme points of

function F(x), x∗ is a positive root of multiplicity 3 for Eq. (2.2), c1 and c2 are two positive roots of � = 0
(i.e., (ac + b)2 − 3ac(b + c) = 0) with respect to c

While F(x) passes the points (0, d − c) and (1, d). Further, denoting

x∗
1

.= (ac + b) − √
�

3ac
, x∗

2
.= (ac + b) + √

�

3ac
, x∗ .= 1

3
+ b

3ac
(2.4)

with �
.= (ac + b)2 − 3ac(b + c). Taking the derivative of Eq. (2.3) with respect to

x , one yields

F ′(x) = 3acx2 − 2(ac + b)x + (b + c). (2.5)

It is easy to verify that if � = (ac+ b)2 − 3ac(b+ c) < 0 holds true, then F ′(x) > 0
for all x ∈ R, which clarifies that F(x) is increasing on the interval (−∞,+∞). Thus,
there is a unique positive root x1 for F(x) = 0 (i.e., Eq. (2.2)) if and only if d−c < 0,
as shown in Fig. 1o. Meanwhile, there is no positive root when � < 0 and d − c ≥ 0.

When� = (ac+b)2 −3ac(b+c) > 0, by solving the equation F ′(x) = 0, we get
two positive real roots: x∗

1 and x∗
2 , i.e., x

∗
1 and x∗

2 are the extreme points of function
F(x), as shown in Fig. 1b. Then, F(x) is increasing on the interval (−∞, x∗

1 ] ∪
[x∗

2 ,+∞), and decreasing on the interval (x∗
1 , x

∗
2 ). Therefore, when d − c ≥ 0, Eq.

(2.2) has at most two positive real roots, as shown in Fig. 1g–l. More precisely, there
can be three subcases: (a) there are two distinct positive real roots x2 and x3 with
F ′(x2) < 0 and F ′(x3) > 0 when F(x∗

2 ) < 0; (b) there is a unique positive real root
x∗
2 (i.e., x2 = x∗

2 = x3) when F(x∗
2 ) = 0; (c) there is no positive real root when

F(x∗
2 ) > 0. Similarly, we can verify that Eq. (2.2) has at most three positive roots

when � ≥ 0 and d − c < 0, and omit the proof here. All the possible situations for
the existence of the positive real roots are presented in Fig. 1a–t.
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Table 1 The existence of positive equilibria of system (1.2)

Conditions Existence of positive equilibria

d ≥ c � ≤ 0 No

� > 0 F(x∗
2 ) > 0 No

F(x∗
2 ) = 0 x∗

2 > 1 No

x∗
2 < 1 (x∗

2 , y∗
2 )

F(x∗
2 ) < 0 x∗

2 > 1 No

x∗
2 < 1 E2(x2, y2) and E3(x3, y3)

d < c � < 0 E1(x1, y1)

� > 0 F(x∗
1 ) > 0 F(x∗

2 ) > 0 E1(x1, y1)

F(x∗
2 ) = 0 x∗

2 > 1 E1(x1, y1)

x∗
2 < 1 E1(x1, y1) and (x∗

2 , y∗
2 )

F(x∗
1 ) > 0 x∗

2 > 1 E1(x1, y1)

F(x∗
2 ) < 0 x∗

2 < 1 E1(x1, y1), E2(x2, y2) and E3(x3, y3)

F(x∗
1 ) = 0 (x∗

1 , y∗
1 ) and E3(x3, y3)

F(x∗
1 ) < 0 E3(x3, y3)

� = 0 F(x∗) > 0 E1(x1, y1)

F(x∗) = 0 (x∗, y∗)

F(x∗) < 0 E3(x3, y3)

F(x)
.= acx3 − (ac + b)x2 + (b + c)x + (d − c), �

.= 4(ac + b)2 − 12ac(b + c), x∗
1

.= 2(ac+b)−√
�

6ac ,

x∗
2

.= 2(ac+b)+√
�

6ac , y∗
i = [1 + a(x∗

i )2](1 − x∗
i ) (i = 1, 2), x∗ .= 1

3 + b
3ac and y∗ = a2c+ab+5ac−4b

9ac

Note that, incorporating the condition 0 < x < 1, the existence of the positive real
roots for Eq. (2.2) indicates the existence of the positive equilibria for system (1.2).
Consequently, system (1.2) may have at most three positive equilibria, denoted by
Ei (xi , yi ), i = 1, 2, 3, and yi = (1 + ax2i )(1 − xi ). The conditions of the existence
for the positive equilibria of system (1.2) are concluded in Table 1 in details.

2.2 The Stability of EquilibriaWhen d ≥ c

In this case, system (1.2) has a boundary equilibria E0(0, d
c ) and at most two positive

equilibria: E2(x2, y2) and E3(x3, y3). The Jacobian matrix of system (1.2) at any
equilibrium takes the following form

A|Ei =
⎛

⎜
⎝
1 − 2xi − yi (1−ax2i )

(1+ax2i )2
− xi

1+ax2i
byi (1−ax2i )

(1+ax2i )2
bxi

1+ax2i
− c

⎞

⎟
⎠

∣
∣
∣
∣
Ei

, i = 0, 1, 2, 3.

Considering the Jacobian matrix of system (1.2) at theses equilibria, we can obtain
the following results.
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Theorem 2.1 When d ≥ c, if one of the following conditions (a) � ≤ 0; (b) � > 0
and F(x∗

2 ) > 0 (or F(x∗
2 ) ≤ 0, x∗

2 > 1)) holds, then system (1.2) has and only
has a boundary equilibrium E0(0, d

c ) which is globally asymptotically stable. More
precisely,

(i) if d > c, then E0 is a globally asymptotically stable node;
(ii) if d = c, then E0 is a saddle-node of codimension 1.

Proof Without loss of generality, we only prove the case for d ≥ c and� ≤ 0. (i) From
Table 1, we know that system (1.2) has no positive equilibrium if d ≥ c and � ≤ 0.
Following the Jacobian matrix, we get that the characteristic equation at E0(0, d

c ) is
given by

|A|E0 − λE| = λ2 + pE0λ + qE0 = 0, (2.6)

where

qE0

.= d − c ≥ 0, pE0

.= c + d

c
− 1 > 0 and p2E0

− 4qE0 = 1

c2
(
c2 − d + c

)2 ≥ 0.

If d > c, then qE0 > 0, hence E0 is a locally asymptotically stable node. If d = c,
then qE0 = 0, which indicates that E0 is a degenerate equilibrium.

Since all solutions of system (1.2) starting in the first quadrant are non-negative
bounded and eventually end up in the invariant region G with G = {(x, y)|0 ≤ x ≤
1, 0 ≤ y ≤ −bx + M0} (see the proof in Lemma 2.1). Hence, the unique ω-limit set
of all the trajectories for system (1.2) is the boundary equilibrium E0 by the Poincaré-
Bendixson Theorem in [24,25]. Thus, E0 is a globally asymptotically stable node, as
shown in Fig. 2b, c.

(ii) To determine the type of E0 for d = c, we translate E0 to the origin by letting
u = x and v = y − d

c . For simplicity, still denoting (u, v) as (x, y) and rewriting

0

(a)

0 0.1 0.2 0.3x
0

0.5

1

1.5

2

2.5

y

(b) (d>c)

E0

0 0.1 0.2 0.3 0.4
x

0

0.5

1

1.5

2

2.5

y

(c) (d=c)

E0

y

G

L4

L3

L1

L2
x

Fig. 2 a The convex set G. b The boundary equilibrium E0(0,
d
c ) is a globally asymptotically stable node

with a = 2.43, b = 0.81, c = 0.4 and d = 0.45. c The boundary equilibrium E0(0,
d
c ) is a saddle-node

with a = 2.43, b = 0.81, c = 0.4 and d = 0.4
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system (1.2) as

⎧
⎪⎨

⎪⎩

dx

dt
= −x2 − xy + ax3 + O(|x, y|4),

dy

dt
= bx − cy + bxy − abx3 + O(|x, y|4).

(2.7)

Further, taking the transformations u = x and v = bx − cy, and rewriting (u, v) as
(x , y), system (2.7) becomes

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= −

(

1 + b

c

)

x2 + b

c
xy + ax3 + O(|x, y|4),

dy

dt
= −cy − b

(

1 + b + b

c

)

x2 + b

(

1 + b

c

)

xy + ab(1 + c)x3 + O(|x, y|4).
(2.8)

By the Center Manifold Theorem [24,25] and Theorems 7.1–7.3 in [25], we con-
clude that E0 is a saddle-node of codimension 1 when d = c. The proof is completed.

��
Remark 2.1 Note that, d ≥ c is equivalent to τ ≥ rδ

β
for the original system. From

Theorem 2.1, we find that there exists a critical releasing constant τ ∗ > 0 for the
predator such that the prey goes to extinction when τ ≥ τ ∗, corresponding to the
global stability of the boundary equilibrium. This means the predator with a constant
recruitment can control the growth of preys effectively.

Theorem 2.2 If d ≥ c, � > 0, F(x∗
2 ) < 0 and x∗

2 < 1, except the bound-
ary equilibrium E0(0, d

c ), system (1.2) has two positive equilibria E2(x2, y2) and
E3(x3, y3). Furthermore, E2 is an unstable saddle while E3 is an anti-saddle. Denot-
ing H(x)

.= 3ax3 − (2a − ac)x2 − (b − 1)x + c, we have

(i) if H(x3) < 0, then E3 is an unstable focus (or node);
(ii) if H(x3) = 0, then E3 is a weak focus (or center);
(iii) if H(x3) > 0, then E3 is a locally asymptotically stable focus (or node).

Proof The existence of the two positive equilibria has been clarified in Table 1. The
characteristic equation at E2(x2, y2) is given by

|A|E2 − λE| = λ2 + pE2λ + qE2 = 0, (2.9)

where

qE2 = x2[3acx22 − 2(ac + b)x2 + b + c]
1 + ax22

.= x2F ′(x2)
1 + ax22

(2.10)

and

pE2 = 3ax32 − (2a − ac)x22 − (b − 1)x2 + c

1 + ax22

.= H(x2)

1 + ax22
. (2.11)
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0 0.2 0.4 0.6 0.8 1 1.2
x

0

1

2

3

4

5

y
(a)

E3

E2

E0

0 0.2 0.4 0.6 0.8 1 1.2
x

0

1

2

3

4

5

y

(b)

(x*
2,y*

2)

E0

Fig. 3 a There exist two positive equilibria E2(x2, y2) and E3(x3, y3) when d ≥ c, � > 0, F(x∗
2 ) < 0

and x∗
2 < 1, where E3 is a locally asymptotically stable node, E2 is an unstable hyperbolic saddle with

a = 24.048, b = 4, c = 0.4 and d = 0.56. b There is a unique positive equilibrium (x∗
2 , y∗

2 ), which is a
saddle-node of codimension 1 with a = 20.363, b = 3.681, c = 0.4 and d = 0.56

Obviously, F ′(x2) < 0 holds, hence we have qE2 < 0. This indicates that E2 is an
unstable saddle. Similarly, the characteristic equation at E3(x3, y3) is

|A|E3 − λE| = λ2 + pE3λ + qE3 = 0, (2.12)

where

qE3 = x3F ′(x3)
1 + ax23

> 0 and pE3 = H(x3)

1 + ax23
. (2.13)

It follows from (2.13) that if

H(x3) = 3ax33 − (2a − ac)x23 − (b − 1)x3 + c > 0,

then pE3 > 0, consequently E3 is a locally asymptotically stable focus (or node).
With the similar process, we can easily prove the rest cases, here we omit them. This
completes the proof. ��

Remark 2.2 When d ≥ c, i.e., τ ≥ rδ
β
, from Theorem 2.2 and Fig. 3a, two equilibria

E0 and E3 are bistable. Further, we can see that the prey will go to extinction if the
initial populations lie in the left of the two stable manifolds of the equilibrium E2,
and will persist if the initial populations lie in the right of the two stable manifolds of
the equilibrium E2. This means whether the prey will go to extinction or be persistent
depends on the initial populations.

