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Abstract
This paper studies conformable stochastic functional differential equations of neutral
type. Firstly, the existence and uniqueness theorem of a solution is established. Sec-
ondly, the moment estimation and exponential stability results are given. Thirdly, the
Ulam type stability in mean square is discussed. Finally, two examples are given to
illustrate our results.

Keywords Conformable · Neutral type stochastic functional differential equations ·
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1 Introduction

Various derivatives are used in the literature to study properties in physics, chemistry,
biology, engineering and economics; see [1,2].With applications inmind one is usually
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faced with challenges for derivatives in theoretical analysis and computer simulation.
As a result it is of interest to use a simple and well-behaved derivative to describe
practical problems in engineering.

The conformable derivative is an extension of the classical limit definition of the
derivative of a function andwas proposed inKhalil et al. [3]. Its physical interpretation,
Leibniz rule, Chain rule, exponential functions, Gronwall’s inequality, integration by
parts and Taylor power series were discussed in [4–9]. Ma et al. [10] applied the
conformable derivative to a grey system model and showed that the conformable
derivative is suitable and well-behaved. Moreover, Abel’s formula, Sturms theorems,
Lotka-Volterra model, Ulam’s stability, variational iteration method have been stud-
ied extensively in [11–18]. Recently the authors in [19,20] applied the conformable
derivative to stochastic differential equations and studied conformable Itô stochastic
differential equations, existence results for solutions, Lyapunov stability, almost surely
exponential stability and Ulam type stability.

Neutral stochastic functional differential equation (NSFDEs) is a special kind of
stochastic equation, depending on the past and present values but also involves deriva-
tives with delays as well as the function itself. Such equations are more difficult to
motivate but often arise in the study of two or more simple oscillatory systems with
some interconnections between them. The study of NSFDEs is now a hot topic. Exis-
tence, stability, and almost surely asymptotic estimations of the solution and random
periodic solutions for NSFDEs was studied extensively in [21–25]. Approximate con-
trollability and optimal control of NSFDEs with time lag in control was reported in
[26,27]. Ahmadova et al. [28,29] studied the existence and Ulam–Hyers stability of
Caputo-type fractional NSFDEs. The authors in [30] studied the Ulam–Hyers stability
of Caputo-type fractional stochastic differential equations with time delays. For more
details on the averaging principle and large deviations, we refer the reader to [31–35].
Zhu et al.’s recent work on stochastic functional (delay) differential equations provide
effective theoretical support for potential applications in artificial intelligence, elec-
trical and electronic engineering and robust control and related work can be found in
[36–39].

Motivated by [19,20], we study neutral conformable stochastic functional differen-
tial equations

Dα
0 [X(t) − D(Xt )] = f (t, Xt ) + g(t, Xt )

dW (t)

dt
,

X(0) = X0, α ∈ (0, 1], t ∈ [0, T ], (1)

where Dα
0 is the conformable derivative, W (·) is a m-dimensional standard scalar

Brownianmotion defined on a complete probability space (�,F , P)with the filtration
{Ft }t≥0. Let τ ≥ 0 and Xt := {X(t + θ),−τ ≤ θ ≤ 0} is the past history of the state.
Now C([−τ, 0];Rn) denotes the family of continuous functions ϕ : [−τ, 0] → R

n

with the norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|, L2
Ft0

([−τ, 0],Rn) denotes the family of

all Ft0 -measurable C([−τ, 0];Rn)-random variables φ such that E ||φ||2 < ∞. Also
f : [0, T ] × C([−τ, 0];Rn) → R

n , g : [0, T ] × C([−τ, 0];Rn) → R
m×n and
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D : C([−τ, 0];Rn) → R
n are Borel measurable. Next X0 = ξ = {ξ(θ),−τ ≤ θ ≤

0} ∈ L2
Ft0

([−τ, 0],Rn) and || · || is the norm of Rn .

In this paper,we present neutral conformable stochastic functional differential equa-
tions. In Sect. 3, existence and uniqueness of the solution for Eq. (1) is discussed. In
Sect. 4, the results on moment estimation are given and exponential stability is proved
by the Razumikhin argument. In Sect. 5, we discuss Ulam type stability inmean square
via Gronwall’s inequality. Examples are given to illustrate our results in Sect. 6. Some
concluding remarks are provided in the final section.

2 Preliminaries

Definition 2.1 (see [3, Definition 2.1]) The conformable derivative with low index 0
of a function f : [0,∞) → R is defined as

Dα
0 f (t) = lim

ε→0

f (t + t1−αε) − f (t)

ε
, t > 0, 0 < α ≤ 1.

while Dα
0 f (0) = limt→0+ Dα

0 f (t). Note for t > 0, f has a conformable derivative
Dα

0 f (t) iff f is differentiable at t and Dα
0 f (t) = t1−α f ′(t) holds.

Definition 2.2 (see [3, Definition 3.1]) The conformable integral with low index 0 of
a function f : [0,∞) → R is defined as

Iα0 f (t) =
∫ t

0
f (s)d

sα

α
=

∫ t

0
f (s)sα−1ds, s > 0, 0 < α ≤ 1.

Let Y ∈ C
2,1(R×R

+,R) denote the family of all real-valued functions Y (X(·), ·)
defined on R×R

+ such that they are continuously twice differentiable in X and once
in t . Now, we introduce the following Itô formula in a conformable sense.

Lemma 2.3 (see [19, Theorem 2.8]) Let 0 < T < +∞, X(t), t ∈ [0, T ] be an Itô
process for

Dα
0 X(t) = f (t) + g(t)

dW (t)

dt
, α ∈ (0, 1],

Y (·) := Y (X(·), ·) ∈ C
2,1(Rn × [0, T ],Rn). Then for Y (t), t ∈ [0, T ],

dY (t) = ∂Y (X(t), t)

∂t
dt + ∂Y (X(t), t)

∂ X
f (t)tα−1dt

+∂Y (X(t), t)

∂ X
g(t)tα−1dW (t) + 1

2

∂Y 2(X(t), t)

∂ X2 g2(t)t2α−2dt .

