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Abstract
In this paper, several types of reiterative distributional chaos are concerned in
discrete dynamical systems. Some implications between distributional chaos and
reiterative distributional chaos are obtained. It is further shown that an equicontin-
uous non-autonomous system (X , f1,∞), where f1,∞ = { fi }i≥1 is a sequence of
self-maps of a metric space X , exhibits reiterative distributional chaos of type i
(i ∈ {1, 1+, 2, 21

2 , 2
1
2−}) if and only if its kth iteration f [k]

1,∞ exhibits reiterative
distributional chaos of type i for any k ≥ 2.

Keywords Reiterative distributional chaos · Distributional chaos · Invariant ·
Non-autonomous systems

Mathematics Subject Classification MSC 54H20 · 37B55 · 37D45

1 Introduction

The chaotic dynamics of discrete systems has been extensively concerned over the
past decades. The first description of the term “chaos” in discrete systems with strict
mathematical language was proposed by Li and Yorke [17], where the asymptotic
behavior of pairs was investigated. In [22], Schweizer and Smítal introduced the notion
of distributional chaos for interval maps, as a natural strengthening of Li-Yorke chaos.
They proved that distributional chaos is equivalent to positive topological entropy for
a self-map of a compact interval, by considering the dynamics of pairs with certain
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statistical properties. Thereafter, distributional chaos was divided into several types,
DC1, DC2, DC21

2 and DC3, see [3,12]. Following this way, several other concepts
of chaos were developed to characterize the complexity of dynamical systems, such
as distributional chaos in a sequence [31], dense chaos [26], Li-Yorke sensitivity [1],
(F1,F2)-chaos [27], etc.. For the relations between Li-Yorke chaos, distributional
chaos and positive topological entropy of compact dynamical systems, we refer to
[9,16,20] and the references therein.

As a young branch of topological dynamics, infinite-dimensional linear dynamics
has turned into an active research area. Particularly, the hypercyclicity and chaos
of continuous linear operators on Banach spaces or Fréchet spaces has been widely
investigated and many beautiful and interesting results on this topic have been well-
developed [11]. Due to the absence of compact structure, some dynamical results of
linear operators are different from that of classical compact systems. For instance, a
topologically transitive operator must be Li-Yorke chaotic; the full space could be a
distributionally scrambled set of some operators [18]; the dynamics of an operator
with infinite topological entropy could be very trivial [38] and so on. Among others,
Bernardes et al. [6,7] showed that DC1 and DC2 are equivalent for linear operators on
Banach spaces and there exist DC2 operators which are not mean Li-Yorke chaotic.
For more results on Li-Yorke and distributionally chaotic operators, see [4,5,33,35–
37]. Recently, Bonilla and Kostić [8] observed that the orbits of a Li-Yorke chaotic
operator on a Banach space has additional statistical properties. To further investigate
the relations between Li-Yorke chaos and distributional chaos, they proposed the
concepts of reiterative distributional chaos of types 1, 1+ and 2 for linear operators on
Banach spaces and showed that a topologicallymixing andRDC1+ linear operatormay
not be RDC2, that there exists a RDC1 and RDC2 operator which is not RDC1+, see
also [14]. It is thereforemeaningful to find the difference of the dynamical properties of
reiterative distributional chaoswithin the setting of infinite-dimensional linear systems
and of compact dynamical systems.

On the other hand, the classical results of autonomous discrete systems has been
extended to the non-autonomous case, since non-autonomous discrete systems are
moreflexible than the autonomousones for the investigationof realworld problems and
such systems have been widely applied in physics, engineering, mathematical biology,
economics, etc.. Some results on topological entropy, sensitivity, mixing properties,
chaos of non-autonomous discrete systems can be seen [2,10,13,19,21,23–25,32]. In
[2], Balibrea and Oprocha showed that the weak mixing is stronger than Li-Yorke
chaos, but positive topological entropy is not sufficient to imply Li-Yorke chaos for
non-autonomous systems. Shao et al. [24] proved that Li-Yorke δ-chaos and distribu-
tional δ′-chaos in a sequence are equivalent for non-autonomous discrete systems on
compact spaces, they also provided sufficient conditions for non-autonomous discrete
systems to be distributionally chaotic. It is known that Li-Yorke chaos, DC1, DC2,
DC21

