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Abstract
We study the precise asymptotic behavior of a non-trivial solution that converges to
zero, as time tends to infinity, of dissipative systems of nonlinear ordinary differen-
tial equations. The nonlinear term of the equations may not possess a Taylor series
expansion about the origin. This absence technically cripples previous proofs in estab-
lishing an asymptotic expansion, as an infinite series, for such a decaying solution. In
the current paper, we overcome this limitation and obtain an infinite series asymptotic
expansion, as time goes to infinity. This series expansion provides large time approxi-
mations for the solution with the errors decaying exponentially at any given rates. The
main idea is to shift the center of the Taylor expansions for the nonlinear term to a
non-zero point. Such a point turns out to come from the non-trivial asymptotic behav-
ior of the solution, which we prove by a new and simple method. Our result applies
to different classes of non-linear equations that have not been dealt with previously.
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1 Introduction

The Navier–Stokes equations (NSE) for a viscous, incompressible fluid in bounded or
periodic domains with a potential body force can be written in the functional form as

dy

dt
+ Ay + B(y, y) = 0, (1.1)

where A is the (linear) Stokes operator and B is a bilinear form in appropriate functional
spaces.

In [18], Foias and Saut prove that any regular solution y(t) of (1.1) has a following
asymptotic behavior, as t → ∞,

eλt y(t) → ξ for some λ > 0 and ξ �= 0 with Aξ = λξ. (1.2)

This result is extended later by Ghidaglia [21] to a more general class of parabolic
inequalities. The proof in [21] uses the same Dirichlet quotient technique by Foias–
Saut [18].

In [19], Foias and Saut go further and prove the following asymptotic expansion,
as t → ∞,

y(t) ∼
∞∑

n=1

qn(t)e
−μn t , (1.3)

in all Sobolev spaces, where qn(t) are polynomials in t , valued in the space of smooth
functions. See Definition 2.1 below for the precise meaning of (1.3). Their proof of
(1.3) does not require the knowledge of (1.2) and uses a completely different technique.

The expansion (1.3) is studied deeply in later work [15–17,20] concerning its con-
vergence, associated normalization map, normal form, invariant nonlinear manifolds,
relation with the Poincaré–Dulac theory, etc. It is applied to the analysis of physics-
oriented aspects of fluid flows [13,14], is established for the NSE in different contexts
such as with the Coriolis force [25], or with non-potential forces [8,10,24], is extended
to dissipative wave equations in [27], is investigated for general ordinary differential
equations (ODE) without forcing functions in [26], and with forcing functions in
[9]. The considerations of ODE in [9,26] turns out to be fruitful, and prompts to the
recently obtained asymptotic expansions for the Lagrangian trajectories of viscous,
incompressible fluid flows in [23].
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In the same spirit as [9,26], we study, in this paper, the ODE systems in R
d of the

form

dy

dt
+ Ay = F(y), t > 0, (1.4)

where A is a d × d constant (real) matrix, and F is a vector field on R
d .

Our goal is to obtain the asymptotic expansion (1.3), as t → ∞, for any decay-
ing solution y(t) of (1.4), where qn(t)’s are Rd -valued polynomials in t . (For other
approaches to the asymptotic analysis of the solutions, see discussions in Remark 6.14
below.)

In all of the above cited papers, function F in (1.4) must be infinitely differentiable
at the origin. It is due to the requirement that F(y) can be approximated, up to arbitrary
orders, near the limit of y(t), i.e. the origin, by the polynomials that come from of the
Taylor series of F . The current paper investigates the situation when this is not the
case, and hence the results in [9,26,27] do not apply.

A standard and intuitive way to find expansion (1.3) is substituting it into Eq. (1.4),
expanding both sides in t , and equating the coefficient functions of corresponding
exponential terms. Because of the lack of the Taylor series of F(y) about the origin,
one does not know how to find the expansion in t for F(y(t)) on the right-hand side
of (1.5). The task seems to be impossible. However, as will be proved later in this
paper, we are still able to obtain the infinite series asymptotic expansion (1.3) for y(t)
in many cases. This is achieved by combining Foias–Saut’s method in [19] with the
following new idea. For illustrative purposes, we consider an example,

dy

dt
+ Ay = F(y) = |y|1/3y

1 + |y|1/4 . (1.5)

First, we use the geometric series to approximate F(y) by a series

F(y) ∼
∞∑

k=1

Fk(y) as y → 0, (1.6)

where Fk’s are a positively homogeneous functions of strictly increasing degreesβk →
∞. (In general cases, (1.6) is a hypothesis.) See Definition 2.2 and Assumption 4.1 for
details. After establishing the asymptotic approximation (1.2) for some eigenvector ξ

of A, we approximate each Fk by using its Taylor series about ξ �= 0. Therefore, we
can bypass the lack of the Taylor series of F about 0. This, of course, is just a brief
description and must be facilitated with capable techniques.

The paper is organized as follows. In Sect. 2, we set the assumptions for matrix A,
establish basic properties and recall a crucial approximation lemma, Lemma 2.4.

In Sect. 3, we prove, for a more general Eq. (3.1) with a general structure (3.2),
that any non-trivial, decaying solution has the first asymptotic approximation (1.2),
see Theorem 3.3. This result can be obtained by repeating Foias–Saut’s proof in [18,
Proposition 3], or applying [21, Theorem 1.1]. However, our new proof provides an
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alternative method and, at least for the current setting, is shorter. See Remark 3.4 for
comparisons between the proofs.

The paper’s main result is in Sect. 4. In Theorem 4.3, we prove that any non-trivial,
decaying solution of (1.4) has an asymptotic expansion of the form (1.3). In order
to implement to general scheme of Foias–Saut’s [19], we use the first approximation
e−λtξ in (1.2). By the positive homogeneity of each function Fk in (1.6), we can scale
y(t) by the factor e−λt and then shift the Taylor expansions of Fk’s from center zero to
center ξ �= 0. Because of the above scaling and its effect during complicated iterations,
the exponential rates must be shifted back, see the set S̃ in (4.8), and forth, see the set
S in (4.10), when being generated in Definition 4.2.

Althoughwe focus on infinite series expansions in this paper,we consider, in the first
part of Sect. 5, the casewhen the function F(y)has only afinite sumapproximation, see
(5.1). We prove in Theorem 5.1 that any decaying solution y(t) has a corresponding
finite sum approximation. In the second part of Sect. 5, Theorem 5.3 generalizes
Theorems4.3 and5.1 by relaxing the conditions on functions F and Fk’s, in accordance
with the knowledge of the eigenspaces of A.

Section 6 is devoted to identifying some specific classes of functions F , see The-
orems 6.1, 6.5 and 6.9. Briefly speaking, these functions can be expanded in terms
of power-like functions of the types xγi

i , |xi |γi , |xi |γi sign(xi ) for coordinates xi ’s of
x ∈ R

d , or of type ‖x‖γ
p , or, more generally, ‖P(x)‖γ

p with �p-norms ‖ · ‖p, where P
is a homogeneous polynomial. Lastly, we compare, in Remark 6.14, our results with
other asymptotic expansion theories for ODE, notably the one that has been developed
by Bruno and collaborators, see [3,4,6,7] and references therein.

2 Notation, Definitions and Background

We will use the following notation throughout the paper.

• N = {1, 2, 3, . . .} denotes the set of natural numbers, and Z+ = N ∪ {0}.
• Denote R∗ = R \ {0}, and, for n ∈ N, Rn∗ = (R∗)n and R

n
0 = R

n \ {0}.
• For any vector x ∈ R

n , we denote by |x | its Euclidean norm, and by x (k) the
k-tuple (x, . . . , x) for k ≥ 1, and x (0) = 1.

• For an m × n matrix M , its Euclidean norm in Rmn is denoted by |M |.
• Let f be anRm-valued function and h be a non-negative function, both are defined
in a neighborhood of the origin in R

n . We write f (x) = O(h(x)) as x → 0, if
there are positive numbers r and C such that | f (x)| ≤ Ch(x) for all x ∈ R

n with
|x | < r .

• Let f : [T0,∞) → R
n and h : [T0,∞) → [0,∞) for some T0 ∈ R. We write

f (t) = O(h(t)), implicitly meaning as t → ∞,

if there exist numbers T ≥ T0 and C > 0 such that | f (t)| ≤ Ch(t) for all t ≥ T .
• Let T0 ∈ R, functions f , g : [T0,∞) → R

n , and h : [T0,∞) → [0,∞). We will
conveniently write f (t) = g(t) + O(h(t)) to indicate f (t) − g(t) = O(h(t)).
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The type of asymptotic expansions at time infinity that is studied in this paper is
the following.

Definition 2.1 Let (X , ‖ ·‖X ) be a normed space and (αn)
∞
n=1 be a sequence of strictly

increasing non-negative real numbers. A function f : [T ,∞) → X , for some T ≥ 0,
is said to have an asymptotic expansion

f (t) ∼
∞∑

n=1

fn(t)e
−αn t in X , (2.1)

where each fn : R → X is a polynomial, if one has, for any N ≥ 1, that

∥∥∥ f (t) −
N∑

n=1

fn(t)e
−αn t

∥∥∥
X

= O(e−(αN+εN )t ) for some εN > 0. (2.2)

One can see, e.g. [9, Lemma 4.1], that the polynomials f1, f2, . . . , fN in (2.2) are
unique.

In the case αn → ∞ as n → ∞, the (infinite series) asymptotic expansion (2.1)
provides exponentially precise approximations for f (t), as t → ∞. More specifically,
for any γ > 0, the partial sum

∑N
n=1 fn(t)e−αn t of the series, with sufficiently large

N , approximates f (t), as t → ∞, with an error of order O(e−γ t ).
Regarding the nonlinearity in (1.4), the function F will be approximated near the

origin by functions, not necessarily polynomials, in the following class.

Definition 2.2 Suppose (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) be two (real) normed spaces.
A function F : X → Y is positively homogeneous of degree β ≥ 0 if

F(t x) = tβF(x) for any x ∈ X and any t > 0. (2.3)

DefineHβ(X ,Y ) to be the set of positively homogeneous functions of order β from
X to Y , and denote Hβ(X) = Hβ(X , X).