Lemma 2.4 (see [21, p. 204, Lemma 2.3]) Let a, b ≥ 0 and 0 < λ < 1. Then

|a + b|2 ≤ a2

λ
+ b2

1 − λ
.
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Lemma 2.5 (see [21, p. 40, Theorem 7.3]) Let g ∈ L
2(R+,Rn×n). Denote

x(t) =
∫ t

0
g(s)dW (s), A(t) =

∫ t

0
|g(s)|2ds, t ≥ 0.

Then, for every p > 0, there exists two positive constants cp, C p (depending only
on p), such that

cp E ||A(t)|| p
2 ≤ E

(
sup

0≤s≤t
||x(s)||p

)
≤ C p E ||A(t)|| p

2 .

for all t ≥ 0. In particular, one may take

cp = ( p
2

)p
, C p =

(
32
p

) p
2

, i f 0 < p < 2;
cp = 1, C p = 4, i f p = 2;

cp = (2p)−
p
2 , C p =

[
p p+1

2(p−1)p−1

]p−1
, i f p > 2.

Let M2([a, b];R) denote the space of all real-valued measurable {Ft }-adapted
processes f = { f (t)a≤t≤b} such that

E
∫ b

a
| f (t)|2dt < ∞.

Lemma 2.6 (see [21, Lemma 5.4]) If f ∈ M2([a, b];R), then

E

(∫ b

a
f (t)dW (t)

)
= 0,

E

(∣∣∣∣
∫ b

a
f (t)dW (t)

∣∣∣∣
2)

= E

(∫ b

a
| f (t)|2dt

)
.

Lemma 2.7 (see [40, Theorem 1]) Let x(·), g(·) be real continuous functions on
[t0, t1], f (·) ≥ 0 is an integrable function over interval [t0, t1] and g(·) ≥ 0 is
nondecreasing. If

x(t) ≤ g(t) +
∫ t

t0
f (τ )x(τ )dτ, t ∈ [t0, t1],

then

x(t) ≤ g(t) exp

(∫ t

t0
f (τ )dτ

)
, t ∈ [t0, t1].
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Lemma 2.8 (see [21, Theorem 3.8]) Let {Mt }t≥a be an R
n-valued martingale and

[a, b] an interval in R
+. If p ≥ 1 and Mt ∈ L

p(�,Rn), then

P

{
ω : sup

a≤t≤b
|Mt (ω)| ≥ c

}
≤ 1

cp
E |Mb|p, c > 0.

Lemma 2.9 (see [21, Lemma 2.4]) (Borel–Cantelli’s lemma) Let {Ak} ⊂ F and∑∞
k=1 P(Ak) < ∞. Then, P{limk→∞ sup Ak i .o.} = 0, where, i.o. means infinitely

often.

3 Existence and Uniqueness Result

In this part, we study the existence and uniqueness of the solution of Eq. (1). Let
Lp([a, b];Rn) denote the family ofRn-valuedFt -adapted processes { f (t)}a≤t≤b such
that

∫ b
a | f (t)|pdt < ∞ a.s.Now E(X) = ∫

�
X(ω)d P(ω) is the expectation of X (with

respect to P). Also M p([−τ, T ],Rn) denotes the family of process { f (t)}−τ≤t≤T ∈
Lp([−τ, T ],Rn) such that E(

∫ t
−τ

|| f (s)||pds) < ∞. Similar to [21, p. 203, Defi-
nition 2.1], for some { f (s, Xs)} ∈ L1([0, T ];Rn), {g(s, Xs)} ∈ L2([0, T ];Rn), we
introduce the following definition.

Definition 3.1 A R
n-valued stochastic process X(·) is a solution of (1), if X(t) is

continuous and Ft -adapted and satisfies

X(t) − D(Xt ) = X(0) − D(X0) +
∫ t

0
f (s, Xs)s

α−1ds

+
∫ t

0
g(s, Xs)s

α−1dW (s), t ∈ [0, T ]. (2)

Let a ∨b denote the maximum of a and b, we introduce the following assumptions.

(H1) There exists a constant L > 0 such that for all X , X̂ ∈ C([−τ, 0];Rn), 0 ≤ t ≤
T

|| f (t, X) − f (t, X̂)||2 ∨ ||g(t, X) − g(t, X̂)||2 ≤ L||X − X̂ ||2.

(H2) There exists a constant L > 0 such that for all (t, X) ∈ [0, T ]×C([−τ, 0];Rn)

|| f (t, X)||2 ∨ ||g(t, X)||2 ≤ L(1 + ||X ||2).

(H3) There exists a constant λ ∈ (0, 1) such that for all X , Y ∈ C([−τ, 0];Rn)

||D(X) − D(Y )|| ≤ λ||X − Y ||.
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Lemma 3.2 Assume (H2) and (H3) hold, and X(·) is a solution of (1). Then

E

(
sup

−τ≤t≤T
||X(t)||2

)
≤

[
1 + 4 + λ

√
λ

(1 − λ)(1 − √
λ)

E(||ξ ||2)
]

e
3L(1+T )T 2α−1

(1−λ)(1−√
λ)(2α−1) ,

holds for 1
2 < α ≤ 1.

Proof For all 0 ≤ t ≤ T , let

N∗(t) = ξ(0) +
∫ t

0
f (s, Xs)s

α−1ds +
∫ t

0
g(s, Xs)s

α−1dW (s), t ∈ [0, T ],

and we obtain

X(t) = D(Xt ) − D(X0) + N∗(t).