2 are iteration invariants for autonomous systems (see [10,12,30]), nevertheless,
the existence of a DC3 pair is not preserved under iteration. For the non-autonomous
case, it was further shown [23] that the properties of DC1, DC2 and DC21

2 can be
preserved under iteration if the family { fi }i≥1 is equicontinuous, which weakens the
condition provided in [28,29,34]. Motivated by [23], we would like to further inves-
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tigate the iteration invariance of reiterative distributional chaos in non-autonomous
discrete systems.

The present paper is organized as follows. In Sect. 2, some basic concepts of discrete
dynamical systems are given. In order to adapt the setting of infinite-dimensional linear
systems and of compact dynamical systems, we unify the notations of Li-Yorke chaos,
distributional chaos and reiterative distributional chaos of types 1, 1+, 2, 2 1

2 and 21
2−

in a very general framework. It is shown that reiterative distributional chaos of type
21
2 and type 2 are equivalent for linear operators on Banach spaces; that reiterative

distributional chaos of type 1 and type 21
2− are equivalent for linear operators on

Banach spaces. Moreover, there are no implications between reiterative distributional
chaos of type 1 and type 2 for linear operators. Nevertheless, reiterative distributional
chaos of type 1 and type 21

2− are not equivalent for continuous maps on compact
spaces, and the equivalence between reiterative distributional chaos of type 21

2 and
type 2 does not hold for general continuous self-maps of a metric space. The obtained
results complement the ones of [14].

Section 3 deals with the iterative invariance of various types of reiterative distribu-
tional chaos in non-autonomousdiscrete systems. It is shown that for an equicontinuous
family f1,∞ = ( fi )i≥1 on a metric space X , the non-autonomous system (X , f1,∞)

is reiteratively distributionally chaotic of type i (i ∈ {1, 1+, 2, 21
2 , 2

1
2−}) if and only

if its kth iteration (X , f [k]
1,∞) is reiteratively distributionally chaotic of type i for any

k ≥ 2. It is worth noting that there exists a DC3 equicontinuous non-autonomous
system (X , f1,∞) such that f [2]

1,∞ has no DC3 pairs. This situation is different from
the case of autonomous systems [10].

2 Preliminaries and Reiterative Distributional Chaos

Let (X , f1,∞) be a non-autonomous discrete system, where f1,∞ = { fi }i≥1 is a
sequence of self-maps of a metric space (X , d). In the case that fi = f , ∀i ≥ 1 for
some f : X → X , it reduces to an autonomous discrete system (X , f ). (X , f1,∞)

is called equicontinuous if the sequence { f }i≥1 is equicontinuous on X , that is, for
any t > 0, there is t ′ > 0 such that d( f n1 x, f n1 y) < t , ∀n ∈ N for any x, y ∈ X
with d(x, y) < t ′. Moreover, we say that f1,∞ is uniformly Lipschitz continuous if
there exists L > 0 such that d( fi x, fi y) < Ld(x, y) for any x, y ∈ X and any i ≥ 1.
Clearly, uniform Lipschitz continuity is stronger than equicontinuity.

Given x0 ∈ X , the orbit of x0 under f1,∞ is denoted by orb(x0, f1,∞) =
{ f i1 (x0)}i≥0, where f i1 := fi ◦ fi−1 ◦ · · · ◦ f1 for any i ≥ 1 and f 01 = idX is the
identify map on X . For the sake of convenience, let f in := fn+i−1 ◦ fn+i−2 ◦ · · · ◦ fn
and f 0n = idX for any n, i ≥ 1. For each k ∈ N, the kth iteration system of (X , f1,∞)

is given by (X , f [k]
1,∞), where f [k]

1,∞ = { f ki(n−1)+1}i≥1. It is easy to see that the orbit

orb(x0, f [k]
1,∞) is contained in orb(x0, f1,∞).