Theorem 2.3 If d ≥ c, � > 0, F(x∗
2 ) = 0 and x∗

2 < 1, then system (1.2) has a unique
positive equilibrium (x∗

2 , y
∗
2 ). More precisely,

(i) if H(x∗
2 ) �= 0, then (x∗

2 , y
∗
2 ) is a saddle-node of codimension 1;
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(ii) if H(x∗
2 ) = 0, then (x∗

2 , y
∗
2 ) is a cusp of codimension 2.

Proof (i) According to the discussion in Table 1, when F(x∗
2 ) = 0, then E2(x2, y2)

and E3(x3, y3) coincide into one positive equilibrium of multiplicity 2, i.e.,

(x∗
2 , y

∗
2 ), where x∗

2 = 2(ac+b)+√
�

6ac and y∗
2 = (1 + a(x∗

2 )
2)(1 − x∗

2 ). The char-
acteristic equation related to (x∗

2 , y
∗
2 ) is

|A|(x∗
2 ,y∗

2 ) − λE| = λ2 + p(x∗
2 ,y∗

2 )λ + q(x∗
2 ,y∗

2 ) = 0, (2.14)

where

q(x∗
2 ,y∗

2 ) = x∗
2 F

′(x∗
2 )

1 + a(x∗
2 )

2 = 0 and p(x∗
2 ,y∗

2 ) = H(x∗
2 )

1 + a(x∗
2 )

2 .

If H(x∗
2 ) �= 0, then p(x∗

2 ,y∗
2 ) �= 0. Thus, one of the eigenvalues of the characteristic

equation (2.14) is zero while the other one is nonzero. In this case, we linearize
system (1.2) at (x∗

2 , y
∗
2 )bymaking the transformationofu = x−x∗

2 andv = y−y∗
2 .

Rewriting (u, v) as (x, y), and expanding the right-hand side of system (1.2) in a
Taylor series up to the second order around the origin, we get

⎧
⎪⎨

⎪⎩

dx

dt
= a10x + b01y + a20x

2 + 2a11xy + O(|x, y|3),
dy

dt
= c10x + d01y + b20x

2 + 2b11xy + O(|x, y|3),
(2.15)

where a10 = −x∗
2 + 2a(x∗

2 )2(1−x∗
2 )

1+a(x∗
2 )2

, b01 = − x∗
2

1+a(x∗
2 )2

, c10 = by∗
2 [1−a(x∗

2 )2]
[1+a(x∗

2 )2]2 , d01 =
−c+ bx∗

2
1+a(x∗

2 )2
,a11 = − 1−a(x∗

2 )2

2[1+a(x∗
2 )2]2 ,a20 = −1+ ax∗

2 y
∗
2 [3−a(x∗

2 )2]
[1+a(x∗

2 )2]3 ,b11 = b[1−a(x∗
2 )2]

2[1+a(x∗
2 )2]2

and b20 = − abx∗
2 y

∗
2 [3−a(x∗

2 )2]
[1+a(x∗

2 )2]3 .

As b01 �= 0, we further make the following transformations

u = − d01x

b01(a10 + d01)
+ y

a10 + d01
and v = a10x

b01(a10 + d01)
+ y

a10 + d01
,

rewrite (u, v) as (x, y), when F(x∗
2 ) = 0 and H(x∗

2 ) �= 0 (i.e., a10d01−b01c10 = 0
and a10 + d01 �= 0), then system (2.15) becomes

⎧
⎪⎨

⎪⎩

dx

dt
= c20x

2 + c11xy + c02y
2 + O(|x, y|3),

dy

dt
= (a10 + d01)y + d20x

2 + d11xy + d02y
2 + O(|x, y|3),

(2.16)

where c20
.= b01(b01b20−d01a20)−2a10(b01b11−d01a11)

a10+d01
, d20

.= b01(a10a20+b01b20)−2a10(a10a11−b01b11)
a10+d01

,
c11

.= 2b01(d01a20−b01b20)

a10+d01
+ 2(a10−d01)(b01b11−d01a11)

a10+d01
, d11 .= 2(a10−d01)(a10a11+b01b11)−2b01(a10a20+b01b20)

a10+d01
,

c02
.= b01(b01b20−d01a20)+2d01(b01b11−d01a11)

a10+d01
and d02

.= b01(a10a20+b01b20)+2d01(a10a11+b01b11)
a10+d01

.
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Again by the Center Manifold Theorem, system (2.16) reduced to the center man-
ifold takes the following form

dx

dt
= c20x

2 + O(x3), c20 = ac(x∗
2 )

2

(1 + a(x∗
2 )

2)2

[

3x∗
2 − 1 − b

ac

]

. (2.17)

Since x1 + x2 + x3 = x1 + 2x∗
2 = 1 + b

ac and x1 < x∗
2 , there is x

∗
2 �= 1

3 + b
3ac ,

hence we have c20 > 0. Therefore, (x∗
2 , y

∗
2 ) is a saddle-node of codimension 1

according to Theorems 7.1–7.3 in [25], as shown in Fig. 3b.
(ii) By case (i), we know that if H(x∗

2 ) = 0, then p(x∗
2 ,y∗

2 ) = 0, consequently both
eigenvalues of the characteristic equation (2.14) are zeros, which indicates that
(x∗

2 , y
∗
2 ) is a cusp of codimension at least 2. Further, we transform the linear part

of system (2.15) to the Jordan canonical form. Let

u = x and v = a10x + b01y,

rewrite (u, v) as (x, y), then system (2.15) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= y +

(

a20 − 2a10a11
b01

)

x2 + 2a11
b01

xy + O(|x, y|3),
dy

dt
=

(

a10a20 − 2a210a11
b01

+ b01b20 − 2a10b11

)

x2

+
(
2a10a11
b01

+ 2b11

)

xy + O(|x, y|3).

(2.18)

In order to find the canonical normal form of the cusp of codimension 2, we take

u = x − a11
b01

x2 and v = y +
(

a20 − 2a10a11
b01

)

x2,

rewrite (u, v) as (x, y), then system (2.18) is rewritten as

⎧
⎪⎨

⎪⎩

dx

dt
= y + O(|x, y|3),

dy

dt
= E0x

2 + F0xy + O(|x, y|3),
(2.19)

where

F0
.= 2b11 + 2a20 − 2a10a11

b01
= − H ′(x∗

2 )

1 + a(x∗
2 )

2 (2.20)

and
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E0
.= a10a20 − 2a210a11

b01
+ b01b20 − 2a10b11 = acx∗

2

1 + a(x∗
2 )2

[

1 + b

ac
− 3x∗

2

]

< 0.

(2.21)

It follows from Eqs. (2.20) and (2.21) that E0F0 �= 0 if H ′(x∗
2 ) �= 0. By the

qualitative theory of ordinary differential equations and the theory of differential
manifolds [24], we know that (x∗

2 , y
∗
2 ) is a cusp of codimension 2 if H ′(x∗

2 ) �= 0,
and a cusp of codimension at least 3 if H ′(x∗

2 ) = 0.
For system (1.2), we show that there can not exist a x∗

2 such that H ′(x∗
2 ) = 0.

Assuming the contrary and letting H ′(x∗
2 ) = 0, then from F(x∗

2 ) = F ′(x∗
2 ) = 0

and H(x∗
2 ) = H ′(x∗

2 ) = 0, a, b, c and d can be expressed as follows

a = − 2x∗
2 − 1

[12(x∗
2 )

2 − 15x∗
2 + 4]x∗

2
, b = − 2x∗

2 (x
∗
2 − 1)(3x∗

2 − 1)2

[12(x∗
2 )

2 − 15x∗
2 + 4][7(x∗

2 )
2 − 8x∗

2 + 2] ,

c = − x∗
2 (3x

∗
2 − 1)(2x∗

2 − 1)

7(x∗
2 )

2 − 8x∗
2 + 2

and d = 2x∗
2 (3x

∗
2 − 1)(x∗

2 − 1)2

12(x∗
2 )

2 − 15x∗
2 + 4

.

Further, because of a > 0, b > 0, c > 0 and d > 0, there is x∗
2 ∈ ( 13 ,

4−√
2

7 ).

However, it is easy to verify that d < c for x∗
2 ∈ ( 13 ,

4−√
2

7 ). This is a contradictory.
Thus, H ′(x∗

2 ) �= 0 and (x∗
2 , y

∗
2 ) is a cusp of codimension 2 if H(x∗

2 ) = 0.
Note that we can further conclude that there is no closed orbits in this case. Other-
wise, there exists a closed orbit, then the closed orbit must contain some equilibria
in its interior and the sum of indices of these equilibria should be one. However,
(x∗

2 , y
∗
2 ) is a unique equilibrium of system (1.2), which is a saddle-node or a cusp

whose index is not one. This is a contradictory and the proof is completed. ��

2.3 The Stability of EquilibriaWhen d < c

In this case, it is easy to verify that the boundary equilibrium E0(0, d
c ) is unstable

while system (1.2) can have at most three positive equilibria: E1(x1, y1), E2(x2, y2)
and E3(x3, y3). With the similar process in Sects. 2.1 and 2.2, the local stability for all
possible equilibria in different scenarios can be easily obtained. We omit the detailed
proof and just conclude all the cases in Table 2. Then, we focus on the cases (II)-(b)
and (III)-(c)(f) in Table 2, that is, system (1.2) has a degenerate positive equilibrium,
which leads to the following main results.

Theorem 2.4 For the case (III)(c), system (1.2) has two different positive equilibria:
an elementary equilibrium E1(x1, y1) and a degenerate positive equilibrium (x∗

2 , y
∗
2 )

of multiplicity 2. More precisely,

(i) if H(x∗
2 ) �= 0, then (x∗

2 , y
∗
2 ) is a saddle-node of codimension 1;

(ii) if H(x∗
2 ) = 0, then (x∗

2 , y
∗
2 ) is a cusp of codimension 2.
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Proof The proof is similar to Theorems 2.3. The difference is the proof of (ii), hence
we omit the proof of (i) here. Making a sequence of coordinate transformations used
in the proof of Theorem 2.3, we obtain the following system

⎧
⎪⎨

⎪⎩

dx

dt
= y + O(|x, y|3),

dy

dt
= E0x

2 + F0xy + O(|x, y|3).
(2.22)

Then, (x∗
2 , y

∗
2 ) is a cusp of codimension 2 if H ′(x∗

2 ) �= 0, and a cusp of codimension
at least 3 if H ′(x∗

2 ) = 0.
Next, we also show that there can not exist a x∗

2 such that H ′(x∗
2 ) = 0 when

d < c. Similarly, assuming the contrary and letting H ′(x∗
2 ) = 0, then from F(x∗

2 ) =
F ′(x∗

2 ) = 0 and H(x∗
2 ) = H ′(x∗

2 ) = 0, a, b, c and d can be expressed as follows

a = − 2x∗
2 − 1

[12(x∗
2 )

2 − 15x∗
2 + 4]x∗

2
, b = − 2x∗

2 (x
∗
2 − 1)(3x∗

2 − 1)2

[12(x∗
2 )

2 − 15x∗
2 + 4][7(x∗

2 )
2 − 8x∗

2 + 2] ,

c = − x∗
2 (3x

∗
2 − 1)(2x∗

2 − 1)

7(x∗
2 )

2 − 8x∗
2 + 2

and d = 2x∗
2 (3x

∗
2 − 1)(x∗

2 − 1)2

12(x∗
2 )

2 − 15x∗
2 + 4

with x∗
2 ∈

(
1
3 ,

4−√
2

7

)
.

From Sect. 2.1, we know that

x∗
2 = (ac + b) + √

�

3ac
>

1

3
+ b

3ac
= 1

3
+ 2x∗

2 (1 − x∗
2 )(3x

∗
2 − 1)

3(2x∗
2 − 1)2

.

However, it is easy to verify that

1

3
+ 2x∗

2 (1 − x∗
2 )(3x

∗
2 − 1)

3(2x∗
2 − 1)2

− x∗
2 ≥ 0, x∗

2 ∈
(
1

3
,
4 − √

2

7

)

.