From (2) and applying Lemma 2.4, for all 0 ≤ t ≤ T , we get

||X(t)||2 ≤ 1

λ
||D(Xt ) − D(X0)||2 + 1

1 − λ
||N∗(t)||2

≤ λ||Xt − ξ ||2 + 1

1 − λ
||N∗(t)||2

≤ √
λ||Xt ||2 + λ

1 − √
λ

||ξ ||2 + 1

1 − λ
||N∗(t)||2.

Noting that sup−τ≤s≤t ||X(s)||2 ≤ ||ξ ||2 + sup0≤s≤t ||X(s)||2, one obtains

E

(
sup

−τ≤s≤t
||X(t)||2

)
≤ √

λE

(
sup

−τ≤s≤t
||X(t)||2

)
+ 1 + λ − √

λ

1 − √
λ

E ||ξ ||2

+ 1

1 − λ
E

(
sup

−τ≤s≤t
||N∗(s)||2

)
.

Hence

E

(
sup

−τ≤s≤t
||X(t)||2

)
≤ 1 + λ − √

λ

(1 − √
λ)2

E ||ξ ||2

+ 1

(1 − λ)(1 − √
λ)

E

(
sup

−τ≤s≤t
||N∗(s)||2

)
. (3)

On the other hand, from (H1), one can show that

E

(
sup

−τ≤s≤t
||N∗(s)||2

)
≤ 3E ||ξ ||2 + 3L(1 + T )

∫ t

0

[
1 + E

(
sup

−τ≤s≤t
||X(s)||2

)]
|sα−1|2ds.
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Substituting this into (3), we have

1 + E

(
sup

−τ≤t≤T
||X(t)||2

)
≤ 1 + 4 + λ

√
λ

(1 − λ)(1 − √
λ)

E ||ξ ||2

+ 3L(1 + T )

(1 − λ)(1 − √
λ)

∫ t

0

[
1 + E

(
sup

−τ≤s≤t
||X(s)||2

)]
|sα−1|2ds.

Since E ||ξ ||2 < ∞, using Lemma 2.7, we have

E

(
sup

−τ≤t≤T
||X(t)||2

)
≤

[
1 + 4 + λ

√
λ

(1 − λ)(1 − √
λ)

E(||ξ ||2)
]

e
3L(1+T )T 2α−1

(1−λ)(1−√
λ)(2α−1) .

The proof is complete. �

Theorem 3.3 Suppose that (H1), (H2) and (H3) hold. Then (1) has a unique solution
X(·) ∈ M2([−τ, T ];Rn) given by (2) provided that α ∈ ( 12 , 1].
Proof Existence We first show the local existence of a solution. Let T̄ be sufficiently
small such that

κ := λ + 2L(1 + T̄ )T̄ 2α−1

(1 − λ)(2α − 1)
< 1. (4)

Define X0
0 = ξ and X0(t) = ξ(0) for t ∈ [0, T̄ ]. For each n = 1, 2, . . ., consider

the Picard iteration

Xn(t) − D(Xn−1
t ) = ξ(0) − D(ξ) +

∫ t

0
f (s, Xn−1

s )sα−1ds

+
∫ t

0
g(s, Xn−1

s )sα−1dW (s). (5)

From Lemma 3.2, Xn(·) ∈ M2([−τ, T̄ ];Rn). Then, for all 0 ≤ t ≤ T̄ , we have

X1(t) − X0(t) = X1(t) − ξ(0)

= D(X0
t )−D(ξ)+

∫ t

0
f (s, X0

s )sα−1ds+
∫ t

0
g(s, X0

s )sα−1dW (s).

Thus

E

(
sup

0≤s≤t
||X1(t) − X0(t)||2

)

≤ λE

(
sup

0≤s≤t
||X0

t − ξ ||2
)

+ 2L(1 + T̄ )

1 − λ
E

∫ t

0
(1 + ||X0

t ||2)s2α−2ds

≤ 2λE ||ξ ||2 + 2L(1 + T̄ )T̄ 2α−1

(1 − λ)(2α − 1)
E(1 + ||X0

t ||2) := C . (6)
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Note also that for any n ≥ 1, 0 ≤ t ≤ T̄ ,

Xn+1(t) − Xn(t)

= D(Xn
t ) − D(Xn−1

t ) +
∫ t

0
[ f (s, Xn

s ) − f (s, Xn−1
s )]sα−1ds

+
∫ t

0
[g(s, Xn

s ) − g(s, Xn−1
s )]sα−1dW (s).

One has

E

(
sup

0≤t≤T̄

||Xn+1(t) − Xn(t)||2
)

≤ λE

(
sup

0≤t≤T̄

||Xn
t − Xn−1

t ||2
)

+2L(1 + T̄ )

1 − λ

∫ t

0
E

(
sup

0≤t≤T̄

||Xn
s − Xn−1

s ||2
)

s2α−2ds

≤ κ E

(
sup

0≤t≤T̄

||Xn
s − Xn−1

s ||2
)

≤ κn E

(
sup

0≤t≤T̄

||X1
s − X0

s ||2
)

≤ Cκn . (7)

Combine with (6) and condition (4), we get

E

(
sup

0≤t≤T̄

||Xn+1(t) − Xn(t)||2
)

≤ Cκn → 0, n → ∞.

From above

Xn(t) = X0(t) +
n−1∑
k=1

(
Xk+1(t) − Xk(t)

)
, (8)

converges uniformly on the interval [0, T̄ ]. Denote the limit of Xn(·) by X(·). Clearly,
X(·) is continuous and Ft -adapted. From (7), {Xn(·)}n≥1 is a Cauchy sequence in
L
2[0, T̄ ].
Hence, let n → ∞ in (5), we obtain

X(t) − D(Xt ) = X(0) − D(X0) +
∫ t

0
f (s, Xs)s

α−1ds

+
∫ t

0
g(s, Xs)s

α−1dW (s), t ∈ [0, T̄ ].