For a function F ∈ Hβ(X ,Y ), define

‖F‖Hβ
= sup

‖x‖X=1
‖F(x)‖Y = sup

x �=0

‖F(x)‖Y
‖x‖β

X

.

The following are immediate properties.

(a) If F ∈ Hβ(X ,Y ) with β > 0, then taking x = 0 and t = 2 in (2.3) gives

F(0) = 0. (2.4)

If, in addition, F is bounded on the unit sphere in X , then

‖F‖Hβ
∈ [0,∞) and ‖F(x)‖Y ≤ ‖F‖Hβ

‖x‖β
X ∀x ∈ X . (2.5)
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(b) The zero function (from X to Y ) belongs toHβ(X ,Y ) for all β ≥ 0, and a constant
function (from X to Y ) belongs toH0(X ,Y ).

(c) Each Hβ(X ,Y ), for β ≥ 0, is a linear space.
(d) If F1 ∈ Hβ1(X ,R) and F2 ∈ Hβ2(X ,Y ), then F1F2 ∈ Hβ1+β2(X ,Y ).
(e) If F : X → Y is a homogeneous polynomial of degree m ∈ Z+, then F ∈

Hm(X ,Y ).

In (e) above and throughout the paper, a constant function, even when it is zero, is
considered as a homogeneous polynomial of degree zero.

The spaceHβ(X ,Y ) can contain much more complicated functions than homoge-
neous polynomials. For example, let s ∈ Z+, numbers ν j , for 1 ≤ j ≤ s, be positive,
Pj , for 1 ≤ j ≤ s, be a homogeneous polynomial of degree m j ∈ N from X to a
normed space (Y j , ‖ · ‖Y j ). Let P0 : X → Y be homogeneous polynomial of degree
m0 ∈ Z+. Consider function F defined by

F(x) = ‖P1(x)‖ν1
Y1

‖P2(x)‖ν2
Y2

. . . ‖Ps(x)‖νs
Ys
P0(x), for x ∈ X . (2.6)

Then one has

F ∈ Hβ(X ,Y ), where β = m0 +
s∑

j=1

m jν j . (2.7)

Thanks to (2.7) and property (c) above, any linear combination of functions of the
form in (2.6) with the same number β also belongs toHβ(X ,Y ).

If n,m, k ∈ N and L is an m-linear mapping from (Rn)m to R
k , the norm of L is

defined by

‖L‖ = max{|L(x1, x2, . . . , xm)| : x j ∈ R
n, |x j | = 1, for 1 ≤ j ≤ m}. (2.8)

It is known that the norm ‖L‖ belongs to [0,∞), and one has

|L(x1, x2, . . . , xm)| ≤ ‖L‖ · |x1| · |x2| . . . |xm | ∀x1, x2, . . . , xm ∈ R
n . (2.9)

In particular, when m = 1, (2.8) yields the operator norm for any k × n matrix L.
Let the space’s dimension d ∈ N be fixed throughout the paper. Consider the ODE

system (1.4).

Assumption 2.3 Hereafter, matrix A is a diagonalizable with positive eigenvalues.

Thanks to Assumption 2.3, the spectrum σ(A) of matrix A consists of eigenvalues
�k’s, for 1 ≤ k ≤ d, which are positive and increasing in k. Then there exists an
invertible matrix S such that

A = S−1A0S, where A0 = diag[�1,�2, . . . , �d ].

Denote the distinct eigenvalues of A by λ j ’s that are strictly increasing in j , i.e.,

0 < λ1 = �1 < λ2 < . . . < λd∗ = �d with 1 ≤ d∗ ≤ d.
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For 1 ≤ k, � ≤ d, let Ek� be the elementary d × d matrix (δkiδ� j )1≤i, j≤d , where
δki and δ� j are the Kronecker delta symbols.

For λ ∈ σ(A), define

R̂λ =
∑

1≤i≤d,�i=λ

Eii and Rλ = S−1 R̂λS.

Then one immediately has

Id =
d∗∑

j=1

Rλ j , Rλi Rλ j = δi j Rλ j , ARλ j = Rλ j A = λ j Rλ j , (2.10)

and there exists c0 ≥ 1 such that

c−1
0 |x |2 ≤

d∗∑

j=1

|Rλ j x |2 ≤ c0|x |2 for all x ∈ R
d . (2.11)

Below, we recall a key approximation lemma for linear ODEs. It is Lemma 2.2 of
[9], which originates from Foias–Saut’s work [19], and is based on the first formalized
version [24, Lemma 4.2].

Lemma 2.4 ( [9, Lemma2.2])Let p(t) be anRd-valued polynomial and g : [T ,∞) →
R
d , for some T ∈ R, be a continuous function satisfying |g(t)| = O(e−αt ) for some

α > 0. Suppose λ > 0 and y ∈ C([T ,∞),Rd) is a solution of

y′(t) = −(A − λId)y(t) + p(t) + g(t), for t ∈ (T ,∞).

If λ > λ1, assume further that

lim
t→∞(e(λ̄−λ)t |y(t)|) = 0, where λ̄ = max{λ j : 1 ≤ j ≤ d∗, λ j < λ}. (2.12)

Then there exists a unique Rd -valued polynomial q(t) such that

q ′(t) = −(A − λId)q(t) + p(t) for t ∈ R, (2.13)

and

|y(t) − q(t)| = O(e−εt ) for some ε > 0. (2.14)

In fact, the polynomial q(t) in Lemma 2.4 can be defined explicitly as follows. We
write, with the use of (2.10), q(t) =∑d∗

j=1 Rλ j q(t), where, for each 1 ≤ j ≤ d∗ and
t ∈ R,
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Rλ j q(T + t) =

⎧
⎪⎨

⎪⎩

e−(λ j−λ)t
∫ t
0 e

(λ j−λ)τ Rλ j p(T + τ)dτ if λ j > λ,

Rλ j y(T ) + ∫∞
0 Rλ j g(T + τ)dτ + ∫ t0 Rλ j p(T + τ)dτ if λ j = λ,

−e−(λ j−λ)t
∫∞
t e(λ j−λ)τ Rλ j p(T + τ)dτ if λ j < λ.

(2.15)

In the case p(t) ≡ 0, it follows (2.15) that q(t) ≡ ξ , which is a constant vector in
R
d . Then (2.13) and (2.14) read as

(A − λId)ξ = 0 and |y(t) − ξ | = O(e−εt ). (2.16)

3 The First Asymptotic Approximation

Consider the following ODE on R
d , which is more general than (1.4),

dy

dt
+ Ay = F(t, y), t > 0. (3.1)

Assumption 3.1 Function F mapping (t, x) ∈ [0,∞) × R
d to F(t, x) ∈ R

d is con-
tinuous in [0,∞) ×R

d , locally Lipschitz with respect to x in [0,∞) ×R
d , and there

exist positive numbers c∗, ε∗, α such that

|F(t, x)| ≤ c∗|x |1+α ∀t ≥ 0, ∀x ∈ R
d with |x | ≤ ε∗. (3.2)

It follows (3.2) that F(t, 0) = 0 for all t ≥ 0. By the uniqueness/backward unique-
ness of ODE system (3.1), a solution y(t) ∈ C1([0,∞)) of (3.1) has the property

y(0) = 0 if and only if y(t) = 0 for all t ≥ 0. (3.3)

Thanks to Assumption 2.3 and (3.2), it is well-known that the trivial solution y(t) ≡
0 of (1.4) is asymptotically stable, see, for example, [11, Theorem 1.1, Chapter 13].

A solution y(t) ∈ C1([0,∞)) of (3.1) that satisfies y(0) �= 0 and

lim
t→∞ y(t) = 0, (3.4)

will be referred to as a non-trivial, decaying solution. These solutions will be the focus
of our study.

The following elementary result provides, for non-trivial, decaying solutions, a
more precise upper bound, compared to (3.4), and an additional lower bound.

Proposition 3.2 Let y(t) be a non-trivial, decaying solution of (3.1). Then there exists
a number C1 > 0 such that

|y(t)| ≤ C1e
−�1t for all t ≥ 0. (3.5)
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Moreover, for any ε > 0, there exists a number C2 = C2(ε) > 0 such that

|y(t)| ≥ C2e
−(�d+ε)t for all t ≥ 0. (3.6)

Proof SetY (t) = (
∑d∗

j=1 |Rλ j y(t)|2)1/2.Applying Rλ j toEq. (3.1), taking dot product
of the resulting equationwith Rλ j y, using the last property in (2.10), and then summing
over j , we obtain

1

2

d

dt
Y 2(t) = 1

2

d

dt

d∗∑

j=1

|Rλ j y|2 = −
d∗∑

j=1

λ j |Rλ j y|2 +
d∗∑

j=1

Rλ j F(t, y) · Rλ j y.

(3.7)

Note that

�1

d∗∑

j=1

|Rλ j y|2 ≤
d∗∑

j=1

λ j |Rλ j y|2 ≤ �d

d∗∑

j=1

|Rλ j y|2. (3.8)

Denote C0 = ∑d∗
j=1 ‖Rλ j ‖2. Let ε > 0 be arbitrary. By (3.4) and the asymptotic

stability of the trivial solution, there exists Tε ≥ 0 such that

|y(t)| ≤ ε∗ and C0c∗c0|y(t)|α ≤ ε ∀t ≥ Tε. (3.9)

We have, for t ≥ Tε,

∣∣∣
d∗∑

j=1

Rλ j F(t, y) · Rλ j y
∣∣∣ ≤

d∗∑

j=1

‖Rλ j ‖2|F(t, y)| · |y| ≤ C0c∗|y|2+α. (3.10)

Combining (3.10) with (2.11) and (3.9) gives

∣∣∣
d∗∑

j=1

Rλ j F(t, y) · Rλ j y
∣∣∣ ≤ C0c∗|y|α · c0Y 2(t) ≤ εY 2(t) ∀t ≥ Tε. (3.11)

Proof of (3.5) By Eq. (3.7), the first inequality in (3.8), and (3.11), we have

1

2

d

dt
Y 2 ≤ −(�1 − ε)Y 2 ∀t ≥ Tε.