This is a contradictory. Hence, there is no x∗
2 ∈ ( 13 ,

4−√
2

7 ) such that H ′(x∗
2 ) = 0 when

d < c. Thus, H ′(x∗
2 ) �= 0 and (x∗

2 , y
∗
2 ) is a cusp of codimension 2 if H(x∗

2 ) = 0. The
proof is completed. ��
Theorem 2.5 For the case (III)(f), system (1.2) has two different positive equilibria:
an elementary equilibrium E3(x3, y3) and a degenerate positive equilibrium (x∗

1 , y
∗
1 )

of multiplicity 2. More precisely,

(i) if H(x∗
1 ) �= 0, then (x∗

1 , y
∗
1 ) is a saddle-node of codimension 1;

(ii) if H(x∗
1 ) = 0 and

(a) H ′(x∗
1 ) �= 0, then (x∗

1 , y
∗
1 ) is a cusp of codimension 2;

(b) H ′(x∗
1 ) = 0 and N0(x∗

1 ) �= 0 with N0(x)
.= 2802x7 − 9648x6 + 13716x5 −

10399x4+4527x3−1129x2+149x−8, then (x∗
1 , y

∗
1 ) is a cusp of codimension

3.
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Proof The proofs of (i) and (ii)(a) are similar to Theorem 2.3, we omit the procedures
for brevity. In the following, we focus on the proof of (ii)(b). Similarly, in this case,
from F(x∗

1 ) = F ′(x∗
1 ) = 0 and H(x∗

1 ) = H ′(x∗
1 ) = 0, we can obtain

a = − 2x∗
1 − 1

[12(x∗
1 )

2 − 15x∗
1 + 4]x∗

1
, b = − 2x∗

1 (x
∗
1 − 1)(3x∗

1 − 1)2

[12(x∗
1 )

2 − 15x∗
1 + 4][7(x∗

1 )
2 − 8x∗

1 + 2] ,

c = − x∗
1 (3x

∗
1 − 1)(2x∗

1 − 1)

7(x∗
1 )

2 − 8x∗
1 + 2

and d = 2x∗
1 (3x

∗
1 − 1)(x∗

1 − 1)2

12(x∗
1 )

2 − 15x∗
1 + 4

with x∗
1 ∈

(
1

3
,
4 − √

2

7

)

.

Substituting a, b, c and d into system (1.2) and translating the positive equilibrium
(x∗

1 , y
∗
1 ) to the origin, expanding the right-hand side of system (1.2) in a Taylor series

up to the fourth order around the origin, then we obtain

⎧
⎪⎨

⎪⎩

dx

dt
= â10x + b̂01y + â20x

2 + 2â11xy + â30x
3 + â21x

2y + â40x
4 + â31x

3y + O(|x, y|5),
dy

dt
= ĉ10x + d̂01y + b̂20x

2 + 2b̂11xy + b̂30x
3 + b̂21x

2y + b̂40x
4 + b̂31x

3y + O(|x, y|5),
(2.23)

where â10
.= −x∗

1 + 2a(x∗
1 )2(1−x∗

1 )

1+a(x∗
1 )2

, b̂01
.= −x∗

1
1+a(x∗

1 )2
, â20

.= −1 + ax∗
1 y

∗
1 [3−a(x∗

1 )2]
[1+a(x∗

1 )2]3 ,

â11
.= −1+a(x∗

1 )2

2[1+a(x∗
1 )2]2 , ĉ10

.= by∗
1 [1−a(x∗

1 )2]
[1+a(x∗

1 )2]2 , d̂01
.= −c + bx∗

1
1+a(x∗

1 )2
, b̂11

.= b[1−a(x∗
1 )2]

2[1+a(x∗
1 )2]2 ,

b̂20
.= − abx∗

1 y
∗
1 [3−a(x∗

1 )2]
[1+a(x∗

1 )2]3 , â30
.= ay∗

1 [1+a2(x∗
1 )4−6a(x∗

1 )2]
[1+a(x∗

1 )2]4 , â21
.= ax∗

1 [3−a(x∗
1 )2]

[1+a(x∗
1 )2]3 , â31

.=
a[1+a2(x∗

1 )4−6a(x∗
1 )2]

[1+a(x∗
1 )2]4 , â40

.= a2x∗
1 y

∗
1 [10a(x∗

1 )2−a2(x∗
1 )4−5]

[1+a(x∗
1 )2]5 , b̂30

.= − aby∗
1 [1+a2(x∗

1 )4−6a(x∗
1 )2]

[1+a(x∗
1 )2]4 ,

b̂21
.= − abx∗

1 [3−a(x∗
1 )2]

[1+a(x∗
1 )2]3 , b̂40

.= − a2bx∗
1 y

∗
1 [10a(x∗

1 )2−a2(x∗
1 )4−5]

[1+a(x∗
1 )2]5 and

b̂31
.= − ab[1+a2(x∗

1 )4−6a(x∗
1 )2]

[1+a(x∗
1 )2]4 .

In order to find the canonical normal form of the cusp of codimension 3, we take
u = x and v = dx

dt , rewrite (u, v) as (x, y), then system (2.23) becomes

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= ĉ20x

2 + ĉ02y
2 + ĉ30x

3 + ĉ21x
2y + ĉ12xy

2 + ĉ40x
4 + ĉ31x

3y + ĉ22x
2y2 + O(|x, y|5),

(2.24)

where ĉ20
.= â10â20 − 2â210â11

b̂01
+ b̂01b̂20 − 2â10b̂11, ĉ02

.= 2â11
b̂01

, ĉ30
.= −â10b̂21 +

2â11b̂20 −2â20b̂11 + â21ĉ10 − â30d̂01 + b̂01b̂30, ĉ21
.= b̂21 +3â30 − 2â11â20

b̂01
− 2â10â21

b̂01
+

4â10â211
b̂201

, ĉ12
.= 2â21

b̂01
− 4â211

b̂201
, ĉ40

.= −â10b̂31 + 2â11b̂30 − â20b̂21 + â21b̂20 − 2â30b̂11 +
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â31ĉ10 − â40d̂01 + b̂01b̂40, ĉ31
.= b̂31 + 4â40 − 2â20â21

b̂01
− 2â11â30

b̂01
− 3â10â31

b̂01
+ 4â211â20

b̂201
+

6â10â11â21
b̂201

− 8â10â311
b̂301

and ĉ22
.= 3â31

b̂01
− 6â11â21

b̂201
+ 8â311

b̂301
.

Next, we introduce a new time variable τ by dt = (1 − ĉ02x)dτ and rewrite τ as
t , then system (2.24) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= y(1 − ĉ02x),

dy

dt
= (1 − ĉ02x)(ĉ20x

2 + ĉ02y
2 + ĉ30x

3 + ĉ21x
2y + ĉ12xy

2)

+ (1 − ĉ02x)(ĉ40x
4 + ĉ31x

3y + ĉ22x
2y2) + O(|x, y|5).

(2.25)

Let u = x and v = y(1 − ĉ02x), rewrite (u, v) as (x, y), then system (2.25) is
transformed into

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= d̂20x

2 + d̂30x
3 + d̂21x

2y + d̂12xy
2 + d̂40x

4 + d̂31x
3y + d̂22x

2y2 + O(|x, y|5),
(2.26)

where d̂20
.= ĉ20, d̂30

.= ĉ30 − 2ĉ20ĉ02, d̂21
.= ĉ21, d̂12

.= ĉ12 − ĉ202, d̂40
.=

ĉ40 + ĉ20ĉ202 − 2ĉ30ĉ02, d̂31
.= ĉ31 − ĉ02ĉ21 and d̂22

.= ĉ22 − ĉ302. Notice that

d̂20 = acx∗
1

1+a(x∗
1 )2

[
1 + b

ac − 3x∗
1

]
> 0, making the following change of variables

u = x, v = 1
√

d̂20

y and dτ =
√

d̂20dt,

rewriting (u, v, τ ) as (x, y, t), then system (2.26) becomes

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= x2 + ê30x

3 + ê21x
2y + ê12xy

2 + ê40x
4 + ê31x

3y + ê22x
2y2 + O(|x, y|5),

(2.27)

where ê30
.= d̂30

d̂20
, ê21

.= d̂21√
d̂20

, ê12
.= d̂12, ê40

.= d̂40
d̂20

, ê31
.= d̂31√

d̂20
and ê22

.= d̂22.

According to Proposition 5.3 in [26], we get an equivalent system of system (2.27)
in a small neighborhood of (0, 0), which is given by

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= x2 + M1(x

∗
1 )x

3y + R(x, y),
(2.28)
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where

M1(x
∗
1 )

.= (x∗
1 − 1

2 )N0(x
∗
1 )

x∗
1 (−1 + 3x∗

1 )(5x∗
1 − 2)2(x∗

1 − 1)2[7(x∗
1 )2 − 8x∗

1 + 2][6(x∗
1 )2 − 6x∗

1 + 1]
√

d̂20

and R(x, y)
.= y2O(|x, y|2) + O(|x, y|5). Note that x∗

1 ∈ ( 13 ,
4−√

2
7 ) indicates that

each factor in M1(x∗
1 ) is nonzero except N0(x∗

1 ). Thus, when N0(x∗
1 ) �= 0, we have

M1(x∗
1 ) �= 0. Correspondingly, (x∗

1 , y
∗
1 ) is a cusp of codimension 3 by the results in

[19,22,27].Otherwise,when N0(x∗
1 ) = 0, thenM1(x∗

1 ) = 0 and (x∗
1 , y

∗
1 )maybe a cusp

of codimension 4, which is extremely complex and the study of exact codimension of
this cusp is beyond our current scope. This is left for the future works. This completes
the proof. ��

Next, we consider the case (II)(b) in Table 2. In this case, three equilibria E1(x1, y1),
E2(x2, y2) and E3(x3, y3) coincide into a unique positive equilibrium (x∗, y∗), where
x∗ = 1

3 + b
3ac and y∗ = a2c+ab+5ac−4b

9ac . The characteristic equation related to (x∗, y∗)
is given by

|A|(x∗,y∗) − λE| = λ2 + p(x∗,y∗)λ + q(x∗,y∗) = 0, (2.29)

where

q(x∗,y∗) = x∗F ′(x∗)
1 + ω(x∗)2

= 0 and p(x∗,y∗) = H(x∗)
1 + ω(x∗)2

.

If H(x∗) �= 0 (i.e., a + b �= ac + c + 2b
ac + 3), then p(x∗,y∗) �= 0. Thus, one of

the eigenvalues is zero and the other one is nonzero. If H(x∗) = 0 (i.e., a + b =
ac + c + 2b

ac + 3), then p(x∗,y∗) = 0. Consequently the two eigenvalues are zeros.
Then, we have the following results in terms of the type of the positive equilibrium
(x∗, y∗).

Theorem 2.6 For the case (II)(b), system (1.2) has a unique positive equilibrium
(x∗, y∗), which is a degenerate equilibrium of multiplicity 3. More precisely,

(i) if H(x∗) �= 0, then (x∗, y∗) is a stable degenerate node of codimension 2 provided
a + b < ac + c + 2b

ac + 3 and unstable provided a + b > ac + c + 2b
ac + 3;

(ii) if H(x∗) = 0 and

(a) H ′(x∗) = 0 (or H ′(x∗) �= 0 and (H ′(x∗))2 < 8acx∗[1 + a(x∗)2]), then
(x∗, y∗) is a degenerate focus (or center);

(b) H ′(x∗) �= 0 and (H ′(x∗))2 ≥ 8acx∗[1+a(x∗)2], then (x∗, y∗) is a degenerate
elliptic equilibrium consisting of one hyperbolic sector and one elliptic sector.