From the idea of continuation of a solution and Lemma 3.2, repeating the above pro-
cedures, we obtain that the Eq. (1) has a solution in the intervals [T̄ , 2T̄ ], [2T̄ , 3T̄ ] . . .,
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and thus, (1) has a solution on the entire interval [0, T ] since there exists a positive
integer k such that kT̄ > T .

Uniqueness Let X(·), X̃(·) be two solutions of (1), and from Lemma 3.2, both of
them belong to M2([−τ, T ];Rn). Note that

X(t) − X̃(t) = D(Xt ) − D(X̃t ) + N (t),

where

N (t) =
∫ t

0
[ f (s, Xs) − f (s, X̃s)]sα−1ds +

∫ t

0
[g(s, Xs) − g(s, X̃s)]sα−1dW (s).

From Lemma 2.4, we get

||X(t) − X̃(t)||2 ≤ λ||Xt − X̃t ||2 + 1

1 − λ
||N (t)||2.

Therefore

E

(
sup

−τ≤s≤t
||X(s) − X̃(s)||2

)

≤ λE

(
sup

−τ≤s≤t
||X(s) − X̃(s)||2

)
+ 1

1 − λ
E

(
sup

−τ≤s≤t
||N (t)||2

)
.

This implies

E

(
sup

−τ≤s≤t
||X(s) − X̃(s)||2

)
≤ 1

(1 − λ)2
E

(
sup

−τ≤s≤t
||N (t)||2

)
.

Note that

E

(
sup

−τ≤s≤t
||N (t)||2

)
≤ 2L(1 + T )

∫ t

0
||Xs − X̃s ||2s2α−2ds.

Thus

E

(
sup

−τ≤s≤t
||X(s) − X̃(s)||2

)
≤ 2L(1 + T )

(1 − λ)2

∫ t

0
||Xs − X̃s ||2s2α−2ds.

Using Lemma 2.7, we have

E

(
sup

−τ≤s≤t
||X(s) − X̃(s)||2

)
= 0,

which implies

P

(
sup

−τ≤s≤t
||X(s) − X̃(s)|| > 0

)
= 0.
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Thus, we almost surely have X(t) = X̃(t), which ends the proof. �

Remark 3.4 Consider (1) on [0,∞), and f , g are the mappings from [0,∞) ×
C([−τ, 0];Rn) to R

n and R
n×m , respectively. If (H1), (H2) and (H3) hold on [0, T ],

then, (1) has a unique global solution X(·, ξ) on the entire interval [−τ,∞).

Remark 3.5 In [28] the authors investigated the existence and uniqueness of mild
solutions to stochastic neutral differential equations involving Caputo fractional time
derivative operator with Lipschitz coefficients and under some Caratheodory-type
conditions on the coefficients through the Picard approximation technique.

4 Moment Estimates and Exponential Stability

Nowwe establish the moment estimates and exponential stability theory for the global
solution of (1) on [0,∞). We impose a linear growth condition for the function D(·).
Assume that there exists a constant λ ∈ (0, 1) such that for all ϕ ∈ C([−τ, 0];Rn)

||D(ϕ)|| ≤ λ||ϕ||. (9)

Note that (9) follows from (H3) if in addition D(0) = 0, where 0 is an n-dimensional
zero vector.

Lemma 4.1 (see [21, p. 213, Theorem 4.5]) Let p ≥ 2, E ||ξ ||p < ∞, (H2) and (9)
hold. Then

||X(s) − D(Xs)||p−1 · || f (s, Xs)|| ≤ √
2L(1 + λ)p−1(1 + ||Xs ||p),

and

||X(s) − D(Xs)||p−2 · ||g(s, Xs)||2 ≤ 2L(1 + λ)p−2(1 + ||Xs ||p),

hold for 0 ≤ s ≤ t ≤ T .

Lemma 4.2 (see [21, p. 212, Lemma 4.3]) Let p ≥ 1 and (9) holds. Then

||ϕ(0) − D(ϕ)||p ≤ (1 + λ)p||ϕ||p,

for all ϕ ∈ C([−τ, 0];Rn).

Lemma 4.3 (see [21, p. 212, Lemma 4.4]) Let p > 1 and (9) holds. Then

sup
0≤s≤t

||X(s)||p ≤ λ

1 − λ
||ξ ||p + 1

(1 − λ)p
sup

0≤s≤t
||X(s) − D(Xs)||p.
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Theorem 4.4 Let p ≥ 2, E ||ξ ||p < ∞, (H2) and (9) hold. Then

E

(
sup

−τ≤s≤t
||X(s)||p

)

≤ (1 + C4E ||ξ ||p) exp

[
2C1tα

α(1 − λ)p
+ 2(C2 + C3)

(1 − λ)p

t2α−1

2α − 1

]
, (10)

hold for 1
2 < α ≤ 1, where

C1 = p
√
2L(1 + λ)p−1, C2 = p(p − 1)L(1 + λ)p−2,

C3 = 32Lp2(1 + λ)p−2, C4 = 1 + λ

1 − λ
+ 2(1 + λ)p

(1 − λ)p
.

Proof Applying the Itô formula in the conformable sense (i.e. Lemma 2.3), one sees
that

||X(t)−D(Xt )||p ≤||ξ(0)−D(ξ)||p+ p
∫ t

0
||X(s)−D(Xs)||p−1|| f (s, Xs)||sα−1ds

+ p(p − 1)

2

∫ t

0
||X(s) − D(Xs)||p−2||g(s, Xs)||2s2α−2ds

+p
∫ t

0
||X(s) − D(Xs)||p−1||g(s, Xs)||sα−1dW (s).