Thus, for t ≥ Tε,

Y 2(t) ≤ Y 2(Tε)e
−2(�1−ε)(t−Tε).
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Using this estimate and (3.10) in (3.7) gives, for t > Tε,

1

2

d

dt
Y 2 ≤ −�1Y

2 + C0c∗(c1/20 Y )2+α ≤ −�1Y
2 + C ′

1e
−(2+α)(�1−ε)(t−Tε),

hence,

d

dt
Y 2 ≤ −2�1Y

2 + 2C ′
1e

−2β(t−Tε), (3.12)

where β = (1 + α/2)(�1 − ε) and C ′
1 is a positive number.

Choose ε sufficiently small so that β > �1. Applying Gronwall’s inequality to
(3.12), for t ≥ Tε, yields

Y 2(t) ≤ e−2�1(t−Tε)Y 2(Tε) + 2C ′
1

∫ t

Tε

e−2�1(t−τ)e−2β(τ−Tε)dτ,

and, also by (2.11),

|y(t)|2 ≤ c0Y
2(t) ≤ e−2�1(t−Tε)c0

(
Y 2(Tε) + C ′

1

β − �1

)
.

Therefore, we obtain the inequality in (3.5) for some constant C1 > 0, but only for
all t ≥ Tε. Combining this with the boundedness of |y(t)| on [0, Tε], we then obtain
estimate (3.5) for all t ≥ 0 with an adjusted constant C1 > 0.

Proof of (3.6) By Eq. (3.7), the second inequality in (3.8), and (3.11), we have

1

2

d

dt
Y 2 ≥ −�dY

2 − εY 2 = −(�d + ε)Y 2 ∀t > Tε.

Hence,

Y 2(t) ≥ Y 2(Tε)e
−2(�d+ε)(t−Tε) ∀t ≥ Tε.

By the virtue of (3.3), |y(t)| > 0 for all t ≥ 0. It follows that

|y(t)|2 ≥ c−1
0 Y 2(t) ≥ c−2

0 |y(Tε)|2e−2(�d+ε)(t−Tε) = C ′
2e

−2(�d+ε)t ∀t ≥ Tε,

(3.13)

where C ′
2 > 0. Since y ∈ C([0, Tε],Rd) and |y(t)| > 0 on [0, Tε], one has |y(t)| it

is bounded below by a positive constant on [0, Tε]. Combining this fact with estimate
(3.13) for t ≥ Tε, we obtain the all-time estimate (3.6). ��

The lower bound (3.6) in Proposition 3.2 can be derived by using results for abstract
problems in infinite dimensional spaces such as [22, Theorems 1.1 and 1.2], see also
[12]. Nonetheless, the proof above is included for being self-contained and simple.
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As discussed in the Introduction, the next theorem either follows the proof of [18,
Proposition 3], or is a consequence of [21, Theorem 1.1]. However, the proof presented
below uses a new method, which may be useful in other problems.

Theorem 3.3 Let y(t) be a non-trivial, decaying solution of (3.1). Then there exist an
eigenvalue λ∗ of A and a corresponding eigenvector ξ∗ such that

|y(t) − e−λ∗tξ∗| = O(e−(λ∗+δ)t ) for some δ > 0. (3.14)

Proof Define the set

S′ =
⎧
⎨

⎩

n∑

j=1

λ′
j + mαλ1 : for any numbers n ∈ N, λ′

j ∈ σ(A),m ∈ Z+

⎫
⎬

⎭ . (3.15)

The set S′ can be arranged as a strictly increasing sequence {νn}∞n=1. Note that
ν1 = λ1 and νn → ∞ as n → ∞. For any n ∈ N, one has νn + αλ1 > νn and
νn + αλ1 ∈ S′. Hence, by the strict increase of νn’s, we have

νn + αλ1 ≥ νn+1. (3.16)

Step 1. First, by Proposition 3.2, |y(t)| ≤ Ce−ν1t . Let w0(t) = eν1t y(t). Then
w0(t) satisfies

w′
0(t) + (A − ν1 Id)w0(t) = g1(t)

def= eν1t F(t, y(t)). (3.17)

We estimate the right-hand side

|g1(t)| ≤ Ceν1t |y(t)|1+α ≤ Ceν1t e−ν1(1+α)t = O(e−αν1t ). (3.18)

By Eq. (3.17) and estimate (3.18), we can apply Lemma 2.4 to y(t) = w0(t) and
p(t) ≡ 0. Then, by and (2.16), there exists a vector ξ1 ∈ R

d and a number ε1 > 0
such that

Aξ1 = ν1ξ1, (3.19)

|w0(t) − ξ1| = O(e−εt ), that is , |y(t) − e−ν1tξ1| = O(e−(ν1+ε1)t ). (3.20)

Step 2. Set M = {n ∈ N : |y(t)| = O(e−(νn+δ)t ) for some δ > 0}.
Suppose n ∈ M . Let wn(t) = eνn+1t y(t). Then

w′
n(t) + (A − νn+1 Id)wn(t) = gn+1(t)

def= eνn+1t F(t, y(t)). (3.21)

To estimate the last term, we note from (3.16) that νn(1+ α) ≥ νn + λ1α ≥ νn+1.
Then, for large t ,

|gn+1(t)| ≤ Ceνn+1t |y(t)|1+α ≤ Ceνn+1t e−(νn+δ)(1+α)t | = O(e−δ(1+α)t ).
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(3.22)

By (3.21) and (3.22),we, again, can applyLemma2.4 to y(t) = wn(t) and p(t) ≡ 0.
Then, by (2.16), there exists a vector ξn+1 ∈ R

d and a number ε > 0 such that

Aξn+1 = νn+1ξn+1,

|wn(t) − ξn+1| = O(e−εt ), that is , |y(t) − e−νn+1tξn+1| = O(e−(νn+1+ε)t ).

Step 3. If the vector ξ1 in Step 1 is not zero, then, thanks to (3.20) and (3.19), the
theorem is proved with λ∗ = λ1 and ξ∗ = ξ1.

Now, consider ξ1 = 0. By (3.20) with ξ1 = 0, one has 1 ∈ M , hence M is a
non-empty subset of N. By (3.6) and the fact νn → ∞, the set M must be finite. Let
k be the maximum number of M , and n0 = k + 1. By the result in Step 2 applied to
n = k, there exist ξn0 ∈ R

d and ε > 0 such that

Aξn0 = νn0ξn0 , (3.23)

|y(t) − e−νn0 tξn0 | = O(e−(νn0+ε)t ). (3.24)

If ξn0 = 0, then (3.24) implies n0 ∈ M , which is a contradiction. Thus, ξn0 �= 0,
which, together with (3.23), implies λ∗ = νn0 is an eigenvalue and ξ∗ = ξn0 is a
corresponding eigenvector of A. Then, estimate (3.14) follows (3.24). ��
Remark 3.4 We compare the above proof of Theorem 3.3 with Foias–Saut’s proof in
[18]. We recall from [18] that the Dirichlet quotient Ay(t) · y(t)/|y(t)|2 is proved
to converge, as t → ∞, to an eigenvalue λ∗ of A first, and then, based on this, the
two limits eλ∗t Rλ∗ y(t) → ξ∗ �= 0 and eλ∗t (Id − Rλ∗)y(t) → 0 are established.
This original proof is rather lengthy and requires delicate analysis of the asymptotic
behavior of y(t)/|y(t)|, see [18, Proposition 1]. We, instead, do not use the Dirichlet
quotient to determine the exponential rate, but create the set S′ of possible rates, see
(3.15), and find the first λ∗ ∈ S′ such that eλ∗t |y(t)| does not decay exponentially.
Then, by the virtue of approximationLemma2.4, estimate (3.14) is establishedwithout
analyzing y(t)/|y(t)|. This idea, in fact, is inspired by Foias–Saut’s proof in [19] of
the asymptotic expansion (1.3). However, we restrict it solely to the problem of first
asymptotic approximation, and hence make it significantly simpler.

4 The Series Expansion

In this section, we focus on obtaining the asymptotic expansion, as t → ∞, for
solutions of Eq. (1.4). Regarding the equation’s nonlinearity, we assume the following.

Assumption 4.1 The mapping F : Rd → R
d has the the following properties.

(i) F is locally Lipschitz on R
d and F(0) = 0.

(ii) Either (H1) or (H2) below is satisfied.
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(H1) There exist numbers βk’s, for k ∈ N, which belong to (1,∞) and increase
strictly to infinity, and functions Fk ∈ Hβk (R

d) ∩ C∞(Rd
0), for k ∈ N, such

that it holds, for any N ∈ N, that

∣∣∣∣∣F(x) −
N∑

k=1

Fk(x)

∣∣∣∣∣ = O(|x |β) as x → 0, for some β > βN . (4.1)

(H2) There exist N∗ ∈ N, strictly increasing numbers βk’s in (1,∞), and functions
Fk ∈ Hβk (R

d) ∩ C∞(Rd
0), for k = 1, 2, . . . , N∗, such that

∣∣∣∣∣F(x) −
N∗∑

k=1

Fk(x)

∣∣∣∣∣ = O(|x |β) as x → 0, for all β > βN∗ . (4.2)

In Assumption 4.1(ii), we conveniently write case (H1) as

F(x) ∼
∞∑

k=1

Fk(x), (4.3)

and case (H2) as

F(x) ∼
N∗∑

k=1

Fk(x). (4.4)

The following remarks on Assumption 4.1 are in order.

(a) Applying (2.4) and (2.5) to each function Fk , one has

Fk(0) = 0, ‖Fk‖Hβk
< ∞, and |Fk(x)| ≤ ‖Fk‖Hβk

|x |βk for all x ∈ R
d .

Hence, (4.1) indicates that the remainder F(x) −∑N
k=1 Fk(x) between F(x) and

its approximate sum
∑N

k=1 Fk(x) is small, as x → 0, of a higher order (of |x |)
than that in the approximate sum

∑N
k=1 Fk(x).

(b) With functions Fk’s as in (H2) of Assumption 4.1, if F(x) = ∑N∗
k=1 Fk(x), then

F satisfies (4.4). For the relation between (4.3) and (4.4), see Remark 4.4 below.
(c) By the remark (e) after Definition 2.2, if F is a C∞-vector field on the entire

space Rd with F(0) = 0 and F ′(0) = 0, then F satisfies Assumption 4.1 with the
right-hand side of (4.3) is simply the Taylor expansion of F(x) about the origin.