A pair of points (x, y) ∈ X × X is said to be asymptotic if d( f n1 x, f n1 y) tends to
zero as n tends to infinity; proximal if lim infn→∞ d( f n1 x, f n1 y) = 0 and syndetically
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proximal if the set

Nx,y( f1,∞, t) := {i ≥ 0 : d( f i1 (x), f i1 (y)) < t}

is syndetic for any t > 0. Recall that a set A ⊂ N is syndetic if there is k ∈ N so that
A ∩ [i, i + k] �= ∅ for any i ∈ N. (x, y) is called a scrambled pair of (X , f1,∞) if it
is proximal but not asymptotic. The system (X , f1,∞) is called Li-Yorke chaotic if it
has an uncountable scrambled set D ⊂ X , namely, any distinct points x, y of D form
a scrambled pair.

Given A ⊂ N, its lower and upper densities are given by

d(A) := lim inf
n→∞

|A ∩ [1, n]|
n

, d(A) := lim sup
n→∞

|A ∩ [1, n]|
n

,

respectively, where |M | denotes the cardinality of the set M . Moreover, the lower and
upper Banach densities of A are given by

Bd(A) := lim
n→∞ lim inf

m→∞
|A ∩ [m + 1,m + n]|

n

and

Bd(A) := lim
n→∞ lim sup

m→∞
|A ∩ [m + 1,m + n]|

n
,

respectively. Denote by

Fx,y( f1,∞, t) = d(Nx,y( f1,∞, t)), F∗
x,y( f1,∞, t) = d(Nx,y( f1,∞, t)), ∀t > 0,

the lower and upper distributional functions of (x, y), respectively.
A pair (x, y) is called DC1 of f1,∞ if F∗

x,y( f1,∞, t) ≡ 1 and Fx,y( f1,∞, δ) = 0
for some δ > 0; DC2 if F∗

x,y( f1,∞, t) ≡ 1 and Fx,y( f1,∞, δ) < 1 for some δ > 0;

DC21
2 if Fx,y( f1,∞, t) < c < F∗

x,y( f1,∞, t),∀t ∈ (0, δ), for some δ, c > 0; DC3

if Fx,y( f1,∞, t) < F∗
x,y( f1,∞, t) for all t in an interval. For i ∈ {1, 2, 21

2 , 3}, a set
S ⊂ X is called a distributionally scrambled set of type i of f1,∞ (simply, a DCi set)
if any distinct point x, y ∈ S forms a DCi pair. Furthermore, S is called a strong DC1
(DC2, DC21

2 ) set of f1,∞ if there is δ > 0 so that any x, y ∈ S(x �= y) forms a DC1
(DC2, DC21

2 , respectively) pair with respect to the same δ.

Definition 1 For i ∈ {1, 2, 21
2 , 3}, a system (X , f1,∞) is called distributionally chaotic

of type i (or simply, DCi) if it has an uncountable DCi set S. In additional, (X , f1,∞)

is called uniformly DCi (i ∈ {1, 2, 21
2 }) if S could be a strong DCi set.

Inspired by the concepts of reiterative distributional chaos of linear operators intro-
duced in [14], we use the following versions of reiterative distributional chaos of types
1, 1+, 2, 2 1

2 and 21
2− for general non-autonomous discrete systems by modifying the
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upper (or lower) density in the definitions of different types of distributional chaos
(DC1, DC2, DC21

2 ) with upper (or lower) Banach density.
Let

BFx,y( f1,∞, t) = Bd(Nx,y( f1,∞, t)), ∀t > 0,

BF∗
x,y( f1,∞, t) = Bd(Nx,y( f1,∞, t)), ∀t > 0.