Proof The proof of (i) is similar to those in Theorem 2.3 and using Theorem 7.1–7.3
in [25], we can obtain the conclusion in (i). Next, we focus on the proof of (ii). Firstly,
we translate the positive equilibrium (x∗, y∗) to the origin, and expand the right-hand
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side of system (1.2) in a Taylor series up to the fourth order around the origin, then
we obtain

⎧
⎪⎨

⎪⎩

dx

dt
= ā10x + b̄01y + ā20x

2 + 2ā11xy + ā30x
3 + ā21x

2y + ā40x
4 + ā31x

3y + O(|x, y|5),
dy

dt
= c̄10x + d̄01y + b̄20x

2 + 2b̄11xy + b̄30x
3 + b̄21x

2y + b̄40x
4 + b̄31x

3y + O(|x, y|5),
(2.30)

where ā10
.= −x∗ + 2a(x∗)2(1−x∗)

1+a(x∗)2 , b̄01
.= − x∗

1+a(x∗)2 , ā20
.= ax∗y∗[3−a(x∗)2]

[1+a(x∗)2]3 − 1,

ā11
.= a(x∗)2−1

2[1+a(x∗)2]2 , ā21
.= ax∗[3−a(x∗)2]

[1+a(x∗)2]3 , ā30
.= ay∗[1+a2(x∗

1 )4−6a(x∗)2]
[1+a(x∗)2]4 , c̄10

.=
by∗[1−a(x∗)2]
[1+a(x∗)2]2 , d̄01

.= −c+ bx∗
1+a(x∗)2 , b̄11

.= b[1−a(x∗)2]
2[1+a(x∗)2]2 , b̄20

.= − abx∗y∗[3−a(x∗)2]
[1+a(x∗)2]3 , b̄21

.=
− abx∗[3−a(x∗)2]

[1+a(x∗)2]3 , b̄30
.= − aby∗[1+a2(x∗)4−6a(x∗)2]

[1+a(x∗)2]4 , ā40
.= a2x∗y∗[10a(x∗)2−a2(x∗)4−5]

[1+a(x∗)2]5 ,

ā31
.= a[1+a2(x∗)4−6a(x∗)2]

[1+a(x∗)2]4 , b̄31
.= − ab[1+a2(x∗)4−6a(x∗)2]

[1+a(x∗)2]4 and

b̄40
.= − a2bx∗y∗[10a(x∗)2−a2(x∗)4−5]

[1+a(x∗)2]5 . Then, we transform the linear part of system
(2.30) to the Jordan canonical form. Let

u = x and v = ā10x + b̄01y,

rewrite (u, v) as (x, y), then system (2.30) becomes

⎧
⎪⎨

⎪⎩

dx

dt
= y + c̄20x

2 + c̄11xy + c̄30x
3 + c̄21x

2y + c̄40x
4 + c̄31x

3y + O(|x, y|5),
dy

dt
= d̄11xy + d̄30x

3 + d̄21x
2y + d̄40x

4 + d̄31x
3y + O(|x, y|5).

(2.31)

where c̄20
.= ā20− 2ā10ā11

b̄01
, c̄11

.= 2ā11
b̄01

, c̄30
.= ā30− ā10ā21

b̄01
, c̄21

.= ā21
b̄01

, c̄40
.= ā40− ā10ā31

b̄01
,

c̄31
.= ā31

b̄01
, d̄11

.= 2b̄11 + 2ā10ā11
b̄01

, d̄30
.= ā10ā30 + b̄01b̄30 − ā210ā21

b̄01
− ā10b̄21, d̄21

.=
b̄21 + ā10ā21

b̄01
, d̄40

.= ā10ā40 − ā10b̄31 + b̄01b̄40 − ā210ā31
b̄01

and d̄31
.= b̄31 + ā10ā31

b̄01
. Further,

we take u = x and v = dy
dt , rewrite (u, v) as (x, y), then system (2.31) is transformed

into
⎧
⎪⎨

⎪⎩

dx

dt
=y,

dy

dt
=ē11xy + ē02y

2 + ē30x
3 + ē21x

2y + ē12xy
2 + ē40x

4 + ē31x
3y + ē22x

2y2 + O(|x, y|5),
(2.32)

where ē11
.= 2c̄20 + d̄11, ē02

.= c̄11, ē30
.= d̄30 − c̄20d̄11, ē21

.= −c̄11c̄20 + 3c̄30 + d̄21,
ē12

.= 2c̄21 − c̄211, ē40
.= c̄11d̄30 − c̄20d̄21 − c̄30d̄11 + d̄40, ē31

.= c̄211c̄20 − c̄11c̄30 −
2c̄20c̄21 + 4c̄40 + d̄31 and ē22

.= c̄311 − 3c̄11c̄21 + 3c̄31.
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For system (2.32), there are

ē11 = 2c̄20 + d̄11 = − H ′(x∗)
1 + a(x∗)2

and

ē30 = d̄30 − c̄20d̄11 = − acx∗

1 + a(x∗)2
.

If H ′(x∗) �= 0, then ē11 �= 0 and system (2.32) can be written as
⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
=y,

dy

dt
=ē30x

3
(

1 + ē40
ē30

x

)

+ ē11xy

(

1 + ē21
ē11

x + ē31
ē11

x2
)

+ y2 (ē02 + ē12x) + ē22x
2y2 + O(|x, y|5).

(2.33)

A further calculation yields

G0
.= ē211 + 8ē30 = [H ′(x∗)]2 − 8acx∗[1 + a(x∗)2]

[1 + a(x∗)2]2 .

It follows from Theorems 7.1–7.3 in [25] that (x∗, y∗) is a degenerate focus (or center)
if G0 < 0 (i.e., (H ′(x∗))2 < 8acx∗[1 + a(x∗)2]), a degenerate elliptic equilibrium
consisting of one hyperbolic sector and one elliptic sector ifG0 ≥ 0 (i.e., (H ′(x∗))2 ≥
8acx∗[1+ a(x∗)2]). If H ′(x∗) = 0, then ē11 = 0 and system (2.32) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= y,

dy

dt
= ē30x

3
(

1 + ē40
ē30

x

)

+ x2y (ē21 + ē31x) + y2
(
ē02 + ē12x + ē22x

2) + O(|x, y|5).
(2.34)

Therefore, (x∗, y∗) is a degenerate focus (or center) according to Theorems 7.1–7.3
in [25]. This completes the proof. ��
Remark 2.3 When d < c, i.e., τ < rδ

β
, system (1.2) can have multiple positive equi-

libria while the boundary equilibrium E0 is an unstable. This means that the prey will
always coexist with the predator when the constant releasing rate is small than the
critical value rδ

β
, i.e., the predator can not eliminate the prey in spite of the constant

releasing of predators.

3 Bifurcations

In this section, we investigate the bifurcations of system (1.2), including transcritical,
saddle-node, Hopf, degenerate Hopf, Bogdanov–Takens and cusp bifurcations.
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3.1 The Transcritical Bifurcation and Saddle-Node Bifurcation

Theorem 3.1 (i) System (1.2) undergoes a transcritical bifurcation at d = c (i.e.,
τ = rδ

β
);

(ii) If d < c, � > 0, F(x∗
1 ) = 0 and H(x∗

1 ) �= 0 (or � > 0, x∗
2 < 1, F(x∗

2 ) = 0 and
H(x∗

2 ) �= 0), then (x∗
1 , y

∗
1 ) (or (x∗

2 , y
∗
2 )) is a saddle-node of codimension 1 and

system (1.2) undergoes a saddle-node bifurcation at this point.

Proof (i) It follows from Table 1 and Theorem 2.1 that the positive equilibrium
E1(x1, y1) collides with the boundary equilibrium E0(0, d

c ) when d = c (i.e.,
τ = rδ

β
). Let d = d∗ + ε and substitute it into system (1.2) while ε = 0 corre-

sponding to d = c, we have

⎧
⎪⎨

⎪⎩

dx

dt
= x(1 − x) − xy

1 + ax2
,

dy

dt
= bxy

1 + ax2
− cy + d∗ + ε.

(3.1)

Linearizing system (3.1) at E0(0, d
c ) and diagonalizing the linear part, then system

(3.1) is transformed into

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= −

(

1 + b

c

)

x2 + b

c
xy + O(|x, y|3),

dy

dt
= −cε − cy − b

(

1 + b + b

c

)

x2 + b

(

1 + b

c

)

xy + O(|x, y|3).
(3.2)

By the Liapunov–Schmidt Method introduced in [28], system (3.2) reduced to the
center manifold takes the following form:

dx

dt
= −b

c
εx −

(

1 + b

c

)

x2 + O(x3). (3.3)

Denote the right side of system (3.3) as G(x, ε), we have

G(x, ε)|(0,0) = 0, Gx (x, ε)|(0,0) = 0, Gε(x, ε)|(0,0) = 0,

Gxε(x, ε)|(0,0) = −b

c
and Gxx (x, ε)|(0,0) = −2

(

1 + b

c

)

.

Therefore, system (1.2) undergoes a transcritical bifurcation, correspondingly,
T B := {(a, b, c, d)|d = c} is the transcritical bifurcation surface of system (1.2).

(ii) The proof is similar to those of Theorem 2.3, we omit them here. Particularly,

SN1 := {(a, b, c, d)|d < c, � > 0, F(x∗
1 ) = 0 and H(x∗

1 ) �= 0}
is the saddle-node bifurcation surface. Further,

BT1 := {(a, b, c, d)|d < c, � > 0, F(x∗
1 ) = 0 and H(x∗

1 ) = 0}
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is called a Bogdanov–Takens bifurcation surface of system (1.2), which will be
discussed in more detail in Sect. 3.3. Similarly, we have another saddle-node
bifurcation surface

SN2 := {(a, b, c, d)|� > 0, x∗
2 < 1, F(x∗

2 ) = 0 and H(x∗
2 ) �= 0}

and another Bogdanov–Takens bifurcation surface

BT2 := {(a, b, c, d)|� > 0, x∗
2 < 1, F(x∗

2 ) = 0 and H(x∗
2 ) = 0}.

The proof is completed. ��

3.2 Hopf Bifurcation and Degenerate Hopf Bifurcation of Codimension 2

Based on the analyses in Sect. 2, we know that Ei (xi , yi ) (i = 1, 3) is a weak focus
or center when H(xi ) = 0, which indicates that a Hopf bifurcation may occur at
these equilibria. Without loss of generality, in this section, we only discuss the Hopf
bifurcation at E1(x1, y1). The necessary condition of Hopf bifurcation requires that
H(x1) = 0, and the properties of function H(x) is concluded as the following.

Lemma 3.1 If H(x1) = 0, then H ′(x1) = 0 if and only if x1 = (2a−ac)+√
�∗

9a with
�∗ = (2a − ac)2 + 9a(b − 1) > 0.

The proof is shown in “Appendix A”.
According to the formula for the third focal value (i.e., the first Liapunov number

σ1) at the positive equilibrium E1 of system (1.2) in [24], we have

σ1 = 3π

2q
3
2
E1

[
2a − 4ac + (ab − 10a)x1

(1 + ax21 )
2

qE1 − (ac + b)x1 − 3acx21
(1 + ax21 )

2
H ′(x1)

]

.

Based on the properties of H(x1), we get the following results.

Theorem 3.2 System (1.2) undergoes a Hopf bifurcation if H(x1) = 0. Particularly,
if σ1 �= 0, then E1(x1, y1) is a multiple focus of multiplicity 1, and one limit cycle
arises from the Hopf bifurcation in the neighborhood of E1 as parameter varies. In
more details, E1 is stable and a stable limit cycle exists when σ1 < 0; E1 is unstable
and an unstable limit cycle exists when σ1 > 0.

Proof From Sect. 2, the characteristic equation related to E1(x1, y1) is given by

|A|E1 − λE| = λ2 + pE1λ + qE1 = 0. (3.4)

Choosing d as the bifurcation parameter, and taking qE1 , pE1 and x1 as the functions
of d, we have

qE1(d)
.= qE1(x1(d), d) = x1(d)F ′(x1(d))

1 + a(x1(d))2
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and

pE1(d)
.= pE1(x1(d), d) = H(x1(d))

1 + a(x1(d))2
.