(d) Note that we do not require the convergence of the formal series on the right-hand
side of (4.3). Even when the convergence occurs, the limit is not necessarily the
function F . For instance, if h : Rd → R

d satisfies |x |−αh(x) → 0 as x → 0 for
all α > 0, then F and F + h have the same expansion (4.3).

(e) The class of functions F’s that satisfy Assumption 4.1 contains much more than
smooth vector fields, see Sect. 6 below.
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By Assumption 4.1, for each N ∈ N in case of (4.3), or N ∈ N ∩ [1, N∗] in case
of (4.4), there is εN > 0 such that

∣∣∣F(x) −
N∑

k=1

Fk(x)
∣∣∣ = O(|x |βN+εN ) as x → 0. (4.5)

Note from (4.5) with N = 1 that, as x → 0,

|F(x)| ≤ |F1(x)| + |F(x) − F1(x)| ≤ ‖F1‖Hβ1
|x |β1 + O(|x |β1+ε1) = O(|x |β1).

Thus, there exist numbers c∗, ε∗ > 0 such that

|F(x)| ≤ c∗|x |β1 ∀x ∈ R
d with |x | < ε∗. (4.6)

By property (4.6) and Assumption 4.1, function F satisfies conditions in Assump-
tion 3.1. Therefore, the facts about trivial and non-trivial solutions in Sect. 3 still apply
to Eq. (1.4), and Theorem 3.3 holds true for solutions of (1.4).

Hereafter, y(t) is a non-trivial, decaying solution of (1.4).
Let eigenvalue λ∗ = λn0 and its corresponding eigenvector ξ∗ be as in Theorem

3.3. It follows (3.14) that

|y(t)| = O(e−λ∗t ). (4.7)

To describe the exponential rates in a possible asymptotic expansion of solution
y(t) we use the following sets S̃ and S.

Definition 4.2 We define a set S̃ ⊂ [0,∞) as follows.
In the case of (4.3), let αk = βk − 1 > 0 for k ∈ N, and

S̃ =
{ d∗∑

k=n0

mk(λk − λ∗) +
∞∑

j=1

z jα jλ∗ : mk, z j ∈ Z+,

with z j > 0 for only finitely many j ′s
}
.

(4.8)

In the case of (4.4), let αk = βk − 1 > 0 for k = 1, 2, . . . , N∗, and

S̃ =
{ d∗∑

k=n0

mk(λk − λ∗) +
N∗∑

j=1

z jα jλ∗ : mk, z j ∈ Z+
}
. (4.9)

In both cases, the set S̃ has countably, infinitely many elements. Arrange S̃ as a
sequence (μ̃n)

∞
n=1 of non-negative and strictly increasing numbers. Set

μn = μ̃n + λ∗ for n ∈ N, and define S = {μn : n ∈ N}. (4.10)
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The set S̃ has the following elementary properties.

(a) For n0 ≤ � ≤ d∗, by choosing mk = δk�, and z j = 0 for all j in (4.8) or (4.9), we
have λ� − λ∗ ∈ S̃. Hence,

λ� ∈ S for all � = n0, n0 + 1, . . . , d∗. (4.11)

(b) Clearly, μ̃1 = 0 and μ1 = λ∗. The numbers μn’s are positive and strictly increas-
ing. Also,

μ̃n → ∞ and μn → ∞ as n → ∞. (4.12)

(c) For all x, y ∈ S̃ and k ∈ N, one has

x + y, x + αkλ∗ ∈ S̃. (4.13)

As a consequence of (4.13), one has

μ̃n + αkλ∗ ≥ μ̃n+1 for all n, k. (4.14)

Let r ∈ N and s ∈ Z+. Since Fr is a C∞-function in a neighborhood of ξ∗ �= 0,
we have the following Taylor’s expansion, for any h ∈ R

d ,

Fr (ξ∗ + h) =
s∑

m=0

1

m!D
mFr (ξ∗)h(m) + gr ,s(h), (4.15)

where DmFr (ξ∗) is the m-th order derivative of Fr at ξ∗, and

gr ,s(h) = O(|h|s+1) as h → 0. (4.16)

For m ≥ 0, denote

Fr ,m = 1

m!D
mFr (ξ∗). (4.17)

When m = 0, (4.17) reads as Fr ,0 = Fr (ξ∗). When m ≥ 1, Fr ,m is an m-linear
mapping from (Rd)m to Rd .

By (2.9), one has, for any r ,m ≥ 1, and y1, y2, . . . , ym ∈ R
d , that

|Fr ,m(y1, y2, . . . , ym)| ≤ ‖Fr ,m‖ · |y1| · |y2| · · · |ym |. (4.18)

For our convenience, we write inequality (4.18) even when m = 0 with ‖Fr ,0‖ def=
|Fr (ξ∗)|.

Our main result is the following theorem.
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Theorem 4.3 There exist polynomials qn: R → R
d such that y(t) has an asymptotic

expansion, in the sense of Definition 2.1,

y(t) ∼
∞∑

n=1

qn(t)e
−μn t in Rd , (4.19)

where μn’s are defined in Definition 4.2, and qn(t) satisfies, for any n ≥ 1,

q ′
n + (A − μn Id)qn = Jn

def=
∑

r≥1,m≥0,k1,k2,...,km≥2,∑m
j=1 μ̃k j +αrλ∗=μ̃n

Fr ,m(qk1 , qk2 , . . . , qkm ) in R.

(4.20)

We clarify the notation in Theorem 4.3.

(a) In case of assumption (4.3), the index r in Jn is taken over the whole set N. In
case of assumption (4.4), the index r in Jn is restricted to 1, 2, . . . , N∗, thus, we
explicitly have

Jn =
N∗∑

r=1

∑

m≥0,k1,k2,...,km≥2,∑m
j=1 μ̃k j +αrλ∗=μ̃n

Fr ,m(qk1 , qk2 , . . . , qkm ). (4.21)

(b) Whenm = 0, the terms qk j ’s inJn are not needed, see the explanation after (4.17),
hence the condition k j ≥ 2 is ignored, and the corresponding terms inJn becomes

∑
Fr (ξ∗) for αrλ∗ = μ̃n, that is, βrλ∗ = μn . (4.22)

Thus, we rewrite (4.20) more explicitly, by considering m = 0 and m ≥ 1 for Jn ,
as

q ′
n + (A − μn Id)qn =

∑

r≥1,αrλ∗=μ̃n

Fr (ξ∗)

+
∑

r≥1,m≥1,k1,k2,...,km≥2,∑m
j=1 μ̃k j +αrλ∗=μ̃n

Fr ,m(qk1 , qk2 , . . . , qkm ). (4.23)

Note, in (4.22), that such an index r may or may not exist. In the latter case, the
term is understood to be zero. In the former case, r is uniquely determined and we
have only one term.

(c) When n = 1, we have μ̃1 = 0, and there are no indices satisfying the constraints
for the sum in J1. Hence J1 = 0, and (4.20) becomes

q ′
1 + (A − μ1 Id)q1 = 0. (4.24)
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(d) Consider n = 2. If m ≥ 1, then, for the second sum on the right-hand side of
(4.23), one has at least μ̃k1 ≥ μ̃2. Hence μ̃k j + αrλ∗ > μk1 ≥ μ̃2. Therefore, the
last condition for the indices in the second sum on the right-hand side of (4.23) is
not met. Thus, (4.23) becomes

q ′
2 + (A − μ2 Id)q2 = J2 =

∑

r≥1,αrλ∗=μ̃2

Fr (ξ∗) =
∑

r≥1,βrλ∗=μ2

Fr (ξ∗).

(e) We verify that the sum in Jn is a finite sum.
Let n ≥ 2. Firstly, the indices in the sum of Jn satisfy

μ̃n =
m∑

j=1

μ̃k j + αrλ∗ ≥ αrλ∗ = αrμ1.

Then

αr ≤ μ̃n/μ1. (4.25)

Secondly, for m ≥ 1, one has

μ̃n =
m∑

j=1

μ̃k j + αrλ∗ >

m∑

j=1

μk j ≥ mμ̃2,

which yields

m < μ̃n/μ̃2. (4.26)

Note that condition (4.27) is not met for n = 2 and m ≥ 1.
Thirdly, μ̃n =∑m

j=1 μ̃k j + αrλ∗ > μ̃k j , which yields

k j < n. (4.27)

Hence, the terms qk j ’s in (4.20) come from previous steps.
By (4.25), (4.26), (4.27), the sum in Jn is over only finitely many r ’s, m’s and
k j ’s.

(f) For n ≥ 2, suppose r∗,m∗, k∗ are non-negative integers such that

αr∗ ≥ μ̃n/μ1, m∗ ≥ μ̃n/μ̃2, k∗ ≥ n − 1. (4.28)

Then Jn can be equivalently written as

Jn =
r∗∑

r=1

m∗∑

m=0

∑

2≤k1,k2,...,km≤k∗,∑m
j=1 μ̃k j +αrμ1=μ̃n

Fr ,m(qk1 , qk2 , . . . , qkm ). (4.29)
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Indeed, the right-hand side of (4.29) clearly is a part of the sum in Jn , and the
converse is also true thanks to (4.25), (4.26) and (4.27) above. Thus, the sums on
both sides of (4.29) are the same.

(g) In case of (4.4) and n ≥ 2,Jn is given by (4.21), and relation (4.29) under condition
(4.28) can be recast as

Jn =
N∗∑

r=1

m∗∑

m=0

∑

2≤k1,k2,...,km≤k∗,∑m
j=1 μ̃k j +αrμ1=μ̃n

Fr ,m(qk1 , qk2 , . . . , qkm ), (4.30)

for any non-negative integers m∗, k∗ satisfying

m∗ ≥ μ̃n/μ̃2 and k∗ ≥ n − 1. (4.31)

We are ready to prove Theorem 4.3 now.