Next, using Lemma 4.1 and 4.2, we get

E

(
sup

0≤s≤t
||X(s) − D(Xs)||p

)
≤ (1 + λ)p E ||ξ ||p

+C1

∫ t

0
(1 + E ||Xs ||p)sα−1ds + C2

∫ t

0
(1 + E ||Xs ||p)s2α−2ds

+p
∫ t

0
||X(s) − D(Xs)||p−1||g(s, Xs)||sα−1dW (s),

where C1 = p
√
2L(1 + λ)p−1, C2 = p(p − 1)L(1 + λ)p−2. From Lemma 2.5, we

have

p
∫ t

0
||X(s) − D(Xs)||p−1 · ||g(s, Xs)||sα−1dW (s)

≤ 1

2
E

(
sup

0≤s≤t
||X(s)||p

)
+ 32Lp2(1 + λ)p−2

∫ t

0
(1 + E ||Xs ||p)s2α−2ds.
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This implies

E

(
sup

0≤s≤t
||X(s) − D(Xs)||p

)
≤ 2(1 + λ)p E ||ξ ||p

+2C1

∫ t

0
(1 + E ||Xs ||p)sα−1ds + 2(C2 + C3)

∫ t

0
(1 + E ||Xs ||p)s2α−2ds,

where C3 = 32Lp2(1 + λ)p−2.
Applying Lemma 4.3, we obtain

E

(
sup

0≤s≤t
||X(s)||p

)
≤

(
λ

1 − λ
+ 2(1 + λ)p

(1 − λ)p

)
E ||ξ ||p

+ 2C1

(1 − λ)p

∫ t

0
(1 + E ||Xs ||p)sα−1ds

+2(C2 + C3)

(1 − λ)p

∫ t

0
(1 + E ||Xs ||p)s2α−2ds.

Consequently

1 + E

(
sup

−τ≤s≤t
||X(s)||p

)

≤ 1 + E ||ξ ||p + E

(
sup

0≤ς≤s
||X(ς)||p

)

≤ 1 + C4E ||ξ ||p + 2C1

(1 − λ)p

∫ t

0
(1 + E( sup

−τ≤ς≤s
||X(ς)||p))sα−1ds

+2(C2 + C3)

(1 − λ)p

∫ t

0
(1 + E( sup

−τ≤ς≤s
||X(ς)||p))s2α−2ds

= 1 + C4E ||ξ ||p +∫ t

0
(1 + E( sup

−τ≤ς≤s
||X(ς)||p))

[
2C1

(1 − λ)p
sα−1 + 2(C2 + C3)

(1 − λ)p
s2α−2

]
ds,

where C4 = (1 + λ
1−λ

+ 2(1+λ)p

(1−λ)p ). Finally, using Lemma 2.7, we obtain that

1+E

(
sup

−τ≤s≤t
||X(s)||p

)
≤ (1+C4E ||ξ ||p) exp

[
2C1tα

α(1−λ)p
+ 2(C2+C3)

(1−λ)p

t2α−1

2α − 1

]
,

which gives (10). The proof is finished. �

Remark 4.5 When α = 1 in (10), the result of Theorem 4.4 is consistent with that of
[21, p. 213, Theorem 4.5].

Now, we establish a result of exponential stability by the Razumikhin argument.
Let L2

F ([−τ, 0],Rn) denote the family of allC([−τ, 0];Rn) -valued random variable
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ξ such that E |ξ |2 < ∞. We furthermore assume that f (0, t) = 0, g(0, t) = 0 and
D(0) = 0 and we introduce several assumptions.

(V1) There is a constant λ ∈ (0, 1) such that

E ||D(φ)||2 ≤ λ2 sup
−τ≤θ≤0

E ||φ(θ)||2, φ ∈ L2
F ([−τ, 0],Rn).

(V2) Let q > (1 − λ)−2. There is a η > 0 such that for all t ≥ 0,

E[2(φ(0) − D(φ))T f (φ, t)tα−1 + ||g(φ, t)tα−1||2] ≤ −ηE ||φ(0) − D(φ)||2.

(V3) For any φ ∈ L2
F ([−τ, 0],Rn),

E ||φ(θ)||2 < q E ||φ(0) − D(φ)||2, −τ ≤ θ ≤ 0.

Lemma 4.6 (see [21, p. 222 Theorem 6.2]) Let (V1) hold for some λ ∈ (0, 1). Then

E ||φ(0) − D(φ)||2 ≤ (1 + λ)2 sup
−τ≤θ≤0

E ||φ(θ)||2,

hold for all φ ∈ L2
F ([−τ, 0],Rn).

Lemma 4.7 (see [21, p. 223, Theorem 6.1]) Let (V1), (V2), (V3) hold, α = 1. Then,
for all ξ ∈ L2

F ([−τ, 0],Rn),

E ||X(t, ξ)||2 ≤ q(1 + λ)2e−β̃t sup
−τ≤θ≤0

E ||φ(θ)||2, t ≥ 0,

where β̃ = min{η, 1
τ
ln[ q

(1+λ
√

q)2
]} > 0. In other words, the trivial solution of (1) is

exponential stable in mean square.

Lemma 4.8 (see [21, p. 222 Theorem 6.3]) Let (V1) hold for some λ ∈ (0, 1), ρ ≥ 0
and 0 < β < τ−1 ln[ 1

λ2
], X(·) be a solution of (1). If

eβ̃t E ||X(t) − D(Xt )||2 ≤ (1 + λ)2 sup
−τ≤θ≤0

E ||φ(θ)||2, 0 ≤ t ≤ ρ, (11)

then

eβ̃t E ||X(t)||2 ≤ (1 + λ)2

(1 − λeβτ/2)2
sup

−τ≤θ≤0
E ||φ(θ)||2, −τ ≤ t ≤ ρ.