Let λ(d) = μ(d) + iω(d) be a complex root of the characteristic equation (3.4),
and suppose that there exists a critical value d = d∗ such that H(x1(d∗)) = 0 (i.e.,
pE1(d

∗) = 0), that is, characteristic equation (3.4) has a pair of pure imaginary roots.
Thus, there are μ(d∗) = 0 and ω(d∗) = √

qE1(d
∗). Then, we obtain

μ′(d)|d=d∗ = − 1

2(1 + ax21 )

∂H(x1(d))

∂x1

∂x1(d)

∂d

∣
∣
∣
∣
d=d∗

, (3.5)

where ∂x1(d)
∂d

∣
∣
d=d∗ = − 1

F ′(x1(d∗)) < 0. From Lemma 3.1, we find that when x1 �=
(2a−ac)+√

�∗
9a , then there are

∂H(x1(d))

∂x1

∣
∣
∣
∣
x=x1

�= 0 and μ′(d)|d=d∗ �= 0.

Therefore, the transversality condition is satisfied at d = d∗ and system (1.2) under-

goes a Hopf bifurcation at d = d∗ if x1 �= (2a−ac)+√
�∗

9a .

In addition, when x1 = (2a−ac)+√
�∗

9a , we alternatively choose c as the bifurcation
parameter. Suppose that there exists a critical value c = c∗ such that H(x1(c∗)) =
0, with the analogous calculations we have μ′(c)|c=c∗ = − 1

2 . Therefore, system

(1.2) undergoes a Hopf bifurcation at c = c∗ when x1 = (2a−ac)+√
�∗

9a . Note that,
by choosing b as the bifurcation parameter, we can get the similar result for x1 =
(2a−ac)+√

�∗
9a . As a conclusion, system (1.2) undergoes a Hopf bifurcation at H(x1) =

0.
Furthermore, if σ1 < 0, then E1 is a stable multiple focus of multiplicity 1, hence

system (1.2) undergoes a supercritical Hopf bifurcation and there is a unique and
stable limit cycle as parameter varies; If σ1 > 0, E1 is an unstable multiple focus of
multiplicity 1, then system (1.2) undergoes a subcritical Hopf bifurcation and there is
a unique and unstable limit cycle as parameter varies. This completes the proof. ��

Note that, if σ1 = 0, then E1 is a multiple focus of multiplicity at least 2 and system
(1.2)may undergo a degenerateHopf bifurcation. Then the nth order Liapunov number
σn should be calculated, n = 1, 2, 3, . . . . And when σi = 0, i = 1, 2, . . . , n − 1 and
σn �= 0, we can obtain that E1 is a multiple focus of multiplicity n, which means
system (1.2) undergoes a degenerate Hopf bifurcation of codimension n, and there
exist at most n limit cycles in the neighborhood of E1. Using the formal series method
in [25,26], when σ1 = 0, we obtain the second Liapunov number as follows

σ2 = − 1

16A
5
2
1

[(
5

3
A2A3 − A1A4

) (

6ax1 + ac − 2a − c

x21

)

+
(
5

3
A2 + A1

x1

)
A1c

x41

]

,
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where

A1
.= (1 + ax21 )F

′(x1)
x1

, A2
.= 6a2cx21 − 3(a2c + ab)x1 + ab + ac + B

x21
,

A3
.= 4a2cx1 − a2c − ab + ac

x1
− B

x31
, A4

.= a2c − ac

x21
+ B

x41
and B

.= (ac + b)x1 − b − c.

Further, if σ1 = 0 and σ2 �= 0, there can be at most two limit cycles arise from
the degenerate Hopf bifurcation of codimension 2 (i.e., the Bautin bifurcation). The
existence of the limit cycle is shown in Fig. 4a–c. Since the expression ofσ2 is complex,
it is difficult to determine the sign of σ2 and the codimension of the most degenerate
Hopf bifurcation for system (1.2). We leave this problem as future work.

According to the above analyses, we have the following theorem.

Theorem 3.3 System (1.2) undergoes a degenerate Hopf bifurcation of codimension
2 if H(x1) = 0 when σ1 = 0 and σ2 �= 0. And E1(x1, y1) is a multiple focus of multi-
plicity 2, which is stable (unstable) as σ2 < 0 (σ2 > 0, respectively). Moreover, there
exist at most two limit cycles arising form the Hopf bifurcation in the neighborhood
of E1, one is stable and another is unstable.

3.3 The Bogdanov–Takens (Cusp Type) Bifurcation of Codimension 3

As we discussed above, system (1.2) may exhibit a degenerate positive equilibrium
(x∗

1 , y
∗
1 ) (or (x∗

2 , y
∗
2 )), which is a cusp of codimension 2 (or 3) in different parameter

spaces. This means that system (1.2) can admit a Bogdanov–Takens bifurcation of
codimension 2 (or 3) under a small parameter perturbation. Without loss of generality,
we only study the bifurcation around the cusp (x∗

1 , y
∗
1 ), which is a cusp of codimension

2 if the parameters satisfy

d < c, � > 0, F(x∗
1 ) = 0, H(x∗

1 ) = 0 and H ′(x∗
1 ) �= 0, (3.6)

a cusp of codimension 3 if the parameters satisfy

d < c, � > 0, F(x∗
1 ) = 0, H(x∗

1 ) = 0, H ′(x∗
1 ) = 0 and N0(x

∗
1 ) �= 0, (3.7)
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Fig. 4 a A stable limit cycle created by the supercritical Hopf bifurcation with a = 5, b = 1, c = 0.348
and d = 0.14. b An unstable limit cycle created by the subcritical Hopf bifurcation with a = 16, b = 2.8,
c = 0.5 and d = 0.25. c Two limit cycles created by the degenerate Hopf bifurcation of codimension 2 (i.e.,
the Bautin bifurcation), the inner one is unstable and the outer one is stable with a = 5, b = 1, c = 0.312
and d = 0.115403

i.e.,

d < c, � > 0, (a, b) =
(

− 2x∗
1 − 1

[12(x∗
1 )

2 − 15x∗
1 + 4]x∗

1
,

− 2x∗
1 (x

∗
1 − 1)(3x∗

1 − 1)2

[12(x∗
1 )

2 − 15x∗
2 + 4][7(x∗

1 )
2 − 8x∗

1 + 2]

)

,

(c, d) =
(

− x∗
1 (3x

∗
1 − 1)(2x∗

1 − 1)

7(x∗
1 )

2 − 8x∗
1 + 2

,
2x∗

1 (3x
∗
1 − 1)(x∗

1 − 1)2

12(x∗
1 )

2 − 15x∗
1 + 4

)

and N0(x
∗
1 ) �= 0.

(3.8)

As the Bogdanov–Takens bifurcation of codimension 2 is included in the Bogdanov–
Takens bifurcation of codimension 3 [20]. Therefore, here we only provided the
detailed proof for the Bogdanov–Takens bifurcation of codimension 3. Choosing b,
c and d as bifurcation parameters and fix a = a0, we will show that system (1.2)
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can undergo a Bogdanov–Takens bifurcation of codimension 3 in a small neighbor-
hood of equilibrium (x∗

1 , y
∗
1 ) as parameters (b, c, d) varies in a small neighborhood

of (b0, c0, d0), where (a0, b0, c0, d0) satisfies the conditions in (3.7) (or (3.8)).

Theorem 3.4 Assume that the conditions in (3.7) are satisfied, then the degenerate
equilibrium (x∗

1 , y
∗
1 ) is a cusp of codimension 3. Choosing b, c and d as bifurcation

parameters, then system (1.2) undergoes aBogdanov–Takens (cusp type) bifurcation of
codimension 3 in a small neighborhood of (x∗

1 , y
∗
1 ) as (b, c, d) varies near (b0, c0, d0).

More precisely,

(i) if N0(x∗
1 ) < 0, then system (1.2) can exhibit the co-existence of a stable homoclinic

loop and an unstable limit cycle, co-existence of two limit cycles (the inner one
unstable and the outer stable), and the existence of a semi-stable limit cycle for
different parameter spaces;

(ii) if N0(x∗
1 ) > 0, then system (1.2) can exhibit the co-existence of an unstable

homoclinic loop and a stable limit cycle, co-existence of two limit cycles (the
inner one stable and the outer unstable), and the existence of a semi-stable limit
cycle for different parameter spaces.

Proof Substituting a, b, c and d by a0, b0 − ε1, c0 − ε2 and d0 − ε3 into system (1.2),
it becomes

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= x(1 − x) − xy

1 + a0x2
,

dy

dt
= (b0 − ε1)xy

1 + a0x2
− (c0 − ε2)y + (d0 − ε3),

(3.9)

where ε1, ε2 and ε3 are very small parameters (0 < |εi | 
 1, i = 1, 2, 3). Then
translating the positive equilibrium (x∗

1 , y
∗
1 ) to the origin, and expanding the right-

hand side of system (3.9) in a Taylor series up to the fourth order around the origin,
we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= ã10x + b̃01y + ã20x

2 + 2ã11xy + ã30x
3 + ã21x

2y + ã40x
4 + ã31x

3y + O(|x, y|5),
dy

dt
= b̃00 + (c̃10 + ã10ε1 − ε1 + 2x∗

1ε1)x + (d̃01 + b̃01ε1 + ε2)y + (b̃20 + ã20ε1 + ε1)x
2

+ 2(b̃11 + ã11ε1)xy + (b̃30 + ã30ε1)x
3 + (b̃21 + ã21ε1)x

2y + (b̃40 + ã40ε1)x
4

+ (b̃31 + ã31ε1)x
3y + O(|x, y, ε1, ε2, ε3|5),

(3.10)

where ã10
.= 2a0(x∗

1 )2(1−x∗
1 )

1+a0(x∗
1 )2

− x∗
1 , b̃01

.= − x∗
1

1+a0(x∗
1 )2

, ã20
.= −1 + a0x∗

1 y
∗
1 [3−a0(x∗

1 )2]
[1+a0(x∗

1 )2]3 ,

ã11
.= − 1−a0(x∗

2 )2

2[1+a0(x∗
2 )2]2 , ã30

.= a0 y∗
1 [1+a20 (x

∗
1 )4−6a0(x∗

1 )2]
[1+a0(x∗

1 )2]4 , ã21
.= a0x∗

1 [3−a0(x∗
1 )2]

[1+a0(x∗
1 )2]3 ,

ã40
.= a20 x

∗
1 y

∗
1 [10a0(x∗

1 )2−a20 (x
∗
1 )4−5]

[1+a0(x∗
1 )2]5 , ã31

.= a0[1+a20 (x
∗
1 )4−6a0(x∗

1 )2]
[1+a0(x∗

1 )2]4 , b̃00
.= − ε1x∗

1 y
∗
1

1+a0(x∗
1 )2

+
ε2y∗

1 − ε3, c̃10
.= b0 y∗

1 [1−a0(x∗
1 )2]

[1+a0(x∗
1 )2]2 , d̃01

.= b0x∗
1

1+a0(x∗
1 )2

, b̃20
.= a0b0x∗

1 y
∗
1 [a0(x∗

1 )2−3]
[1+a0(x∗

1 )2]3 ,
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b̃11
.= b0[1−a0(x∗

1 )2]
2[1+a0(x∗

1 )2]2 , b̃30
.= a0b0 y∗

1 [6a0(x∗
1 )2−a20 (x

∗
1 )4−1]

[1+a0(x∗
1 )2]4 , b̃21

.= a0b0x∗
1 [a0(x∗

1 )2−3]
[1+a0(x∗

1 )2]3 , b̃31
.=

a0b0[6a0(x∗
1 )2−a20 (x

∗
1 )4−1]

[1+a0(x∗
1 )2]4 , b̃40

.= − a20b0x
∗
1 y

∗
1 [10a0(x∗

1 )2−a20 (x
∗
1 )4−5]

[1+a0(x∗
1 )2]5 , andO(|x, y, ε1, ε2, ε3|5)

is a function in variables (x, y) at least of the fifth order with respect to (x, y) and the
coefficients depend smoothly on ε1, ε2 and ε3. Further, let u = x and v = dx

dt , rewrite
(u, v) as (x, y), then system (3.10) can be rewritten as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= y,

dy

dt
= ẽ00 + ẽ10x + ẽ01y + ẽ20x

2 + ẽ11xy + ẽ02y
2 + ẽ30x

3 + ẽ21x
2y

+ ẽ12xy
2 + ẽ40x

4 + ẽ31x
3y + ẽ22x

2y2 + O(|x, y, ε1, ε2, ε3|5),

(3.11)

where ẽ00
.= b̃00b̃01, ẽ10

.= (2x∗
1 − 1)b̃01ε1 − ã10ε2, ẽ01

.= b̃01ε1 + ε2, ẽ20
.=

−2ā10b̄11+2ā11c̄10− ā20d̄01+ b̄01b̄20+ (−2ã11+4ã11x∗
1 + b̃01)ε1− ã20ε2+ ã21b̃00,