Proof of Theorem 4.3 We will prove for the case (4.3) first, and then make necessary
changes for the case (4.4) later.
Part A: Proof for the case of (4.3). For any N ∈ N, we denote by (TN ) the following
statement: There exist Rd -valued polynomials q1(t), q2(t), . . . , qN (t) such that Eq.
(4.20) holds true for n = 1, 2, . . . , N , and

∣∣∣y(t) −
N∑

n=1

qn(t)e
−μn t

∣∣∣ = O(e−(μN+δN )t ) as t → ∞, (4.32)

for some δN > 0.
We will prove (TN ) for all N ∈ N by induction in N .
First step (N = 1). By Theorem 3.3 and the fact μ1 = λ∗, the statement (T1) is

true with q1(t) = ξ∗ for all t ∈ R, and some δ1 > 0.
Induction step. Let N ≥ 1. Suppose there are polynomials qn’s for 1 ≤ n ≤ N

such that the statement (TN ) holds true.
For n = 1, . . . , N , let yn(t) = qn(t)e−μn t , un(t) = y(t) −∑n

k=1 yk(t). By induc-
tion hypotheses, the polynomials qn’s satisfy (4.24), (4.20) and

uN (t) = O(e−(μN+δN )t ). (4.33)

Let wN (t) = eμN+1t uN (t). We derive the differential equation for wN (t). First, we
have

w′
N − μN+1wN = u′

Ne
μN+1t =

(
y′ −

N∑

k=1

y′
k

)
eμN+1t

=
(

−Ay + F(y) −
N∑

k=1

y′
k

)
eμN+1t
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=
(

− AuN −
N∑

k=1

Ayk + F(y) −
N∑

k=1

y′
k

)
eμN+1t .

Thus,

w′
N + (A − μN+1 Id)wN = eμN+1t F(y) − eμN+1t

N∑

k=1

(Ayk + y′
k). (4.34)

By (4.12), we can choose a number r∗ ∈ N such that

βr∗ ≥ μN+1/μ1, which is equivalent to αr∗ ≥ μ̃N+1/μ1. (4.35)

By (4.5), one has

F(x) =
r∗∑

r=1

Fr (x) + O(|x |βr∗+εr∗ ) as x → 0. (4.36)

Using (4.36) with x = y(t) and utilizing property (4.7), we write the first term on
the right-hand side of (4.34) as

eμN+1t F(y(t)) = eμN+1t
r∗∑

r=1

Fr (y(t)) + eμN+1tO(|y(t)|βr∗+εr∗ )

= E(t) + eμN+1tO(e−λ∗(βr∗+εr∗ )t ),

where

E(t) = eμN+1t
r∗∑

r=1

Fr (y(t)). (4.37)

Because of the condition for βr∗ in (4.35), we then have

eμN+1t F(y(t)) = E(t) + O(e−δ̃N t ), where δ̃N = λ∗εr∗ . (4.38)

The term
∑r∗

r=1 Fr (y) in (4.37) will be calculated as below. For k = 1, . . . , N ,
denote

ỹk(t) = yk(t)e
λ∗t = qk(t)e

−μ̃k t and ũk(t) = uk(t)e
λ∗t .

When 2 ≤ k ≤ N , one has

ỹk(t) = qk(t)e
−μ̃k t = O(e−(μ̃k−ε)t ) for any ε ∈ (0, μ̃k). (4.39)
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By (4.33),

ũN (t) = uN (t)eλ∗t = O(e−(μ̃N+δN )t ). (4.40)

Also, from (T1), we similarly have

ũ1(t) = u1(t)e
λ∗t = O(e−δ1t ). (4.41)

Then

Fr (y(t)) = Fr (y1 + u1) = Fr
(
e−λ∗t (ξ∗ + ũ1)

) = e−βrλ∗t Fr (ξ∗ + ũ1). (4.42)

Let s∗ ∈ N satisfy

s∗δ1 + β1λ∗ ≥ μN+1 and s∗ ≥ μ̃N+1/μ̃2. (4.43)

By Taylor’s expansion (4.15) with s = s∗, using the notation in (4.17),

Fr (ξ∗ + ũ1) =
s∗∑

m=0

Fr ,mũ
(m)
1 + gr ,s∗ (̃u1). (4.44)

It follows (4.42) and (4.44) that

Fr (y(t)) = e−βrλ∗t
(
Fr (ξ∗) +

s∗∑

m=1

Fr ,mũ
(m)
1

)
+ e−βrλ∗t gr ,s∗ (̃u1). (4.45)

The terms in (4.45) are further calculated as follows.
For the last term in (4.45), by using (4.16), (4.41) and the first condition in (4.43),

we find that

e−βrλ∗t gr ,s∗ (̃u1) = e−βrλ∗tO(|̃u1(t)|s∗+1) = e−βrλ∗tO(e−δ1(s∗+1)t )

= O(e−(β1λ∗+δ1s∗+δ1)t ) = O(e−(μN+1+δ1)t ). (4.46)

For the remaining terms on the right-hand side of (4.45), we write

Fr ,mũ
(m)
1 = Fr ,m

( N∑

k=2

ỹk + ũN

)(m)

= Fr ,m

( N∑

k=2

ỹk + ũN ,

N∑

k=2

ỹk + ũN , . . . ,

N∑

k=2

ỹk + ũN

)

= Fr ,m

( N∑

k=2

ỹk
)(m) +

∑

finitely many

Fr ,m(z1, . . . , zN ). (4.47)
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Note, in the case N = 1, that the sum
∑N

k=2 ỹk and, hence, the term
Fr ,m(

∑N
k=2 ỹk)

(m) are not present in the calculations in (4.47). In the last sum of
(4.47), each z1, . . . , zN is either

∑N
k=2 ỹk or ũN , and at least one of z j ’s must be ũN .

By inequality (4.18), estimate (4.39) for ỹk , and estimates (4.40), (4.41) for ũN , we
have

|Fr ,m(z1, . . . , zN )| ≤ ‖Fr ,m‖ · |z1| . . . |zN | = O(|̃uN |) = O(e−(μ̃N+δN )t ).

Therefore,

s∗∑

m=0

Fr ,mũ
(m)
1 = Fr (ξ∗) +

s∗∑

m=1

Fr ,m

( N∑

k=2

ỹk
)(m) + O(e−(μ̃N+δN )t )

=
s∗∑

m=0

N∑

k1,...,km≥2

Fr ,m(ỹk1 , ỹk2 , . . . , ỹkm ) + O(e−(μ̃N+δN )t )

=
s∗∑

m=0

N∑

k1,...,km≥2

e−t
∑m

j=1 μ̃k j Fr ,m(qk1 , qk2 , . . . , qkm ) + O(e−(μ̃N+δN )t ).

It follows that

e−βrλ∗t
s∗∑

m=0

Fr ,mũ
(m)
1 =

s∗∑

m=0

N∑

k1,...,km=2

e−t(
∑m

j=1 μ̃k j +βrλ∗)Fr ,m(qk1 , qk2 , . . . , qkm )

+ O(e−(μ̃N+βrλ∗+δN )t ).

(4.48)

Again, in the case N = 1, the last double summation has only one term correspond-
ing to m = 0, which is Fr (ξ∗).

Using property (4.14), we have

μ̃N + βrλ∗ + δN = μ̃N + αrλ∗ + λ∗ + δN ≥ μ̃N+1 + λ∗ + δN = μN+1 + δN .

Hence, the last term in (4.48) can be estimated as

O(e−(μ̃N+βrλ∗+δN )t ) = O(e−(μN+1+δN )t ). (4.49)

Therefore, by formula of E(t) in (4.37), and (4.45), (4.46), (4.48), (4.49), we have

E(t) = eμN+1t
(
J + O(e−(μN+1+δN )t ) + O(e−(μN+1+δ1)t )

)

= eμN+1t J + O(e−min{δ1,δN }t ), (4.50)
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where

J =
r∗∑

r=1

s∗∑

m=0

N∑

k1,...,km≥2

e−t(
∑m

j=1 μ̃k j +βrλ∗)Fr ,m(qk1 , qk2 , . . . , qkm ). (4.51)

Denoteμ = μ̃k1+. . .+μ̃km+αrλ∗.Whenm = 0, one hasμ = αrλ∗,which belongs
to S̃. When m ≥ 1, by property (4.13), μ also belongs to S̃. Clearly, μ > 0 = μ̃1.
Thus, in both cases of m, the number μ must equal μ̃p for a unique p ≥ 2. Because
of the indices r ,m, k1, . . . , km being finitely many, there are only finitely many such
numbers p’s. Thus, there is p∗ ∈ N such that any index p above satisfies p ≤ p∗.
Hence, the exponent in (4.51) is

m∑

j=1

μ̃k j + βrλ∗ = μ + λ∗ = μ̃p + λ∗ = μp for some integer p ∈ [2, p∗].

(4.52)

Using index p in (4.52), we can split the sum in J into two parts corresponding to
p ≤ N + 1 and p ≥ N + 2. We then write J = S1 + S2, where

S1 =
N+1∑

p=2

r∗∑

r=1

s∗∑

m=0

∑

2≤k1,...,km≤N ,∑m
j=1 μ̃k j +βrλ∗=μp

e−μptFr ,m(qk1 , qk2 , . . . , qkm ),

S2 =
p∗∑

p=N+2

r∗∑

r=1

s∗∑

m=0

∑

2≤k1,...,km≤N ,∑m
j=1 μ̃k j +βrλ∗=μp

e−μptFr ,m(qk1 , qk2 , . . . , qkm ).

We re-write S1 =∑N+1
k=2 e−μk t Jk , where

Jk =
r∗∑

r=1

s∗∑

m=0

∑

2≤k1,...,km≤N ,∑m
j=1 μ̃k j +βrλ∗=μk

Fr ,m(qk1 , qk2 , . . . , qkm ) for k = 1, 2, . . . , N + 1.

(4.53)

We estimate S2. Set δ′
N = min{̃δN , δ1, δN , (μN+2−μN+1)/2} > 0. Using inequal-

ity (4.18) to estimate |Fr ,m(qk1 , qk2 , . . . , qkm )|, and recalling thatqk j ’s are polynomials
in t , we have

|Fr ,m(qk1 , qk2 , . . . , qkm )| ≤ ‖Fr ,m‖ · |qk1 | · |qk2 | . . . |qkm | = O(eδ′
N t ).