A pair (x, y) ∈ X × X is called RDC1+ of f1,∞ if F∗
x,y( f1,∞, t) = 1, ∀t > 0

and BFx,y( f1,∞, δ) = 0 for some δ > 0; RDC1 if F∗
x,y( f1,∞, t) ≥ c, ∀t > 0

and BFx,y( f1,∞, δ) = 0 for some c, δ > 0; RDC2 if BF∗
x,y( f1,∞, t) = 1,

∀t > 0 and Fx,y( f1,∞, δ) < 1 for some δ > 0; RDC21
2 if Fx,y( f1,∞, t) < c <

BF∗
x,y( f1,∞, t),∀t ∈ (0, δ), for some δ, c > 0; RDC21

2− if BFx,y( f1,∞, t) < c <

F∗
x,y( f1,∞, t),∀t ∈ (0, δ), for some δ, c > 0.
A set S ⊂ X is called a reiterative distributionally scrambled set of type i (i ∈

{1, 1+, 2, 21
2 , 2

1
2−}) of f1,∞ (or simply, a RDCi set) if any distinct point x, y ∈ S

forms a RDCi pair. Moreover, S is called a strong RDCi set of f1,∞ if any x, y ∈
S(x �= y) forms a RDCi pair with respect to a constant δ > 0 which is independent
on x and y.

Definition 2 Given i ∈ {1, 1+, 2, 21
2 , 2

1
2−}, a system (X , f1,∞) is called reiteratively

distributionally chaotic of type i (or simply, RDCi) if it has an uncountable DCi set
S. In additional, (X , f1,∞) is called uniformly RDCi if S is a strong RDCi set.

According to Definition 1 and 2, it is easily seen that DC1 implies DC2, DC2
implies DC21

2 and DC21
2 implies Li-Yorke chaos; that a RDCi system is Li-Yorke

chaotic for any i ∈ {1, 1+, 2, 21
2 , 2

1
2−}. Also, the following implications hold:

DC1 ⇒ RDC1+ ⇒ RDC1 ⇒ RDC21
2−; DC2 ⇒ RDC2 ⇒ RDC21

2 ; DC21
2 ⇒

RDC21
2 and RDC21

2 − . Generally, these types of distributional chaos and reiterative
distributional chaos given in Definition 1 and 2 are not equivalent to each other even
for the autonomous case. In the context of infinite-dimensional linear systems, some
interesting implications between different notions of chaos were obtained recently. For
instance, DC1 and DC2 were proved to be equivalent for a linear operator acting on a
Banach space, and there exists DC2 operators which are not mean Li-Yorke chaotic
[7]. There is a topologically mixing and RDC1+ linear operator which is not RDC2;
a RDC1 and RDC2 operator which is not RDC1+ [8].

In the following,we focus on some implications ofRDC21
2 andRDC2

1
2−within the

framework of infinite-dimensional linear systems and of compact dynamical systems,
respectively. Let us begin with an example of RDC21

2 linear operator which is not
RDC1.

Example 1 Let v = (vi )i≥1 be a sequence of positive numbers given by:

vi =
{
2i−Pj− j , i ∈ [Pj , Q j ),

1, i ∈ [Q j , Pj+1),
(1)
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where P1 = 1, Q1 = 4 and Pk+1 = (k + 1)2 + ∑k
j=1 j !, Qk+1 = Pk+1 + 2k + 3 for

any k ≥ 1. Let l1v(N) = {(xi )i≥1 : ∑
i≥1 |xi |vi < ∞} be a weighted l1-space with the

norm ‖(xi )i≥1‖ = ∑
i≥1 |xi |vi . Consider the forward shift F acting on l1v(N), namely

F : (x1, x2, x3, · · · ) �→ (0, x1, x2, x3, · · · ). It is easy to see that F is a continuous
linear operator. We show that F is RDC21

2 , but it is not RDC1.
Let ei , i ≥ 1 be the usual standard basis on l1v(N). Then ‖Fnei‖ = ‖ei+n‖ = vi+n

for any n, i ≥ 1. It follows from (1) that lim infn→∞ ‖Fnei‖ = 0 and the lower
density of the set {n ≥ 1 : ‖Fnei‖ ≥ s} equals to one for any s ∈ (0, 1). So (e1, 0)
is a RDC21

2 pair of F and span{e1} is a RDC21
2 set. However, for any nonzero vector

y = (yi )i ∈ l1v(N) (assume yr �= 0 for some r ≥ 1), it is easy to see ‖Fn y‖ ≥ ‖Fner‖
for any n ≥ 1. Therefore F∗

y,0(F, s) = 0 for any s ∈ (0, 1). This shows that F has no
RDC1 pairs.