ẽ11
.= 2ã11ε1, ẽ02

.= 2ã11
b̃01

, ẽ30
.= −ã10b̃21 + 2ã11b̃20 − 2ã20b̃11 + ã21c̃10 − ã30d̃01 +

b̃01b̃30 + ã31b̃00 + (2ã11 − ã21 + 2ã21x∗
1 )ε1 − ã30ε2, ẽ21

.= b̃21 + 3ã30 − 2ã20ã11
b̃01

−
2ã10ã21
b̃01

+ 4ã10ã211
b̃201

+ ã21ε1, ẽ12
.= 2ã21

b̃01
− 4ã211

b̃201
, ẽ40

.= −ã10b̃31 + 2ã11b̃30 − ã20b̃21 +
ã21b̃20 − 2ã30b̃11 + ã31c̃10 − ã40d̃01 + b̃01b̃40 + (ã21 − ã31 + 2ã31x∗

1 )ε1 − ã40ε2,

ẽ31
.= b̃31 + 4ã40 − 2ã20ã21

b̃01
− 2ã11ã30

b̃01
− 3ã10ã31

b̃01
+ 4ã211ã20

b̃201
+ 6ã10ã11ã21

b̃201
− 8ã10ã311

b̃301
+ ã31ε1

and ẽ22
.= 3ã31

b̃01
− 6ã11ã21

b̃201
+ 8ã311

b̃301
.

Next, in order to find the universal unfolding of the cusp of codimension 3, we
follow the procedure in [19,29] by the following steps:

(i) Simplifying the y2-term in system (3.11). Making the following change of vari-
ables

x = u + ẽ02
2

u2 and y = v + ẽ02uv,

rewrite (u, v) as (x, y), then system (3.11) can be written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= y,

dy

dt
= f̃00 + f̃10x + f̃01y + f̃20x

2 + f̃11xy + f̃30x
3 + f̃21x

2y + f̃12xy
2

+ f̃40x
4 + f̃31x

3y + R(x, y, ε1, ε2, ε3),

(3.12)

where f̃00
.= ẽ00, f̃10

.= ẽ10 − ẽ00ẽ02, f̃01
.= ẽ01, f̃20

.= ẽ20 + ẽ00ẽ202 − ẽ10 ẽ02
2 ,

f̃11
.= ẽ11, f̃30

.= ẽ30 − ẽ00ẽ302 + ẽ10 ẽ202
2 , f̃21

.= ẽ21 + ẽ11ẽ02
2 , f̃12

.= ẽ12 +
2ẽ202, f̃40

.= ẽ40 + ẽ00ẽ402 − ẽ10 ẽ302
2 + ẽ02 ẽ30

2 + ẽ20 ẽ202
4 , f̃31

.= ẽ31 + ẽ02ẽ21
and R(x, y, ε1, ε2, ε3)

.= y2O(|x, y|2) + O(|x, y|5) + O(|ε1, ε2, ε3|)(O(y2) +
O(|x, y|3)) + O(|ε1, ε2, ε3|2)O(|x, y|).
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(ii) Simplifying the xy2-term in system (3.12). Let

x = u + f̃12
6

u3 and y = v + f̃12
2

u2v,

rewrite (u, v) as (x, y), then system (3.12) can be written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= y,

dy

dt
= g̃00 + g̃10x + g̃01y + g̃20x

2 + g̃11xy + g̃30x
3 + g̃21x

2y + g̃40x
4

+ g̃31x
3y + R(x, y, ε1, ε2, ε3),

(3.13)

where g̃00
.= f̃00, g̃10

.= f̃10, g̃01
.= f̃01, g̃20

.= f̃20 − f̃00 f̃12
2 , g̃11

.= f̃11,

g̃30
.= f̃30− f̃10 f̃12

3 , g̃21
.= f̃21, g̃40

.= f̃40+ f̃00 f̃ 212
4 − f̃20 f̃12

6 and g̃31
.= f̃31+ f̃11 f̃12

6 .
(iii) Simplifying the x3 and x4-terms in system (3.13). Notice that

lim
ε j→0

g̃20 = a0c0x∗
1

1 + a0(x∗
1 )

2

[

1 + b0
a0c0

− 3x∗
1

]

> 0, j = 1, 2, 3.

Then we let

x = u − g̃30
4g̃20

u2 +
(

3g̃230
16g̃220

− g̃40
5g̃20

)

u3, y = v,

and

dτ =
(

1 + g̃30
2g̃20

u + 48g̃20 g̃40 − 25g̃230
80g̃220

u2 + 48g̃20 g̃30g̃40 − 35g̃330
80g̃320

u3
)

dt,

rewrite (u, v, τ ) as (x, y, t), then we obtain the following system

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= h̃00 + h̃10x + h̃01y + h̃20x

2 + h̃11xy + h̃21x
2y + h̃31x

3y + R(x, y, ε1, ε2, ε3),
(3.14)

where h̃00
.= g̃00, h̃10

.= g̃10 − g̃00 g̃30
2g̃20

, h̃01
.= g̃01, h̃11

.= g̃11 − g̃01 g̃30
2g̃20

, h̃20
.=

g̃20 − 3g̃10 g̃30
4g̃20

− 3g̃00 g̃40
5g̃20

+ 9g̃00 g̃230
16g̃220

, h̃21
.= g̃21 − 3g̃11 g̃30

4g̃20
− 3g̃01 g̃40

5g̃20
+ 9g̃01 g̃230

16g̃220
and

h̃31
.= g̃31 + 7g̃11 g̃230

8g̃220
− g̃21 g̃30

g̃20
− 4g̃11 g̃40

5g̃20
.

(iv) Simplifying the x2y-term in system (3.14). Similarly, we let

x = u, y = v + h̃21

3h̃20
v2 + h̃221

36h̃220
v3 and dτ =

(

1 + h̃21

3h̃20
v + h̃221

36h̃220
v2

)

dt,
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rewrite (u, v, τ ) as (x, y, t), then system (3.14) becomes

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= k̃00 + k̃10x + k̃01y + k̃20x

2 + k̃11xy + k̃31x
3y + R(x, y, ε1, ε2, ε3),

(3.15)

where k̃00
.= h̃00, k̃10

.= h̃10, k̃01
.= h̃01 − h̃00 h̃21

h̃20
, k̃20

.= h̃20, k̃11
.= h̃11 − h̃10h̃21

h̃20
and k̃31

.= h̃31.
(v) Changing k̃20 to 1 and k̃31 to sign(M2) in system (3.15). Notice that

lim
ε j→0

k̃20 = a0c0x∗
1

1 + a0(x∗
1 )

2

[

1 + b0
a0c0

− 3x∗
1

]

> 0

and

lim
ε j→0

k̃31 = a0c0x∗
1

1 + a0(x∗
1 )

2

[

1 + b0
a0c0

− 3x∗
1

]

M2(x
∗
1 ) �= 0, j = 1, 2, 3.

where M2(x∗
1 )

.= (x∗
1− 1

2 )N0(x∗
1 )

x∗
1 (−1+3x∗

1 )(5x∗
1−2)2(x∗

1−1)2[7(x∗
1 )2−8x∗

1+2][6(x∗
1 )2−6x∗

1+1] �= 0. As it

is difficult to directly determine the sign of M2(x∗
1 ) (i.e., the sign of N0(x∗

1 )), we
make the following transformations

x = k̃
1
5
20

k̃
2
5
31

u, y = sign(M2)
k̃

4
5
20

k̃
3
5
31

v and dτ = sign(M2)
k̃

3
5
20

k̃
1
5
31

dt,

rewrite (u, v, τ ) as (x, y, t), then system (3.15) can be represented as

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= l̃00 + l̃10x + l̃01y + l̃11xy + x2 + sign(M2)x

3y + R(x, y, ε1, ε2, ε3),
(3.16)

where l̃00
.= k̃00 k̃

4
5
31

k̃
7
5
20

, l̃10
.= k̃10 k̃

2
5
31

k̃
6
5
20

, l̃01
.= sign(M2)

k̃01k̃
1
5
31

k̃
3
5
20

and l̃11
.= sign(M2)

k̃11

k̃
1
5
31k̃

2
5
20

.

(vi) Simplifying the x-term in system (3.16). Let x = u − l̃10
2 and y = v, rewrite

(u, v) as (x, y), then system (3.16) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= y,

dy

dt
= μ1(ε1, ε2, ε3) + μ2(ε1, ε2, ε3)y + μ3(ε1, ε2, ε3)xy + x2 + sign(M2)x

3y

+ R(x, y, ε1, ε2, ε3),

(3.17)
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where

μ1(ε1, ε2, ε3)
.= l̃00 − l̃210

4
= K

− 7
5

20 K
4
5
31(m11ε1 + m12ε2 + m13ε3) + O(|ε1, ε2, ε3|2),

μ2(ε1, ε2, ε3)
.= l̃01 − l̃10l̃11

2
− sign(M2)

l̃310
8

= sign(M2)K
− 3

5
20 K

1
5
31(m21ε1 + m22ε2 + m23ε3) + O(|ε1, ε2, ε3|2),

μ3(ε1, ε2, ε3)
.= l̃11 + sign(M2)

3l̃210
4

= sign(M2)K
− 1

5
20 K

− 2
5

31 (m31ε1 + m32ε2 + m33ε3) + O(|ε1, ε2, ε3|2),

K20 = a0c0x∗
1

1+a0(x∗
1 )2

[
1 + b0

a0c0
− 3x∗

1

]
, K31 = M2K20, and the coefficients mi j

(i, j = 1, 2, 3) are given in “Appendix B”. By lengthy calculations, we can obtain
that

∣
∣
∣
∣
∂(μ1, μ2, μ3)(ε1, ε2, ε3)

∂(ε1, ε2, ε3)

∣
∣
∣
∣
(0,0,0)

= λM
4
5
2

(
a0c0x∗

1
1+a0(x∗

1 )2

) 8
5
[
1 + b0

a0c0
− 3x∗

1

] 8
5

�= 0

where λ
.= [12(x∗

1 )2−15x∗
1+4]2[7(x∗

1 )2−8x∗
1+2][24(x∗

1 )3−33(x∗
1 )2+15x∗

1−2]
4(3x∗

1−1)2(x∗
1−1)3(5x∗

1−2)3[6(x∗
1 )2−6x∗

1+1] �= 0. Since x∗
1 ∈

( 13 ,
4−√

2
7 ), each factor in λ is nonzero. Thus, system (3.17) with (μ1, μ2, μ3) ∼

(0, 0, 0) for (x, y) near (0, 0) is equivalent to system (1.2) with (ε1, ε2, ε3) ∼
(0, 0, 0) for (x, y) near (x∗

1 , y
∗
1 ). That is, the dynamics of system (1.2) in a

small neighborhood of the positive equilibrium (x∗
1 , y

∗
1 ) as (b, c, d) varying near

(b0, c0, d0) are equivalent to that of system (3.17) in a small neighborhood of (0, 0)
as (μ1, μ2, μ3) varying near (0, 0, 0) according to the results in [19,22,29]. It is
easy to verify that cases (i) and (ii) in this Theorem are true by the results in [27].
This completes the proof. ��

Here we carry out some numerical simulations to show that N0(x∗
1 ) can be positive

or negative in different parameter sets. For example, we fix a = 7.103510, b =
31.062569, c = 6.078025 and d = 0.312174, system (1.2) has a cusp of codimension
3, i.e., (x∗

1 , y
∗
1 )=(0.3688,1.2163) with N0(x∗

1 ) = 0.000033 > 0. When a = 6, b =
2.769934, c = 0.761079 and d = 0.227635, we get (x∗