For e−μpt , we use μp ≥ μN+2, and obtain

S2 = O(e−μN+2t eδ′
N t ) = O(e−(μN+1+δ′

N )t ). (4.54)
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Combining the above calculations from (4.50) to (4.54) gives

E(t) = eμN+1t
N+1∑

k=2

e−μk t Jk + O(e−δ′
N t ). (4.55)

Thus, by (4.34), (4.38) and (4.55),

w′
N + (A − μN+1 Id)wN =

( N+1∑

k=2

e−μk t Jk −
N∑

k=1

(Ayk + y′
k)
)
eμN+1t + O(e−δ′

N t ).

Using the fact Ayk + y′
k = e−μk t (q ′

k + (A − μk Id)qk), for k = 1, 2, . . . , N , we
deduce

w′
N + (A − μN+1 Id)wN = −eμN+1t

N∑

k=1

e−μk tχk + JN+1 + O(e−δ′
N t ), (4.56)

where

χ1 = q ′
1 + (A − μ1 Id)q1, χk = q ′

k + (A − μk Id)qk − Jk for 2 ≤ k ≤ N .

We already know χ1 = 0. Let us focus on the sum
∑N

k=1 e
−μk tχk on the right-hand

side of (4.56). In the case N = 1, this sum is already zero.
Consider N ≥ 2. Note that condition

∑m
j=1 μ̃k j + βrλ∗ = μk in formula (4.53) of

Jk is equivalent to
∑m

j=1 μ̃k j + αrλ∗ = μ̃k . Then, for each k = 1, 2, . . . , N + 1, by
the virtue of relation (4.29) for n = k ≤ N + 1, r∗ = r∗, m∗ = s∗ and k∗ = N , one
has

Jk = Jk for k = 1, 2, . . . , N + 1. (4.57)

Above, condition (4.28) is met thanks to the condition for αr∗ in (4.35), the second
condition for s∗ in (4.43), and the fact N ≥ k − 1.

Thanks to (4.57) and the induction hypothesis, χk = 0 for 2 ≤ k ≤ N . Hence,
(4.56) becomes

w′
N + (A − μN+1 Id)wN = JN+1 + O(e−δ′

N t ). (4.58)

Note that μN+1 > μ1 ≥ λ1. Let λi be an eigenvalue of A with λi < μN+1. If
λi ≤ λn0 = μ1 then λi ≤ μN . If λi > λn0 , then, according to property (4.11), λi ∈ S,
hence, by the constraint λi < μN+1, we have λi ≤ μN . Therefore, in both cases

e(λi−μN+1)t |wN (t)| = eλi t |uN (t)| = eλi tO(e−(μN+δN )t ) = O(e−δN t ).

That is, condition (2.12) is satisfied.
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Applying Lemma 2.4 to Eq. (4.58), there exists polynomial qN+1 : R → R
d and a

number δN+1 > 0 such that

|wN (t) − qN+1(t)| = O(e−δN+1t ). (4.59)

Moreover qN+1(t) solves

q ′
N+1 + (A − μN+1 Id)qN+1 = JN+1 = JN+1,

that is, Eq. (4.20) holds for n = N + 1.
Multiplying (4.59) by e−μN+1t gives

∣∣∣y(t) −
N+1∑

n=1

qn(t)e
−μn t

∣∣∣ = O(e−(μN+1+δN+1)t ),

which proves (4.32) for N := N + 1.
Hence the statement (TN+1) holds true.

Conclusion for Part A. By the induction principle, the statement (TN ) holds true
for all N ∈ N. Note also that, the polynomials (TN+1) are exactly the ones from (TN ).
Hence, the polynomials qn’s exist for all n ∈ N, for which (TN ) holds true for all
N ∈ N. Therefore, we obtain the desired expansion (4.19).

Part B: Proof for the case of (4.4). We follow the proof in Part A with the following
adjustments. The number r∗ is simply N∗, and condition (4.35) for r∗ is not required
anymore. All the sum

∑
r≥1 appearing in the proof that involves Fr or Fr ,m will be

replaced with
∑

1≤r≤N∗ . From (4.36) to the end of the proof in Part A, positive number
εr∗ is arbitrary, and number βr∗ in calculations from (4.36) to (4.38) is replaced with
any number β∗ ≥ μN+1/μ1. Then (4.36) still holds true thanks to (4.2). We also take
into account that Jn is given by (4.21), and one has relation (4.30) under condition
(4.31). With these changes, the above proof in Part A goes through, and we obtain the
desired statement for this case (4.4).

The proof of Theorem 4.3 is now complete. ��
Remark 4.4 Assumewehave (4.4), thenbyaddingmore functions Fk = 0 andnumbers
βk’s, for k > N∗, such that βk increases strictly to infinity, one can convert (4.4) into
(4.3). (For example, one can take βk = βN∗ + k for k > N∗.) However, we did not use
this fact in Part B of the proof of Theorem 4.3 above. The reason is to have simpler
constructions of S̃ and qn’s in (4.9) and (4.21) for the case (4.4), as opposed to (4.8)
and (4.20) if it is converted to (4.3).

5 Extended Results

In this section, we extend Theorem 4.3 to the situations that require less of the function
F .
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First, we consider the casewhen the function F in (1.4) only has a finite sum approx-
imation. We will find a finite sum asymptotic approximation for decaying solutions
of (1.4).

Assume function F satisfies (i) and (H2) of Assumption 4.1 with (4.2) being
replaced with

∣∣∣F(x) −
N∗∑

k=1

Fk(x)
∣∣∣ = O(|x |βN∗+ε̄) as x → 0, for some number ε̄ > 0. (5.1)

Note that (5.1) is different from (4.2) due to the restriction of ε̄. Also, we usually
think of ε̄ as a small number, but, in (5.1), it can be large. This happens when the
remainder F(x)−∑N∗

k=1 Fk(x)may have very precise approximation, i.e., large ε̄, but
it does not have a homogeneous structure that we can take advantage of.

From (5.1), one can see that estimate (4.5) still holds for all N ∈ N ∩ [1, N∗],
where δN is any number in (0, βN+1 − βN ) when N < N∗, and is ε̄ when N = N∗.
Consequently, (4.6) is still valid, and the facts and results in Sect. 3 apply.

Let y(t) be a non-trivial, decaying solution of (1.4). Applying Theorem 3.3, we
have the first approximation (3.14).

For more precise approximations, define sets S̃ and S by (4.9) and (4.10), respec-
tively.

Let N̄ ∈ N be defined by

N̄ = max{N ∈ N : λ∗(βN∗ + ε̄) > μN }. (5.2)

From the definition of S̃, we see that αN∗λ∗ ∈ S̃. Therefore, there exists a unique
number N ′ ∈ N such that αN∗λ∗ = μ̃N ′ , which is equivalent to μN ′ = βN∗λ∗. The
last expression gives μN ′ > λ∗ = μ1, thus, one must have N ′ ≥ 2. Note that N ′
belongs to the set on the right-hand side of (5.2), then N̄ ≥ N ′ ≥ 2.

We obtain the finite approximation for decaying solutions under the assumption
(5.1) as follows.

Theorem 5.1 There exist Rd -valued polynomials qn(t)’s, for 1 ≤ n ≤ N̄ , and a
number δ > 0 such that

∣∣∣y(t) −
N̄∑

n=1

qn(t)e
−μn t

∣∣∣ = O(e−(μN̄+δ)t ), (5.3)

where each polynomial qn(t), for 1 ≤ n ≤ N̄ , satisfies equation

q ′
n + (A − μn Id)qn =

N∗∑

r=1

∑

m≥0,k1,k2,...,km≥2,∑m
j=1 μ̃k j +αrλ∗=μ̃n

Fr ,m(qk1 , qk2 , . . . , qkm ) in R. (5.4)
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Proof We follow Part A of the proof of Theorem 4.3, with some changes similar to
those in Part B.

First, we take r∗ = N∗, 1 ≤ r ≤ N∗ and replace εr∗ with number ε̄ in (5.1).
Second, we replace condition (4.35) with λ∗(βr∗ + ε̄) > μN̄ , which is satisfied by

definition of N̄ in (5.2).
Third, for 1 ≤ N ≤ N̄ − 1, the calculations (4.36)–(4.38) are still valid with

number δ̃N in (4.38) being changed to δ̃N = λ∗(βr∗ + ε̄) − μN+1. Note that δ̃N ≥
λ∗(βr∗ + ε̄) − μN̄ > 0.

We do finite induction in N for 1 ≤ N ≤ N̄ and obtain (TN̄ ), which, by (4.32),
yields (5.3). Here, each polynomial qn(t), for 1 ≤ n ≤ N̄ , satisfies Eq. (4.20) with Jn

being given by (4.21) particularly; that is, we obtain Eq. (5.4). ��
Next, we relax the regularity requirements for F and Fk’s.
Regarding F , its local Lipschitz property is imposed to guarantee the existence

and uniqueness of solutions at least starting with small initial data. However, in some
problems, F is not that regular, but a small solution y(t), for t ∈ [0,∞), already exists
and is given. Then our results obtained above apply to this solution y(t).

Regarding Fk’s, what we need in the proofs of Theorems 4.3 and 5.1 is that each
Fk , in addition to being positively homogeneous, has the Taylor series approximation
of all orders about ξ∗, where ξ∗ is from Theorem 3.3. Because ξ∗ depends on y(t) and
varies in Rd

0 , function Fk is required in Assumption 4.1 to be smooth on the entire set
R
d
0 . However, in many cases, Fk is only known to be smooth on an open set V strictly

smaller thanRd
0 . Then one needs ξ∗ to belong to V as well. This is possible when more

information about ξ∗, as an eigenvector of matrix A, is provided.
These two points will be reflected in Theorem 5.3 below.

Definition 5.2 For an open set V in R
d , denote by X (V ), respectively X 0(V ), the

set of locally Lipschitz continuous, respectively continuous, functions on R
d , with

approximation (4.3) or (4.4) where Fk ∈ Hβk (R
d) ∩ C∞(V ) for all respective k’s.