Lemma 4.9 ([21, p. 227, Corollary 6.6]) Let (V1) hold and assume that β1, β2 > 0
such that

E[2(φ(0) − D(φ))T f (φ, t) + ||g(φ, t)||2]
≤ −β1E ||φ(0)||2 + β2 sup

−τ≤θ≤0
E ||φ(θ)||2, t ≥ 0, (12)
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for all ξ ∈ L2
F ([−τ, 0],Rn). If

0 < λ <
1

2
, and β1 >

β2

(1 − 2λ)2
, (13)

then, the trivial solution of (1) when α = 1 is exponential stable in mean square (also
almost surely exponentially stable).

Theorem 4.10 Let (V1), (V2), (V3) hold. Then, for all ξ ∈ L2
F ([−τ, 0],Rn),

E ||X(t, ξ)||2 ≤ q(1 + λ)2e−β̄t sup
−τ≤θ≤0

E ||φ(θ)||2, t ≥ 0, (14)

and

lim
t→∞ sup

1

t
ln ||X(t, ξ)|| ≤ − β̄

2
, t ≥ 0, a.s.

where β̄ = min{η, 1
τ
ln[ q

(1+λ
√

q)2
]}. That is, the trivial solution of (1) is almost surely

exponentially stable.

Proof Note that β > 0, q
(1+λ

√
q)2

> 1, and we have q > (1 − λ)−2. Fix any

ξ ∈ L2
F ([−τ, 0],Rn) and assume that sup−τ≤θ≤0 E |ξ(θ)|2 > 0, and β ∈ (0, β̄)

be arbitrary. It is easy to see that

0 < β < β̄ ≤ min

{
η,

1

τ
ln

(
1

λ2

)}
, q >

eβτ

(1−λeλτ/2)2
>

1

(1−λeλτ/2)2
. (15)

We now claim that

eβt E |X(t) − D(Xt )|2 ≤ (1 + λ)2 sup
−τ≤θ≤0

E |ξ(θ)|2, t ≥ 0. (16)

If so, using Lemma 4.8 with (16) and combine with (15), one can show that

eβt E |X(t)|2 ≤ q(1 + λ)2 sup
−τ≤θ≤0

E |ξ(θ)|2, t ≥ 0.

Then, the desired result (14) follows by letting β → β̄. Next we show (16) by
contradiction. Suppose (16) is not true. Then, from Lemma 4.6, we can get that there
is a constant ρ ≥ 0 such that

eβt E ||X(t) − D(Xt )||2 ≤ eβρ E ||X(ρ) − D(Xρ)||2
= (1 + λ)2 sup

−τ≤θ≤0
E ||ξ(θ)||2, 0 ≤ t ≤ ρ.
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Moreover, there is a sequence of {tk}k≥0 such that tk → ρ and

eβ·tk E ||X(tk) − D(Xtk )||2 > eβρ E ||X(ρ) − D(Xρ)||2. (17)

Now, recallingβ < η, using the conformable type Itô formula (Lemma2.3), Lemma
4.8 and (V2), for all sufficiently small h > 0, we have

eβ(ρ+h)E ||X(ρ + h) − D(Xρ+h)||2 − eβ(ρ)E |X(ρ) − D(Xρ)|2

=
∫ ρ+h

ρ

eβtk [βE ||X(t) − D(Xt )||2]tα−1dt

+
∫ ρ+h

ρ

eβtk E[2(X(t) − D(Xt ))
T f (t, Xt )t

α−1 + ||g(t, Xt )t
α−1||2]dt

≤ 0.

This contradicts with (17), so (16) and (14) must hold.
Next, noting that X(t, ξ) be aRn-valuedmartingale, let ε > 0, and applyingLemma

2.8 to (14), for all t ≥ 0, ω ∈ �, we have

P{ω : ||X(t, ξ)||2 > e−(β−ε)t } ≤ Me−εt ,

where M is a normal number. From Lemma 2.9, we have

P{ω : ||X(t, ξ)||2 > e−(β−ε)t , i .o.} = 0.

Thus, we almost surely have |X(t, ξ)|2 ≤ e−(β−ε)t . Further, we have

lim
t→∞ sup

1

t
ln ||X(t, ξ)|| ≤ −β − ε

2
, t ≥ 0. a.s.

Since ε > 0 is arbitrary, we obtain

lim
t→∞ sup

1

t
ln ||X(t, ξ)|| ≤ −β

2
, t ≥ 0. a.s.

which completes the proof. �

Corollary 4.11 Let (V1) hold and assume that

E[2(φ(0) − D(φ)T f (φ, t)tα−1) + ||g(φ, t)tα−1||2]
≤ −β1E ||φ(0)||2 + β2 sup

−τ≤θ≤0
E ||φ(θ)||2, t ≥ 0, (18)

hold for all φ ∈ L2
F ([−τ, 0],Rn), and β1, β2 > 0. If

0 < λ <
1

2
, and β1 >

β2

(1 − 2λ)2
, (19)
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then, the trivial solution of (1) is exponential stable in mean square (also almost surely
exponentially stable).