1 ,y
∗
1 )=(0.365085,1.142719)

and N0(x∗
1 ) = −0.000103 < 0. In this case, as bifurcation parameters (b, c, d) varies

in a small neighborhood of (2.769934, 0.761079, 0.227635), system (1.2) can exhibit
the co-existence of a stable homoclinic loop and an unstable limit cycle, co-existence
of two limit cycles (the inner one unstable and the outer one stable), and the existence
of a semi-stable limit cycle for different parameter spaces, as shown in Fig. 5a–d.
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Fig. 5 The phase portraits of system (1.2). a An unstable limit cycle enclosing the stable focus E1(x1, y1)
with (b, c, d) = (1.2, 0.3464, 0.1415). b A stable homoclinic cycle and an unstable limit cycle enclos-
ing the stable focus E1(x1, y1) when (b, c, d) = (1.2, 0.3464, 0.14187). c Two limit cycles enclosing
the stable focus E1(x1, y1), where the outer stable limit cycle arises from the Homoclinic bifurcation
when (b, c, d) = (1.2, 0.3464, 0.1421). d A semi-stable cycle enclosing the stable focus E1(x1, y1) when
(b, c, d) = (1.2, 0.3464, 0.142222)

3.4 Cusp Bifurcation of Codimension 2

For case (II)(b) in Table 2, system (1.2) has a unique positive equilibrium (x∗, y∗),
which is a degenerate node of codimension 2 when H(x∗) �= 0, a degenerate focus (or
center) when H ′(x∗) = 0 (or H ′(x∗) �= 0 and (H ′(x∗))2 < 8acx∗[1 + a(x∗)2]), or
a degenerate elliptic equilibrium consisting of one hyperbolic sector and one elliptic
sector when H ′(x∗) �= 0 and (H ′(x∗))2 ≥ 8acx∗[1 + a(x∗)2]. This indicates that
there can exist more complicated and interesting bifurcation phenomena. Next, we
choose c and d as bifurcation parameters and fix (a, b) = (a∗, b∗) to study the cusp
bifurcation of codimension 2 [21] for system (1.2). We have the following results.

Theorem 3.5 Assume that the conditions in case (i) of Theorem 2.6 are satisfied,
then equilibrium (x∗, y∗) is a degenerate node of codimension 2. Choosing c and d as
bifurcation parameters, then system (1.2) undergoes a cusp bifurcation of codimension
2 in a small neighborhood of (x∗, y∗) as (c, d) varies near (c∗, d∗) provided that



Bifurcation and Dynamic Analyses of Non-monotonic Predator… Page 31 of 40 10

a∗ + 2b∗
c∗ + b2∗

a∗c2∗
�= 9, where c∗ and d∗ satisfy d∗ < c∗, � = 0, F(x∗) = 0 and

H(x∗) �= 0.

Proof Similarly, substituting a, b, c and d by a∗, b∗, c∗ − ε1 and d∗ − ε2 for system
(1.2). Then translating the positive equilibrium (x∗, y∗) to the origin, and expanding
the right-hand side of system (1.2) in a Taylor series up to the fourth order around the
origin, we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
=α10x + α01y + α20x

2 + 2α11xy + α30x
3 + α21x

2 y + α40x
4 + α31x

3y + O(|x, y|5),
dy

dt
=β00 + β10x + (β01 + ε1)y + β20x

2 + 2β11xy + β30x
3 + β21x

2 y + β40x
4

+ β31x
3y + O(|x, y, ε1, ε2|5),

(3.18)

where α10
.= −x∗ + 2a∗(x∗)2(1−x∗)

1+a∗(x∗)2 , α01
.= − x∗

1+a∗(x∗)2 , α20
.= −1+ a∗x∗y∗[3−a∗(x∗)2]

[1+a∗(x∗)2]3 ,

α11
.= − 1−a∗(x∗)2

2[1+a∗(x∗)2]2 , α30
.= a∗y∗[1+a2∗(x∗

1 )4−6a∗(x∗)2]
[1+a∗(x∗)2]4 , α21

.= a∗x∗[3−a∗(x∗)2]
[1+a∗(x∗)2]3 ,

α40
.= a2∗x∗y∗[10a∗(x∗)2−a2∗(x∗)4−5]

[1+a∗(x∗)2]5 , α31
.= a∗[1+a2∗(x∗)4−6a∗(x∗)2]

[1+a∗(x∗)2]4 , β00
.= ε1y∗ − ε2,

β01
.= b∗x∗

1+a∗(x∗)2 − c∗, β10
.= b∗y∗[1−a∗(x∗)2]

[1+a∗(x∗)2]2 , β20
.= a∗b∗x∗y∗

2 [a∗(x∗)2−3]
[1+a∗(x∗)2]3 , β11

.=
b∗[1−a∗(x∗)2]
2[1+a∗(x∗)2]2 , β21

.= a∗b∗x∗[a∗(x∗)2−3]
[1+a∗(x∗)2]3 , β30

.= a∗b∗y∗[6a∗(x∗)2−a2∗(x∗)4−1]
[1+a∗(x∗)2]4 , β31

.=
a∗b∗[6a∗(x∗)2−a2∗(x∗)4−1]

[1+a∗(x∗)2]4 , β40
.= a2∗b∗x∗y∗[a2∗(x∗)4−10a∗(x∗)2+5]

[1+a∗(x∗)2]5 , and O(|x, y, ε1, ε2|5) is
a function in variables (x, y) at least of the fifth order with respect to (x, y) and the
coefficients depend smoothly on ε1 and ε2. Notice that α01 �= 0, we further make the
following transformations

u = x and v = α10x + α01y,

rewrite (u, v) as (x, y), then system (3.18) becomes

⎧
⎪⎨

⎪⎩

dx

dt
=y + ᾱ20x

2 + ᾱ11xy + ᾱ30x
3 + ᾱ21x

2 y + ᾱ40x
4 + ᾱ31x

3y + O(|x, y|5),
dy

dt
=β̄00 + β̄10x + β̄01y + β̄20x

2 + β̄11xy + β̄30x
3 + β̄21x

2 y + β̄40x
4 + β̄31x

3y + O(|x, y, ε1, ε2|5),
(3.19)

where ᾱ20
.= α20 − 2α10α11

α01
, ᾱ11

.= 2α11
α01

, ᾱ30
.= α30 − α10α21

α01
, ᾱ21

.= α21
α01

, ᾱ40
.=

α40 − α10α31
α01

, ᾱ31
.= α31

α01
, β̄00

.= β00α01, β̄10
.= −α10ε1, β̄01

.= α10 + β01 + ε1,

β̄20
.= β20α01 + α10(α20 − 2β11) − 2α11α2

10
α01

, β̄11
.= 2β11 + 2α10α11

α01
, β̄30

.= β30α01 +
α10(α30 −β21)− α21α

2
10

α01
, β̄21

.= β21 + α10α21
α01

, β̄40
.= β40α01 +α10(α40 −β31)− α31α

2
10

α01

and β̄31
.= β31 + α10α31

α01
.
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By the Liapunov–Schmidt Method in [28], system (3.19) reduced to the center
manifold takes the following form:

dx

dt
= μ1(ε1, ε2) + μ2(ε1, ε2)x + γ20x

2 + γ30x
3 + O(|x, y|4), (3.20)

where

μ1(ε1, ε2)
.= − β̄00

β̄01
= − α01y∗

α10 + β01
ε1 + α01

α10 + β01
ε2 + O(|ε1, ε2|2),

μ2(ε1, ε2)
.= (ᾱ11 − β̄11

β̄01
)μ1 − β̄10

β̄01
=

(
α10 − α01ᾱ11y∗

α10 + β01
+ α01ᾱ11β̄11y∗

(α10 + β01)2

)

ε1

+
(

α01ᾱ11

α10 + β01
− α01ᾱ11β̄11

(α10 + β01)2

)

ε2 + O(|ε1, ε2|2),

γ20
.= ᾱ20 − β̄20

β̄01
+ O(|ε1, ε2|) and

γ30
.= ᾱ30 − ᾱ11β̄20 + β̄30

β̄01
+ β̄11β̄20

β̄2
01

+ O(|ε1, ε2|)

with limεi→0 γ20 = 0 and limεi→0 γ30 �= 0, i = 1, 2. Further, denote the right side
of system (3.20) as G(x, ε1, ε2), we can find

Gx (x, ε1, ε2)|(0,0,0) = 0, Gxx (x, ε1, ε2)|(0,0,0) = 0, Gxxx (x, ε1, ε2)|(0,0,0) �= 0

and

(Gε1Gxε2 − Gε2Gxε1)(x, ε1, ε2)|(0,0,0) = − α10α01

(α10 + β01)2
,

where α01 �= 0 and α10 + β01 �= 0. When α10 �= 0, i.e., a∗ + 2b∗
c∗ + b2∗

a∗c2∗
�= 9,

system (1.2) undergoes a cusp bifurcation of codimension 2 by the results in [21].
This completes the proof. ��

4 Bifurcation Diagrams

In this section,wenumerically verify all the bifurcations presented inSect. 3 through
bifurcation diagrams. In the last section, we proved the existence of the transcritical
bifurcation, saddle-node bifurcation, Hopf bifurcation, degenerate Hopf bifurcation,
cusp bifurcation of codimension 2 and Bogdanov–Takens (cusp type) bifurcation of
codimension 3. It is worth mentioning that the Bogdanov–Takens (cusp type) bifur-
cation of codimension 3 for system (1.2) would have the conical structure in R3

starting from (μ1, μ2, μ3) = (0, 0, 0), which consists of four types of codimension
1 bifurcation surfaces (a Hopf bifurcation surface, a homoclinic bifurcation surface,
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Fig. 6 The bifurcation diagrams near the Bogdanov–Takens bifurcation points of codimension 2 for system
(1.2). a An attracting Bogdanov–Takens bifurcation of codimension 2 with H ′(x∗

1 ) > 0. b A repelling
Bogdanov–Takens bifurcation of codimension 2 with H ′(x∗

1 ) < 0. c The local amplified phase portrait of
b. The parameter values are fixed as a = 5, b = 1 in a, and a = 6, b = 1.2 in b
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Fig. 7 One parameter bifurcation diagrams of system (1.2) with respect to parameter d. Here, the red curves
represent the unstable equilibria, red vertical lines represent the unstable limit cycles, black curves represent
the stable equilibria, blue vertical lines represent the stable limit cycles. And HB is the Hopf bifurcation
point, SNi (i=1, 2) the saddle-node bifurcation point, NS the neutral saddle and i is the local amplified
phase portrait of h. Saddle-node bifurcation occurs in a–h. The subcritical Hopf bifurcation occurs in a, b
and f–i. The supercritical Hopf bifurcation in c, d. The double limit cycle bifurcation occurs in a, b and g,
i. The homoclinic bifurcation occurs in b, c and f, i. The saddle-node homoclinic bifurcation occurs in a

two saddle-node bifurcation surfaces, a double limit cycle bifurcation surface) and
four types of codimension 2 bifurcation curves based on five bifurcation points (two
Bogdanov–Takens points of codimension 2, a degenerate Hopf point of codimension
2, a degenerate homoclinic point of codimension 2 and a point which is the intersec-
tion of the Hopf bifurcation curve and homoclinic bifurcation curve, as shown in Fig.
6a–c). The detailed bifurcation phenomena can be referred to [5,22,30]. However, it is
difficult to plot a three parameters bifurcation diagram of the Bogdanov–Takens (cusp
type) bifurcation of codimension 3. In [20], Shan and Zhu give the bifurcation diagram
in two parameters plane to describe all the phenomena of the Bogdanov–Takens (cusp
type) bifurcation of codimension 3.