The sets X̂ (V ) and X̂ 0(V ) are defined similarly with (5.1) replacing (4.3) and (4.4).
In particular, denote X = X (Rd

0) and X 0 = X 0(Rd
0).

Note that X is the set of functions that satisfy Assumption 4.1.
An extension of the results inTheorems4.3 and5.1 is the following general theorem.

Theorem 5.3 Suppose that all eigenvectors of matrix A belong to an open set V in
R
d .

(i) Then Theorem 4.3 applies to any function F ∈ X (V ), and Theorem 5.1 applies to
any function F ∈ X̂ (V ), for any non-trivial, decaying solution y(t) of (1.4).

(ii) If F ∈ X 0(V ), respectively F ∈ X̂ 0(V ), then Theorem 4.3, respectively Theorem
5.1, still holds true for a solution y(t) ∈ C1([0,∞))of (1.4) that satisfies y(t) → 0
as t → ∞, and there is a divergent, strictly increasing sequence (tn)∞n=1 in (0,∞)

such that y(tn) �= 0 for all n ∈ N.

Proof (i) In the proofs of Theorems 4.3 and 5.1, the eigenvector ξ∗ belongs to V , and,
thanks to the condition Fk ∈ C∞(V ), we can still use the Taylor expansions of Fk’s
about ξ∗. Therefore, both proofs are unchanged and produce respective conclusions.
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(ii) We re-examine Proposition 3.2. Select Tε = tn for sufficiently large n such that
(3.9) still holds. Then we still obtain upper bound (3.5). With y(Tε) = y(tn) �= 0,
the estimate (3.13) holds for some C ′

2 > 0. Thus, the inequality in (3.6) holds for all
t ≥ Tε. With such a lower bound of |y(t)|, we can still prove Theorem 3.3. After that,
the argument in (i) continues to be valid. ��

The sets defined in Definition 5.2 and used in Theorem 5.3 will be explored more
in Sect. 6 below. Here, we state their very first property.

Proposition 5.4 For any open set V in R
d , the sets X (V ), X̂ (V ) X 0(V ) and X̂ 0(V )

are linear spaces.

Proof We gives a proof for X (V ), the other sets can be proved similarly. Thanks to
Remark 4.4, it suffices to prove that the sum of any two functions of the form (4.3) is
also of the form (4.3). Suppose F(x) is the same as in (4.3), and

G(x) ∼
∞∑

k=1

Gk(x), (5.5)

where each Gk is similar to Fk , but with degree β ′
k > 1 instead of βk . Arrange the set

{βk, β
′
j : k, j ∈ N} as an strictly increasing sequence (β̄k)

∞
k=1. Clearly, β̄k → ∞ as

k → ∞, and (βk)
∞
k=1 and (β ′

k)
∞
k=1 are subsequences of (β̄k)

∞
k=1. By inserting the zero

function into (4.3) and (5.5) when needed, one can rewrite the sums and verify that

F(x) ∼
∞∑

k=1

F̃k(x) and G(x) ∼
∞∑

k=1

G̃k(x),

where F̃k(x) and G̃k(x) are in C∞(V ), positively homogeneous of the same degree
β̄k . Then, F + G is, obviously, of the form (4.3) with F̃k + G̃k replacing Fk , and β̄k

replacing βk . ��

6 Specific Cases and Examples

We specify many cases for the function F in Theorem 5.3, i.e., describe classes of
functions in the spaces X (V ), X̂ (V ) X 0(V ) and X̂ 0(V ) in Definition 5.2.

For n ∈ N, p ∈ [1,∞) and x = (x1, x2, . . . , xn) ∈ R
n , the �p-norm of x is

‖x‖p =
( n∑

j=1

|x j |p
)1/p

.

We recall that all these norms ‖ · ‖p on R
n are equivalent to each others.

For any n ∈ N, p ≥ 1 and α > 0, one has the following.

(a) The function x ∈ R
n �→ ‖x‖α

p belongs to C(Rn) ∩ C∞(Rn∗) ∩ Hα(Rn).
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(b) Assume, additionally, that p is an even number. Then the function x ∈ R
d �→ ‖x‖α

p
belongs to C∞(Rn

0).

The first class of functions in X we describe is in the next theorem, which involves
the �p-norms of x and polynomials on Rd .

Theorem 6.1 Let δ > 0 and m ∈ N. Suppose G : (−δ,∞)m → R be a C∞-function
with G(0) = 0, and G0 : Rd → R

d is a homogeneous polynomial of degree m0 ∈ Z+.
Define a function F : Rd �→ R

d by

F(x) = G(‖x‖s1p1 , ‖x‖s2p2 , . . . , ‖x‖smpm )G0(x) for x ∈ R
d , (6.1)

where p j ∈ [1,∞) and s j ∈ (0,∞) for j = 1, 2, . . . ,m, are given real numbers.
Let s̄ = min{s j : j = 1, 2, . . . ,m}. Assume s̄ + m0 > 1. Then the following

statements hold true.

(i) F(0) = 0 and F ∈ C(Rd) ∩ C∞(Rd∗).
(ii) F ∈ X 0(Rd∗).
(iii) If p1, . . . , pm > 1, then F ∈ C1(Rd), and, consequently, F is locally Lipschitz in

R
d .

(iv) If p1, p2, . . . , pm are even numbers, then F ∈ X .

Proof In part (i), the property F(0) = 0 follows the fact G(0) = 0. The proof of
the remaining statement in (i) is elementary, using the chain rule for derivatives and
property (a) right before this theorem.

We prove (ii). By using the Taylor expansion of G(z), for z ∈ (−δ,∞)m , about the
origin of Rm , we can approximate G(‖x‖s1p1 , ‖x‖s2p2 , . . . , ‖x‖smpm ), for k ∈ N, by

∑

γ=(γ1,γ2,...,γm )∈Zm+,

|γ |≤k

cγ ‖x‖s1γ1p1 ‖x‖s2γ2p2 . . . ‖x‖smγm
pm

with the remainder being

O((‖x‖s1p1 + ‖x‖s2p2 + . . . + ‖x‖smpm )k+1) = O(|x |s̄(k+1)) as x → 0,

where each γ is a multi-index with length

|γ | = γ1 + γ2 + . . . + γm, and cγ = 1

γ1!γ2! . . . γm ! · ∂ |γ |G(0)

∂xγ1
1 ∂xγ2

2 . . . ∂xγm
m

. (6.2)

Re-arrange the set

{
m0 +

m∑

j=1

s jγ j : γ j ∈ Z+, (γ1, γ2, . . . , γm) �= 0
}

as a strictly increasing sequence (βk)
∞
k=1. Note that βk → ∞ as k → ∞, and, because

of the assumption s̄ + m0 > 1, we have βk > 1 for all k ∈ N.
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Then we can re-write F(x) in the form of (4.3), where

Fk(x) =
∑

γ=(γ1,γ2,...,γm )∈Zm+,

m0+∑m
j=1 s jγ j=βk

cγ ‖x‖s1γ1p1 ‖x‖s2γ2p2 . . . ‖x‖smγm
pm G0(x). (6.3)

By property (a) right before this theorem and property (d) after Definition 2.2,
Fk ∈ Hβk (R

d) ∩C∞(Rd∗). By this and the facts F(0) = 0, and F ∈ C(Rd) in (i), we
conclude F ∈ X 0(Rd∗).

We prove (iii). Because G0 is a homogeneous polynomial of degree m0, there is
C > 0 such that G0(x) and its derivative matrix DG0(x) can be estimated, for any
x ∈ R

d , by

|G0(x)| ≤ C |x |m0 and |DG0(x)|
{

≤ C |x |m0−1 if m0 ≥ 1,

= 0 if m0 = 0.
(6.4)

By using the linear approximation of G(z) for z near 0 in Rm , we have

G(z) = O(|z|) = O(|z1| + . . . + |zm |), as z = (z1, . . . , zm) → 0.

Applying this property to z = (‖x‖s1p1 , ‖x‖s2p2 , . . . , ‖x‖smpm ), we have

G(‖x‖s1p1 , ‖x‖s2p2 , . . . , ‖x‖smpm )

= O(‖x‖s1p1 + ‖x‖s2p2 + . . . + ‖x‖smpm ) = O(|x |s̄) as x → 0,

and, together with the first inequality in (6.4),

F(x) = O(|x |s̄+m0) as x → 0. (6.5)

Since s̄ + m0 > 1 and F(0) = 0, it follows (6.5) that

DF(0) = 0. (6.6)

For 1 ≤ i ≤ m and 1 ≤ j ≤ d, one has the partial derivative, thanks to pi > 1,

x = (x1, . . . , xd) ∈ R
d �→ ∂(|x j |pi )

∂x j
= pi |x j |pi−1sign(x j ),

which is a continuous function on Rd .
For x ∈ R

d \ {0} and j = 1, 2, . . . , d, we have

∂F(x)

∂x j
=

m∑

i=1

∂G(z)

∂zi

∣∣∣
z=(‖x‖s1p1 ,‖x‖s2p2 ,...,‖x‖smpm )

si‖x‖si−pi
pi |x j |pi−1sign(x j )G0(x)

+ G(‖x‖s1p1 , ‖x‖s2p2 , . . . , ‖x‖smpm )
∂G0(x)

∂x j
.

(6.7)



62 Page 30 of 38 D. Cao et al.

Clearly, ∂F(x)/∂x j is continuous on Rd \ {0}. Consider its continuity at the origin
now.

For the first summation on the right-hand side of (6.7),

∂G(z)

∂zi

∣∣∣
z=(‖x‖s1p1 ,‖x‖s2p2 ,...,‖x‖smpm )

= O(1) as x → 0, (6.8)

and, thanks to the first estimate in (6.4),

‖x‖si−pi
pi |x j |pi−1|sign(x j )G0(x)| ≤ O(|x |si−1|x |m0) = O(|x |s̄+m0−1) as x → 0.

By the second estimate in (6.4), the last term in (6.7), it is zero when m0 = 0, and
can be estimated, when m0 ≥ 1, by

∣∣∣G(‖x‖s1p1 , ‖x‖s2p2 , . . . , ‖x‖smpm )
∂G0(x)

∂x j

∣∣∣ ≤ O(|x |s̄)C |x |m0−1

= O(|x |s̄+m0−1) as x → 0. (6.9)

The above estimates from (6.8) to (6.9) for the right-hand side of (6.7) yield

lim
x→0

∂F(x)

∂x j
= 0.