Proof FromLemma4.9 andusing the Itô formula in the conformable sense (i.e. Lemma
2.3), one can complete the proof. �


5 Ulam Type Stability

In this part, we discuss the Ulam type stability of (1) in the one-dimensional case. Let
J := [0, T ], Yt := {Y (t + θ),−τ ≤ θ ≤ 0} be the past history of the state, and for
∀ε > 0, ϕ(·) ∈ C(J,R+), we consider (1) and the following inequality

∣∣∣∣Dα
0 [Y (t) − D(Yt )] − f (t, Yt ) − g(t, Yt )

dW (t)

dt

∣∣∣∣
≤ ε,

1

2
< α ≤ 1, t ∈ J, (20)

and
∣∣∣∣Dα

0 [Y (t) − D(Yt )] − f (t, Yt ) − g(t, Yt )
dW (t)

dt

∣∣∣∣
≤ εϕ(t),

1

2
< α ≤ 1, t ∈ J. (21)

Definition 5.1 The solution X(·) of (1) is called almost surely Ulam–Hyers stable in
mean square, if for ∀ε > 0, there exists a constant N > 0 such that for each process
Y (·) ∈ L

2
n(J) a solution of (20), then

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)
≤ Nε, t ∈ J.

Remark 5.2 A process Y (·) ∈ L
2
n(J) is a solution of (20) iff for ∀ε > 0, there exists a

function G(t) ∈ L
2
n(J) such that (i) |G(t)| <

√
ε; (ii)Dα

0 [Y (t)− D(Yt )] = f (t, Yt )+
g(t, Yt )

dW (t)
dt + G(t), t ∈ J.

Definition 5.3 The solution X(·) of (1) is called almost surely Ulam–Hyers–Rassias
stable in mean square, if there exists a constant Ñ > 0 such that for ∀ε > 0, ϕ(·) ∈
C(J,R+) and for each process Y (·) ∈ L

2
n(J) a solution of (21), then

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)
≤ Ñεϕ(t), t ∈ J.

Remark 5.4 A process Y (·) ∈ L
2
n(J) is a solution of (21) iff for ∀ε > 0, there exists

a function Ḡ(t) ∈ L
2
n(J) such that (i) |Ḡ(t)| <

√
εϕ(t); (ii) Dα

0 [Y (t) − D(Yt )] =
f (t, Yt ) + g(t, Yt )

dW (t)
dt + Ḡ(t), t ∈ J.
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Let

N∗(t) = ξ(0) +
∫ t

0
f (s, Ys)s

α−1ds +
∫ t

0
g(s, Ys)s

α−1dW (s), t ∈ J.

Lemma 5.5 Let Y (·) be a solution of Eq. (20). Then

E

(∣∣∣∣Y (t) − D(Yt ) + D(Y0) − N∗(t)
∣∣∣∣
2)

≤ εT 2α

2α − 1
, t ∈ J. (22)

Proof For all t ∈ J, α ∈ (0, 1] note that,

Dα
0 [Y (t) − D(Yt )] = f (t, Yt ) + g(t, Yt )

dW (t)

dt
+ G(t)

with initial value Y (0) = Y0 = X0. Then, the solution can be expressed as

Y (t) = D(Yt ) − D(Y0) + ξ(0) +
∫ t

0
f (s, Ys)s

α−1ds

+
∫ t

0
g(s, Ys)s

α−1dW (s) +
∫ t

0
G(s)sα−1ds, t ∈ J.

By Hölder’s inequality, we get

E(|Y (t) − D(Yt ) + D(Y0) − N∗(t)|2) = E

(
|
∫ t

0
G(s)sα−1ds|2

)

≤
∣∣∣∣
∫ t

0
G(s)sα−1ds

∣∣∣∣
2

≤
∫ t

0
|G(s)|2ds

∫ t

0
s2(α−1)ds

≤ εt · t2α−1

2α − 1

≤ εT 2α

2α − 1
, t ∈ J.

This finishes the proof. �

Similar to Lemma 5.5, we have

Lemma 5.6 Let Y (·) be a solution of Eq. (21). Then

E

(∣∣∣∣Y (t) − D(Yt ) + D(Y0) − N∗(t)
∣∣∣∣
2)

≤ εϕ(t)T 2α

2α − 1
, t ∈ J. (23)

Theorem 5.7 Suppose that (H1), (H2), (H3) hold and λ ∈ (0, 1
2 ), α ∈ ( 12 , 1]. Then,

the solution of (1) is almost surely Ulam–Hyers stable on J.
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Proof Let Y (·) ∈ L
2
n[0, T ] be a solution of (20), and X(·) be a solution of (1) given

by (2). Note that Y0 = X0, from Lemmas 2.6, 5.5, (H1) and (H3), for 0 ≤ t ≤ T , we
get

E(|Y (t) − X(t)|2) = E(|Y (t) − Y (t) + Y (t) − X(t)|2)
= E

(∣∣∣∣Y (t) − D(Yt ) + D(Y0) − N∗(t) + D(Yt ) − D(Y0) − D(Xt ) + D(X0)

+
∫ t

0
( f (Ys, s) − f (Xs, s))sα−1ds +

∫ t

0
(g(Ys, s) − g(Xs, s))sα−1dW (s)

∣∣∣∣
2
)

≤ 4E(|Y (t) − D(Yt ) + D(Y0) − N∗(t)|2 + 4λ2E(|Yt − Xt |2)
+4L2t

∫ t

0
E(|Ys − Xs |2)s2(α−1)ds + 4L2

∫ t

0
E(|Ys − Xs |2)s2(α−1)ds

≤ 4εT 2α

2α − 1
+ 4λ2E(|Yt − Xt |2) + 4L2(1 + T )

∫ t

0
E(|Ys − Xs |2)s2(α−1)ds.

Thus

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)

≤ 4εT 2α

2α − 1
+ 4λ2E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)

+4L2(1 + T )

∫ t

0
E

(
sup

−τ≤t≤T
|Y (s) − X(s)|2

)
s2(α−1)ds.