In the following, for simplicity, instead of plotting a three parameters bifurcation
diagram, in Fig. 6, by choosing (c, d) as bifurcation parameters and fixing other param-
eters, we have shown three subplots of two parameters bifurcation diagrams near the
Bogdanov–Takens bifurcation of codimension 2, which have included all the possible
bifurcations of the Bogdanov–Takens (cusp type) bifurcation of codimension 3. In Fig.
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6, there are five bifurcation curves: SNc1 and SNc2 represent the first saddle bifurcation
curve and the second bifurcation curve, respectively. Hc1 denotes the Hopf bifurcation
curve, Hom the homoclinic bifurcation curve (or called the saddle Homoclinic bifur-
cation curve, i.e., a homoclinic loop with a saddle), Homs the saddle-node homoclinic
bifurcation curve (a homoclinic loop with a saddle-node), Lc the double limit cycle
bifurcation curve, NSc the neutral saddle curve which is not the bifurcation curve.
Further, BT+ and BT− are the Bogdanov–Takens bifurcation points of codimension
2, GH the degenerate Hopf bifurcation point of codimension 2 with σ1 = 0, GHom

the degenerate homonlinic bifurcation point of codimension 2 with pE2 = 0, D a
parameter value of simultaneous Hopf and homoclinic bifurcations, DL a parameter
value of simultaneous double limit cycle and saddle-node bifurcations, H a parameter
value of simultaneous Hopf and saddle-node bifurcations, and DH a intersection of
two types homoclinic bifurcation curves Hom and Homs .

Furthermore, by choosing d as the bifurcation parameter, we have also presented
all types of bifurcations related to Fig. 6, as shown in Fig. 7. Particularly, for the
cases (a)–(b) and (g)–(h), two limit cycles appear from the double limit cycle bifur-
cation, the inner one disappearing via the subcritical Hopf bifurcation, the outer one
disappearing via the saddle-node homoclinic bifurcation for the case (a), while the
outer one disappearing via the homoclinic bifurcation for the cases (b) and (g)–(h).
Especially, between the cases (g) and (h), there should be a case that the two limit
cycles appear from the double limit cycle bifurcation, the inner one disappearing via
the subcritical Hopf bifurcation and the outer one disappearing via the homoclinic
bifurcation simultaneously corresponding to the point D in Fig. 6b, c.

Remark 4.1 The occurrence of the saddle-node homoclinic bifurcation is accompa-
nied by the occurrence of the saddle-node bifurcation. This means the saddle-node
homoclinic bifurcation curve Homs is a part of the saddle-node bifurcation curve SNc2 ,
as shown in Fig. 6a–c.

Remark 4.2 It is worth mentioning that for the double limit cycle bifurcation in cases
(a)–(b) and (g)–(h), which has two limit cycles with the inner one disappearing via the
Hopf bifurcation and the outer one disappearing via the homoclinic bifurcation (or the
saddle-node homoclinic bifurcation). Moreover, there exists another type double limit
cycle bifurcation in system (1.2), where the outer one always exists when d < dH by
the Poincaré-Bendixson Theorem, which is different from these cases, as shown in
Fig. 8a–f.

Whenwe set (a, b) = (3.5, 2.1), as parameters (c, d) varies, all types of bifurcation
curves and bifurcation points in Fig. 6 disappear except two saddle-node bifurcation
curves SNc1 and SNc2 . And two saddle-node bifurcation curves intersect, resulting
in a unique equilibrium (x∗, y∗) for system (1.2) when (c, d) = (3.4748, 2.7484), as
shown in Fig. 9a, b. It is easy to verify that a cusp bifurcation of codimension 2 occurs
in R+

2 , as shown in Fig. 9a–g.
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Fig. 8 The existence of the double limit cycle bifurcation for system (1.2) with (a, b, c) = (16, 2.8, 0.15).
a A double limit cycle bifurcation. b The existence of two limit cycles where the red curve represents the
unstable limit cycle �r and the blue curve represents the stable cycle �b , dH is the Hopf bifurcation point
with the first Liapunov number σ1 = 0.21982. c A globally stable limit cycle when d < dH . d Two limit
cycles enclose the stable weak focus E1 when d ∈ (dH , dmax ). e Two limit cycles collide simultaneously
such that there exists a unique semi-stable cycle when d = dmax . f E1 is a globally stable focus when
d > dmax

Fig. 9 A cusp bifurcation of codimension 2 for system (1.2) with (a, b) = (3.5, 2.1), and the phase portraits
in the different regions of parameters, where CP denote a cusp bifurcation point of codimension 2, i.e., the
intersection of SNc1 and SNc2
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5 Conclusions and Discussions

In this paper, we extended the classical predator–prey system with Holling type IV
functional response by including a constant releasing rate for the predator, considering
the constant releasing of the natural enemy in the IPM [12,14]. We studied the global
dynamics and bifurcations of the proposedmodel, discussed the impact of the constant
releasing rate on the dynamics and proved that it can includemuchmore rich dynamical
behaviors and complex bifurcation phenomena which are also numerically verified by
bifurcation diagrams and phase portraits.

We initially showed that the parameter d (i.e., the constant releasing rate τ ) can have
an essential effect on the number of equilibria (at most three positive equilibria) with
various types (focus, node, center, saddle-node, cusp, elliptic). Choosing parameter d
(i.e., parameter τ ) as one of the bifurcation parameters, we proved that the proposed
system can undergo a sequence of bifurcations, including transcritical, saddle-node,
Hopf, degenerate Hopf, saddle-node homoclinic, cusp bifurcation of codimension 2,
Bogdanov–Takens bifurcation of codimension 2 and degenerate Bogdanov–Takens
(cusp type) bifurcation of codimension 3. With these bifurcations, in different param-
eter spaces, system (1.2) can exist a semi-stable limit cycle, two types of homoclinic
loops (homoclinic loop with a saddle and homoclinic with a saddle-node), and coexist
a stable limit cycle and an unstable limit cycle, or an unstable limit cycle and a stable
homoclinic loop, or a stable limit cycle and an unstable homoclinic loop.

Compared with themain results for the classical predator–prey systemwith Holling
IV functional response [3], we found that with a constant releasing rate for predators,
the system can present various novel dynamical behaviors, including the co-existence
of three positive equilibria, the novel and complex bifurcations. In details, we proved
that there can only have the Bogdanov–Takens bifurcation of codimension 2 without
the constant releasing rate (i.e., the system in [3]). In contrast, the proposed system
can exhibit a Bogdanov–Takens (cusp type) bifurcation of codimension 3, which is
a much more complicated bifurcation phenomenon. Also, the proposed system can
present the existence of a semi-stable limit cycle as well as the co-existence of a
limit cycle and a homoclinic loop. One the other hand, as mentioned above, there
can be three positive equilibria while the system studied by Ruan and Xiao in [3] can
only have two. Consequently, the proposed system can undergo a cusp bifurcation
of codimension 2 when the three equilibria coincide into one equilibrium simultane-
ously. Note that, in Theorem 2.6, if H ′(x∗) �= 0, then system (2.21) can be translated
to

⎧
⎪⎨

⎪⎩

dx

dt
= y,

dy

dt
= γ̄1xy + γ̄2x

3 + γ̄3x
2y + γ̄4x

4 + γ̄5x
3y + O(|x, y|5)

in a small neighborhood of the origin (0, 0). Further, if 5γ̄2γ̄3 − 3γ̄1γ̄4 �= 0, then
(x∗, y∗) is a degenerate equilibrium of codimension 3 [31,32]. Consequently, system
(1.2) can have a focus (or elliptic) type degenerate Bogdanov–Takens bifurcation of
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codimension 3, which can be much more complicated and interesting. This is left for
the future works.

It is also worth mentioning the biological implications of our main results. Taking
the constant releasing rate of predators as the release of natural enemies in the IPM,
our results show that the constant releasing of natural enemies has an important role in
controlling the growth of pests. There exists a critical value of the constant releasing
rate such that (i) the pest goes to extinction for all admissible initial populations of
both species when the constant releasing rate is greater than the critical value, i.e., the
natural enemy can successfully help to eliminate the pest by the constant releasing
of natural enemies; (ii) there exist multiple positive steady states and periodic orbits
for the model when the constant releasing rate is less than the critical value, which
indicates that the pest can always coexist with the natural enemy in the form of a
steady state or a periodic orbit, i.e., the natural enemy can not control the growth of
pests effectively, in spite of the predation of pests and the constant releasing of natural
enemies. Those indicate that choosing a proper releasing rate of the natural enemy is
essential to control the pest.
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Appendix A: Proof of Lemma 3.1

Proof Considering the function

H(x) = 3ax3 − (2a − ac)x2 − (b − 1)x + c.

It follows from H(x1) = 0 that x1 is a positive real root of the cubic equation H(x) = 0.
Moreover, since H(x) passes the point (0, c), and H(+∞) = +∞ and H(−∞) =
−∞, the cubic equation H(x) = 0 always has a negative real root. Hence, the cubic
equation H(x) = 0 has three real roots (a negative real root and two positive real
roots), as shown in Fig. 10. Denote the roots of the cubic equation H(x) = 0 as
follows:

x01 < 0, x02 > 0 and x03 > 0,

where x1 is equal to one of x02 and x03. Especially, when H ′(x)|x=x1 = 0, we have

x1 = x02 = x03 = (2a − ac) + √
�∗

9a
,

where �∗ = (2a − ac)2 + 9a(b − 1) > 0. Thus, we have H ′(x1) = 0 if and only if

x1 = (2a−ac)+√
�∗

9a . The proof is completed. ��
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Fig. 10 The existence of the
positive real roots of the cubic
equation H(x) = 0. The Hopf
bifurcation occurs when
x1 = x02, x1 = x03 or x1 = x2∗

0

H(x2
* )<0

H(x2
* )=0

H(x)

xx1
* x02 x03x2

*

Appendix B: Coefficients in the proof of Theorem 3.4

Here we provide the expressions of some coefficients that were used in the proof of
Theorem 3.4.

m11 = (1−x∗
1 )(x∗

1 )2

1+a0(x∗
1 )2

, m12 = (x∗
1 − 1)x∗

1 , m13 = x∗
1

1+a0(x∗
1 )2

,

m21 = [12(x∗
1 )2−15x∗

1+4][7(x∗
1 )2−8x∗

1+2][−24(x∗
1 )3+33(x∗

1 )2−15x∗
1+2]

2(x∗−1)(5x∗
1−2)[6(x∗

1 )2−6x∗
1+1](3x∗

1−1)2
,

m22 = [7(x∗
1 )2−8x∗

1+2][24(x∗
1 )3−33(x∗

1 )2+15x∗
1−2]

x∗
1 [6(x∗

1 )2−6x∗
1+1](3x∗

1−1)2
,

m23 = (2x∗
1−1)[12(x∗

1 )2−15x∗
1+4][57(x∗

1 )3−81(x∗
1 )2+33x∗

1−4]
x∗
1 (x∗

1−1)(5x∗
1−2)[6(x∗

1 )2−6x∗
1+1](3x∗

1−1)2
,

m31 = [12(x∗
1 )2−15x∗

1 +4][−15060(x∗
1 )10+72837(x∗

1 )9−154485(x∗
1 )8+189370(x∗

1 )7−148793(x∗
1 )6+78459(x∗

1 )5−28182(x∗
1 )4+6825(x∗

1 )3−1069(x∗
1 )2+98x∗

1 −4]
2(3x∗

1 −1)3 (5x∗
1 −2)2 (x∗

1 −1)2 [6(x∗
1 )2−6x∗

1 +1]2 x∗
1

,

m32 = −6108(x∗
1 )10+32877(x∗

1 )9−78921(x∗
1 )8+110363(x∗

1 )7−98839(x∗
1 )6+58890(x∗

1 )5−23540(x∗
1 )4+6215(x∗

1 )3−1035(x∗
1 )2+98x∗

1−4
(3x∗

1−1)3(5x∗
1−2)(x∗

1−1)[6(x∗
1 )2−6x∗

1+1]2(x∗
1 )2

,

m33 = (1−2x∗
2 )[57(x∗

1 )3−81(x∗
1 )2+33x∗

1−4][12(x∗
1 )2−15x∗

1+4][73(x∗
1 )5−180(x∗

1 )4+166(x∗
1 )3−71(x∗

1 )2+14x∗
1−1]

2(3x∗
1−1)3(5x∗

1−2)2(x∗
1−1)2[6(x∗

1 )2−6x∗
1+1]2(x∗

1 )2
.
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