The next result obtains a basic relation between RDC1 operators and RDC21
2 oper-

ators, whose proof follows from the argument of [14, Theorem 3.16].

Theorem 1 Let f : X → X be a continuous linear operator on a Banach space X.
Then f is RDC1 if and only if it is RDC21

2−.

Proof It suffices to show thatRDC21
2− impliesRDC1.Suppose that f isRDC21

2− and
(x, y) is a RDC21

2− pair of f . Then there exist δ > 0, c > 0 so that BFx,y( f1,∞, t) <

c < F∗
x,y( f1,∞, t) for all t ∈ (0, δ). Let z = x−y andY = span{orb(z, f)}. ClearlyY is

invariant under f and the limitation g := f |Y on Y is also RDC21
2− and thus Li-Yorke

chaotic. According to [14, Lemma 3.15], there exists a residual set of vectors u onY for
which there is B ⊂ Nwith d(B) > 0 such that limn∈B ‖gnu‖ = 0. By [5, Proposition
5], g has a residual set of vectors w ∈ Y satisfying lim supn→∞ ‖gnw‖ = ∞. Hence,
there exists v ∈ Y so that limn∈B ‖ f nv‖ = 0 and lim supn→∞ ‖ f nv‖ = ∞. It follows
from [14, Theorem 3.16] that f is RDC1. ��
Theorem 2 Let f1,∞ = { fi }i≥1 be uniformly Lipschitz continuous on a metric space
(X , d). Then (X , f1,∞) is RDC2 if and only if it is RDC21

2 . In particular, a continuous
linear operator f acting on a Banach space X is RDC2 if and only if it is RDC21

2 .

Proof Since { fi }i≥1 is uniformly Lipschitz continuous, there exists L > 1 such
that d( fi x, fi y) < Ld(x, y) for any x, y ∈ X and any i ≥ 1. It suffices to
show that any RDC21

2 pair of f1,∞ is also a RDC2 pair. Suppose that (x, y) is a
RDC21

2 pair of f1,∞, that is, there are δ, c > 0 such that Fx,y( f1,∞, t) < c <

BF∗
x,y( f1,∞, t) for all t ∈ (0, δ). Pick an increasing sequence (nk)k satisfying

d( f nk1 x, f nk1 y) < L−2k . Denote A = ⋃
k≥1[nk, nk + k] ⋂

N. Then Bd∗(A) = 1
and d( f n1 x, f n1 y) < Lkd( f nk1 x, f nk1 y) < L−k for each n ∈ [nk, nk + k]. Therefore
limn→∞,n∈A d( f n1 x, f n1 y) = 0. This indicates that BF∗

x,y( f1,∞, t) = 1 for any t > 0.
��

It is worth mentioning that contrary to what happens in Theorem 1, the notions of
RDC1 and RDC21

2− for compact dynamical systems (namely, a continuous self-map
of a compact metric space) are not equivalent to each other, as showed in the next
example.
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Example 2 Let �2 = {0, 1}N be a symbol space equipped with the metric ρ(ω, γ ) =
2−min{n∈N:ωn �=γn}, for any distinct ω = (ωk)k, γ = (γk)k ∈ �2. The shift map σ :
�2 → �2 is given by (σ (ω))i = ωi+1, ω ∈ �2. A nonempty closed set X ⊂ �2 is
called a subshift provided σ(X) ⊂ X . Consider a hereditary shift X ⊂ �2 (namely,
if ω′ ∈ �2 satisfies ω′

n ≤ ωn , ∀n ∈ N for some ω ∈ X , then ω′ ∈ X ). Kwietniak [15]
showed that X is DC1 if and only if X is not proximal, and that X is DC2 if and only
if it is DC3, if and only if it has positive topological entropy, if and only if there exists
ω = (ωk)k ∈ X such that {i ∈ N : ωi = 1} has positive upper Banach density.