This implies

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)

≤ 4εT 2α

(2α − 1)(1 − 4λ2)
+ 4L2(1 + T )

1 − 4λ2

∫ t

0
E

(
sup

−τ≤t≤T
|Y (s) − X(s)|2

)
s2(α−1)ds.

Next, using Lemma 2.7, we have

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)

≤ 4εT 2α

(2α − 1)(1 − 4λ2)
exp

(
4L2(1 + T )

(1 − 4λ2)

∫ t

0
s2(α−1)ds

)

≤ 4εT 2α

(2α − 1)(1 − 4λ2)
exp

(
4L2(1 + T )

1 − 4λ2
T 2α−1

2α − 1

)

= Nε,
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where N := N (α, T , λ) = 4T 2α

(2α−1)(1−4λ2)
exp

(
4L2(1+T )

1−4λ2
T 2α−1

2α−1

)
.

From Definition 5.1, the solution of (1) is almost surely Ulam–Hyers stable. This
completes the proof of the theorem. �


Theorem 5.8 Suppose that (H1), (H2), (H3) hold, λ ∈ (0, 1
2 ), α ∈ ( 12 , 1] and ϕ(·) be

nondecreasing. Then, the solution of (1) is almost surely Ulam–Hyers–Rassias stable
on J.

Proof Let Y (·) ∈ L
2
n[0, T ] be a solution of (21), and X(·) be a solution of (1) given

by (2). Note that Y0 = X0, from Lemma 2.6, Lemma 5.6, (H1) and (H3). Repeating
the procedures in the proof of Theorem 5.7, we have

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)
≤ 4ε2T 2αϕ2(t)

(2α − 1)(1 − 4λ2)

+4L2(1 + T )

1 − 4λ2

∫ t

0
E

(
sup

−τ≤t≤T
|Y (s) − X(s)|2

)
s2(α−1)ds.

Noting ϕ(·) is nondecreasing, then, (ϕ2(t))′ = 2ϕ(t)ϕ′(t) ≥ 0. Using Lemma 2.7,
we obtain

E

(
sup

−τ≤t≤T
|Y (t) − X(t)|2

)

≤ 4εT 2αϕ(t)

(2α − 1)(1 − 4λ2)
exp

(
4L2(1 + T )

1 − 4λ2

∫ t

0
(t − s)2(α−1)ds

)

≤ 4εT 2αϕ(t)

(2α − 1)(1 − 4λ2)
exp

(
4L2(1 + T )

1 − 4λ2
T 2α−1

2α − 1

)

= Nϕ(t)ε.

FromDefinition 5.3, the solution of (1) is almost surelyUlam–Hyers–Rassias stable.
The proof is now complete. �


Remark 5.9 Theorems 5.7 and 5.8 show two different Ulam stability, that is, the error
norm is limited by Nε and Nϕ(·)ε, respectively. This property is very necessary in
iterative learning control, tracking control, consensus control and synchronization of
multi-agent systems.

Remark 5.10 In [29], the Ulam–Hyers stability of Caputo type fractional NSFDEs is
studied (note the Ulam–Hyers–Rassias stability is not considered). A similar comment
applies to [30].
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6 Examples

Example 6.1 Consider the one-dimensional linear neutral conformable stochastic
delay differential equations on t > 0.

Dα
0 [x(t) − 1

4
x(t − τ)] = −6t1−αx(t) + t1−αx(t − τ)

dW (t)

dt
,

x(0) = x0, α ∈ (0, 1], (24)

where τ > 0, W (·) is a one-dimensional Brownian motion.
For x, y ∈ R and t > 0, one has

2

(
x − 1

4
y

) (
−6t1−αxtα−1

)
+

(
t1−α ytα−1

)2

= −12x2 + 3xy + y2

≤ −21

2
x2 + 5

2
y2,

where 2xy ≤ x2 + y2 was used. Let β1 = 21
2 and β2 = 5

2 . Let λ = 1
4 and note

β1 >
β2

(1−2λ)2
. From Corollary 4.11, the trivial solution of Eq. (24) is almost surely

exponentially stable.

Example 6.2 Consider the one-dimensional neutral conformable stochastic delay dif-
ferential equations on t ∈ [0, 10]

Dα
0 [x(t) − λx(t − τ)] = ax(t) + bx(t − τ)

dW (t)

dt
,

x(0) = 1, α ∈
(
1

2
, 1

]
, (25)

where τ > 0, a, b is a constant, and W (·) is a one-dimensional Brownian motion.

Set ε > 0, ϕ(t) = e
tα
α . For t ∈ [0, 10], let G(t) = √

ε · e
tα
α , a = b = 1, τ =

0.5, λ = 1
3 and

Dα
0

[
y(t) − 1

2
y(t − τ)

]
= ay(t) + by(t − τ)

dW (t)

dt
+ G(t),

y(0) = 1, α ∈
(
1

2
, 1

]
. (26)

From Theorem 3.3, the existence and uniqueness of a solution of Eqs. (25) and (26)
can be guaranteed. From Theorem 5.7, we obtain

E

(
sup

−0.5≤t≤10
|y(t) − x(t)|2

)
≤ N (α)ε e

2tα
α , N (α) = 7.2 × 102α+2

2α − 1
e
7.92×102α

2α−1 .



Existence and Stability of Solutions to Neutral Conformable… Page 21 of 22 7

From Definition 5.3, the solution of (25) is almost surely Ulam–Hyers–Rassias
stable on [0, 10]. Similarly, we can show the solution of (25) is also almost surely
Ulam–Hyers stable on [0, 10].

7 Conclusion

In this paper, we discuss the neutral conformable stochastic functional differential
equations. In detail, the existence and uniqueness theorem, moment estimation and
exponential stability are given. Moreover, we discuss the Ulam type stability of the
solution of the equation.
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