By [20, Theorem14], if X is proximal, then any (x, y) ∈ X×X forms a syndetically
proximal pair (i.e., for any ε > 0, the set { j ∈ N : ρ(σ j x, σ j y) < ε} is syndetic),
particularly, BFx,y(σ, ε) > 0 for any ε > 0. Therefore, every RDC1 hereditary shift
X is not proximal and so it is DC1 and RDC1+. On the other hand, if there exist
x = (xi )i , y = (yi )i ∈ X such that BFx,y(σ, s) < 1 for some s > 0, then it is easy to
show that the set { j ∈ N : x j �= y j } has positive upper Banach density. Thus, either
Bd{i ∈ N : xi = 1} > 0 or Bd{i ∈ N : yi = 1} > 0. In this case, X is DC2. Therefore
it follows that both RDC21

2 and RDC21
2− are equivalent to DC2 for hereditary shifts.

By [15, Theorem 5.6], there exists a DC2 hereditary shift which is not DC1 and hence
not RDC1.

Unfortunately, we do not know whether or not RDC21
2 and RDC2 are equivalent

for compact dynamical systems. We end this section with a RDC21
2 continuous map

on a noncompact metric space, which is not RDC2.

Example 3 Let H be an infinite-dimensional real Hilbert space with a basis {ei }i≥0.
Denote Ak = {k! + 2, k! + 4, · · · , k! + 2k} for any k ≥ 3 and A := ∪k≥3Ak . Let

X :=
⎛
⎝⋃

k≥3

{λei : λ ≥ k−1, i ∈ Ak}
⎞
⎠ ∪ {λei : λ ≥ 1, i ≥ 0, i /∈ A}

be equipped with the following metric,

d(λei , μe j ) =
{ |λ − μ|, if i = j,

|λ| + |μ|, if i �= j .
(2)

Define the map f : X → X by: f (λei ) = (wi+1λ)ei+1, ∀λei ∈ X , where the
sequence {w j } j≥1 of positive numbers is given by

w j =
⎧⎨
⎩

1
k , if j = k! + 2i for some k ≥ 3 and 1 ≤ i ≤ k,
k, if j = k! + 2i + 1 for some k ≥ 3 and 1 ≤ i ≤ k,
1, otherwise.

(3)

It is not hard to see that f is continuous. We check that {ae0 : a ≥ 1} is a RDC21
2 set

of f1,∞. Indeed, given a > b ≥ 1. For any n ≥ 1,

d( f n(ae0), f n(be0)) = d(w1 · · · wnaen, w1 · · · wnaen) = w1 · · · wn(a − b).
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It follows from (3) that d( f n(ae0), f n(be0)) = a−b
k , if n = k! + 2i for k ≥ 3 and

1 ≤ i ≤ k; otherwise, d( f n(ae0), f n(be0)) = a − b. Thus BF∗
ae0,be0

( f , t) = 1
2 and

Fae0,be0( f , t) = 0 for any t ∈ (0, a − b).
We further show that f1,∞ has no RDC2 pairs. Given distinct aep, beq ∈ X . In the

case of p = q and a �= b, it follows that

BF∗
aep,bep ( f , t) = BF∗

ae0,be0( f , t) = 1

2
, ∀t ∈

(
0,

|a − b|
p

)
.

In the case of p �= q (assume p > q), then

d( f n(aep), f n(beq)) > awp+1 · · · wp+n = d( f n(aep), f n(2aep))

for any n ≥ 1. Therefore BF∗
aep,beq

( f , t) ≤ BF∗
aep,2aep

( f , t) = 1
2 for any t ∈

(
0, a

p

)
.

In both cases, BF∗
aep,beq

( f , t) < 1 for some t > 0, so (aep, beq) is not a RDC2 pair
of f .

3 Iterative Property of Reiterative Distributional Chaos

This section deals with the iteration invariance of reiterative distributional chaos.
In [23], the properties of DC1,DC2,and DC21

2 were showed to be invariants under
iterations for an equicontinuous system (X , f1,∞). In particular, they obtained the
following lemma.

Lemma 1 ([23]) Let (X , f1,∞) be equicontinuous and x, y ∈ X. Let f̂1,∞ be the Nth
iteration of f1,∞. Then for any s > 0, there is ts > 0 such that for any t ∈ (0, ts],
(i) Fx,y( f̂1,∞, s) ≥ Fx,y( f1,∞, t);
(ii) F∗

x,y( f̂1,∞, s) ≥ F∗
x,y( f1,∞, t);

(iii) F∗
x,y( f̂1,∞, t) ≤ F∗

x,y( f1,∞, s);

(iv) Fx,y( f̂1,∞, t) ≤ Fx,y( f1,∞, s).

For convenience of notations, denote ξ0x,y( f1,∞, t) = η0x,y( f1,∞, t) = 0,

ξnx,y( f1,∞, t) :=
∣∣∣{0 ≤ i < n : d( f i1 (x), f i1 (y)) < t}

∣∣∣ ,
and

ηnx,y( f1,∞, t) :=
∣∣∣{0 ≤ i < n : d( f i1 (x), f i1 (y)) ≥ t}

∣∣∣ ,
for any t > 0 and any n ≥ 1. It is not hard to check the following properties.

Lemma 2 Let f1,∞ = { fi }i≥1 be equicontinuous on X. Given k ∈ N and t > 0. Then
there is t ′ > 0 such that for any x, y ∈ X, the following relations hold:
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(a) BF∗
x,y( f

[k]
1,∞, t ′) ≤ BF∗

x,y( f1,∞, t);

(b) BFx,y( f1,∞, t ′) ≤ BFx,y( f
[k]
1,∞, t);

(c) BF∗
x,y( f1,∞, t ′) ≤ BF∗

x,y( f
[k]
1,∞, t);

(d) BFx,y( f
[k]
1,∞, t ′) ≤ BFx,y( f1,∞, t).

Proof We only show the relation (a) and leave the others to the reader, since these
proofs are similar.

Since f1,∞ = { fi }i≥1 is equicontinuous, for t > 0, there exists t ′ > 0 such that for
any x, y ∈ X and any i ∈ N,

d( f ki1 x, f ki1 y) < t ′ �⇒ d( f ki+ j
1 x, f ki+ j

1 y) < t, j = 0, 1, · · · , k − 1. (4)

For any n,m ∈ N, it follows from (4) that

k
(
ξn+m
x,y ( f [k]

1,∞, t ′) − ξmx,y( f
[k]
1,∞, t ′)

)
≤ ξ k(n+m)

x,y ( f1,∞, t) − ξ kmx,y( f1,∞, t)

≤ sup
l≥0

{
ξ kn+l
x,y ( f1,∞, t) − ξ lx,y( f1,∞, t)

}
.

Then

1

n
sup
m≥0

{
ξn+m
x,y ( f [k]

1,∞, t ′) − ξmx,y( f
[k]
1,∞, t ′)

}
≤ 1

kn
sup
l≥0

{
ξ kn+l
x,y ( f1,∞, t) − ξ lx,y( f1,∞, t)

}
,

which further implies BF∗
x,y( f

[k]
1,∞, t ′) ≤ BF∗

x,y( f1,∞, t). ��
Theorem 3 Let f1,∞ = { fi }i≥1 be equicontinuous on X and k ∈ N. Then

(i) (X , f1,∞) is RDC1 (RDC1+) if and only if (X , f [k]
1,∞) is RDC1 (RDC1+).

(ii) (X , f1,∞) is RDC2 if and only if (X , f [k]
1,∞) is RDC2.

(iii) (X , f1,∞) is RDC21
2 (RDC21

2−) if and only if (X , f [k]
1,∞) is RDC21

2 (respectively,

RDC21
2−).

Proof We only prove the case (i) of RDC1. The rest cases can be followed similarly.
(i) (Necessity). Suppose that S is an uncountable RDC1 set of f1,∞. Given (x, y) ∈

S2 (x �= y). There are c, δ > 0 so that F∗
x,y( f1,∞, t) ≥ c and BFx,y( f1,∞, δ) = 0

for any t > 0. For δ > 0, it follows from Lemma 2 (d) that there is δ′ > 0 such that
BFx,y( f

[k]
1,∞, δ′) ≤ BFx,y( f1,∞, δ) = 0. Given ε > 0, there exists ε′ > 0 satisfying

F∗
x,y( f

[k]
1,∞, ε) ≥ F∗

x,y( f1,∞, ε′) ≥ c. Therefore (x, y) is a RDC1 pair of f [k]
1,∞ and S

is a RDC1 set of f [k]
1,∞.

(Sufficiency). Assume that (u, v) is a RDC1 pair of f [k]
1,∞, that is, there exist c, δ > 0

so that F∗
u,v( f

[k]
1,∞, t) ≥ c, BFu,v( f

[k]
1,∞, δ) = 0 for any t > 0. By Lemma 2 (b), for

δ > 0, there is δ′ > 0 such that BFu,v( f1,∞, δ′) ≤ BFu,v( f
[k]
1,∞, δ) = 0. Given ε > 0,

there exists ε′ > 0 satisfying F∗
u,v( f1,∞, ε) ≥ F∗

u,v( f
[k]
1,∞, ε′) ≥ c. So (u, v) is a

RDC1 pair of f1,∞. This indicates that any RDC1 set S of f [k]
1,∞ is also RDC1 of f1,∞.

Therefore f1,∞ is RDC1. ��
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The results of Theorem 3 extend those of distributional chaos obtained in [29] and
[23]. From the proof of Theorem 3, it indicates that S ⊂ X is strong RDCi for f1,∞
if and only if it is strong RDCi of f [k]

1,∞, under the equicontinuity of { fi }i≥1.

Corollary 1 Let f1,∞ = { fi }i≥1 be equicontinuous on X and k ∈ N. Let i ∈
{1, 1+, 2, 21

2 , 2
1
2−}. Then (X , f1,∞) is uniformly RDC i if and only if (X , f [k]

1,∞)

is uniformly RDC i.

In [10], Dvořáková showed that if a continuous self-map f of a compact space has
a DC3 pair, then so does its k-th iteration f k , for any k ≥ 2. Actually, this result is true
for continuous maps acting on general metric spaces. However, this property does not
hold for non-autonomous discrete systems.

Example 4 Consider the maps fi (x) = ai x on R, where ai = 1 if i = 2 or i ∈
[(2k+1)!+1, (2k+2)!] for k ≥ 1; ai = 2 if i = 1 or i is even in [(2k)!+1, (2k+1)!]
for k ≥ 1; otherwise, let ai = 1

2 . Then for any x ∈ R, f i1 (x) = x for any odd integer
i ∈ [(2k)!+1, (2k+1)!], k ≥ 1, and f i1 (x) = 2x for other i > 3. Given x, y ∈ Rwith
x �= y, let a = |x − y|. It is easy to see that Fx,y( f1,∞, t) = 0 < F∗

x,y( f1,∞, t) = 1
2

for any t ∈ (a, 2a]. Thus, R is a DC3 set of f1,∞. However, f [2]
1,∞ has no DC3 pairs,

since f 2i1 (x) = 2x for any i ≥ 1 and any x ∈ R.
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8. Bonilla, A., Kostić, M.: Reiterative distributional chaos on banach spaces. Int. J. Bifurc. Chaos 29,

1950201 (2019)



Reiterative Distributional Chaos in Non-autonomous Discrete Systems Page 11 of 11 88

9. Downarowicz, T., Lacroix, Y.: Measure-theoretic chaos. Ergod. Th. Dyn. Syst. 34, 110–131 (2014)
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