Together with (6.6), this limit implies that ∂F(x)/∂x j is continuous at the origin for
j = 1, 2, . . . , d. Therefore, F ∈ C1(Rd), and, consequently, F is locally Lipschitz in
R
d .
Finally, we prove (iv). If all p j ’s are even numbers, then, by property (b) right

before Theorem 6.1, all Fk’s in (6.3) belong to C∞(Rd
0). Combining this fact with (ii)

and (iii) above, we have F ∈ X . ��
Example 6.2 Let α be any number in (0,∞) that is not an even integer, and

F(x) = |x |αx for x ∈ R
d . (6.10)

Applying Theorem 6.1(iv) to m = 1, G(z) = z for z ∈ R, G0(x) = x , p1 = 2 and
s1 = α, we have F ∈ X . Even in this simple case, the asymptotic expansions obtained
in Theorem 4.3 is new.

Example 6.3 Given a constant d × d matrix M0, even numbers p1, p2 ≥ 2, and real
numbers α, β > 0, let

F(x) = ‖x‖α
p1M0x

1 + ‖x‖β
p2

for x ∈ R
d . (6.11)

Applying Theorem 6.1(iv) to functions G(z1, z2) = z1/(1 + z2), G0(x) = M0x
and numbers s1 = α, s2 = β, one has F ∈ X . The explicit form of (4.3) can be
obtained quickly as follows.
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For x ∈ R
d with ‖x‖p2 < 1, we expand 1/(1+‖x‖β

p2), using the geometric series,
and can verify that

F(x) ∼
∞∑

k=1

(−1)k−1‖x‖α
p1‖x‖(k−1)β

p2 M0x, (6.12)

in the sense of (H1) in Assumption 4.1. This yields (4.3) with βk = 1+α + (k − 1)β.
When ‖ · ‖p1 = ‖ · ‖p2 = | · |, function F in (6.11) covers the particular case

discussed in (1.5), and expansion (6.12) simply reads as

F(x) ∼
∞∑

k=1

(−1)k−1|x |α+(k−1)βM0x .

Example 6.4 For k ∈ N, let Mk be a constant d × d matrix, and pk ≥ 2 be an even
number, and αk > 0.

(a) Each function x ∈ R
d �→ ‖x‖αk

pk Mkx can play the role of Fk in (4.3) or (5.1).
In this case, we write, respectively,

F(x) ∼
∞∑

k=1

‖x‖αk
pk Mkx, or

∣∣∣F(x) −
N∗∑

k=1

‖x‖αk
pk Mkx

∣∣∣ = O(|x |αN∗+1+ε̄) as x → 0.

(6.13)

In particular, thanks to Theorem 6.1(iv), the function

F(x) =
N∗∑

k=1

‖x‖αk
pk Mkx, for x ∈ R

d , belongs to X .

(b) We can replace Mkx in (6.13) with an R
d -valued homogeneous polynomial in

x of degree mk ∈ Z+. Of course, the set {αk +mk : k ∈ N} is required to be in (1,∞)

and can be re-arranged as a sequence that strictly increases to infinity.

In Examples 6.2, 6.3 and 6.4 above, we can also consider more complicated vari-
ations. For example, in (6.10), (6.11) and (6.13), we can replace |x | or ‖x‖pk with
‖Skx‖pk , where Sk’s are invertible d × d matrices.

Note that a positively homogeneous function of the form (2.6), in general, does not
belong to C∞(Rd

0). Hence, it cannot play a role of an Fk in (4.3) or (5.1). However,
in some cases, see (6.14) and (6.15) below, it can.

Theorem 6.5 Consider function F(x) given by (2.6) with X = Y = R
d , s ≥ 1 and

(Y j , ‖ · ‖Y j ) = (Rn j , ‖ · ‖p j ) for j = 1, . . . , s. Suppose, for j = 1, . . . , s,

the number p j is even, and (6.14)

the only solution of equation Pj (x) = 0 is x = 0. (6.15)
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(i) One has F ∈ Hβ(Rd) ∩ C(Rd) ∩ C∞(Rd
0), where number β is defined in (2.7).

(ii) If β > 1, then F ∈ X 0.
(iii) Let ν̄ = min{ν j : j = 1, . . . , s} and assume m0 + ν̄ > 1. Then F ∈ C1(Rd).

Consequently, F ∈ X .

Proof For part (i), the fact F ∈ Hβ(Rd) is due to (2.7), while the other fact F ∈
C(Rd) ∩ C∞(Rd

0) is clear. Part (ii) comes from part (i).
We prove part (iii) now. Same as (6.4), there isC > 0 such that, for j = 0, 1, . . . , s,

and any x ∈ R
d ,

|Pj (x)| ≤ C |x |m j and |DPj (x)|
{

≤ C |x |m j−1 if m j ≥ 1,

= 0 if m j = 0,
(6.16)

Because s ≥ 1andm j ≥ 1 for j ≥ 1,wehaveβ = m0+∑s
j=1m jν j ≥ m0+ν̄ > 1.

Note that F(0) = 0 and, by the first estimate in (6.16),

F(x) = O(|x |m0+∑m
j=1 ν j m j ) = O(|x |β)as x → 0.

Then, thanks to the fact β > 1, we have the derivative matrix DF(0) = 0.
For j = 1, 2, . . . , s, write Pj = (Pj,1, Pj,2, . . . , Pj,n j ).
Let x = (x1, . . . , xd) ∈ R

d \ {0}. Then, thanks to condition(6.15), Pj (x) �= 0 for
j = 1, 2, . . . , s. For i = 1, 2, . . . , d, we have the partial derivative

∂F(x)

∂xi
= ‖P1(x)‖ν1

p1‖P2(x)‖ν2
p2 . . . ‖Ps(x)‖νs

ps

∂P0(x)

∂xi

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s∑

j=1

⎛

⎜⎜⎜⎝
∏

1≤ j ′≤s,
j ′ �= j

‖Pj ′(x)‖ν j ′
p j ′

⎞

⎟⎟⎟⎠ ν j‖Pj (x)‖ν j−p j
p j

( n j∑

�=1

(Pj,�(x))
p j−1 ∂Pj,�(x)

∂xi

)
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
P0(x).

(6.17)

One can see that this partial derivative is continuous onRd \ {0}. For the continuity
of ∂F(x)/∂x j at the origin, we estimate the right-hand side of (6.17). On the one
hand,

‖P1(x)‖ν1
p1‖P2(x)‖ν2

p2 . . . ‖Ps(x)‖νs
ps

∣∣∣
∂P0(x)

∂x j

∣∣∣ is zero if m0 = 0,

or, in the case m0 ≥ 1, it can be estimated, with the use of (6.16), by

‖P1(x)‖ν1
p1‖P2(x)‖ν2

p2 . . . ‖Ps(x)‖νs
ps

∣∣∣
∂P0(x)

∂x j

∣∣∣ ≤ C ′|x |
∑s

j=1 m j ν j |x |m0−1 = C ′|x |β−1,

for some generic constant C ′ > 0. Here, and also in calculations below, we use the
equivalence between any norm ‖ · ‖p j and | · |.
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On the other hand, for each j = 1, . . . , s, and � = 1, . . . , n j , by using the estimates
in (6.16) again, we have

ν j

⎛

⎜⎜⎜⎝
∏

1≤ j ′≤s,
j ′ �= j

‖Pj ′(x)‖ν j ′
p j ′

⎞

⎟⎟⎟⎠ ‖Pj (x)‖ν j−p j
p j |Pj,�(x)|p j−1

∣∣∣∣
∂Pj,�(x)

∂xi

∣∣∣∣ |P0(x)|

≤ C ′

⎛

⎜⎜⎜⎝
∏

1≤ j ′≤s,
j ′ �= j

|x |m j ′ν j ′

⎞

⎟⎟⎟⎠ ‖Pj (x)‖ν j−1
p j |x |m j−1|x |m0

≤ C ′

⎛

⎜⎜⎜⎝
∏

1≤ j ′≤m j ,

j ′ �= j

|x |m j ′ν j ′

⎞

⎟⎟⎟⎠ |x |m j (ν j−1)|x |m j−1|x |m0

= C ′|x |m0+∑m
j ′=1 ν j ′m j ′−1 = C ′|x |β−1.

Summing up the above estimates after (6.17) and passing x → 0, with β > 1, give

lim
x→0

∂F(x)

∂xi
= 0 = ∂F(0)

∂xi
.

The last relation comes from the fact DF(0) = 0 obtained earlier. Thus, ∂F/∂xi is
continuous on R

d , for i = 1, . . . , d. Because F ∈ C(Rd) from part (i), we obtain
F ∈ C1(Rd). Consequently, F is locally Lipschitz, and, by combining this with the
facts in part (i), we conclude F ∈ X . ��

In Theorem 6.5, we usually consider the case ν j/p j /∈ N for all j . Indeed, for an
index j with ν j/p j ∈ N, the corresponding term ‖Pj (x)‖ν j

p j is a polynomial, and we
can combine it with the polynomial P0(x).

Example 6.6 Regarding condition (6.15), it can be met for many forms of Pj . For
example, if Pj (x) = (xT M1x)M0x for x ∈ R

d , where M1 is a positive definite d × d
matrix, and M0 is an invertible d × d matrix, then Pj satisfies (6.15).

Example 6.7 Consider d = 2 and let

F(x1, x2) = (|x31 − x32 |p1 + |x31 + x32 |p1)α/p1

·(|x1x2|p2 + |3x21 − 2x22 |p2)β/p2M0(x1, x2),

where p1, p2 ≥ 2 are even numbers, M0 is aR2-valued homogeneous polynomials of
degree m0 ∈ Z+, and α, β > 0. Then F is of the form (2.6) with s = 2, n1 = n2 = 2,
m1 = 3, ν1 = α, m2 = 2, ν2 = β, and

P1(x) = (x31 − x32 , x
3
1 + x32), P2(x) = (x1x2, 3x

2
1 − 2x22 ).
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One can verify that P1 and P2 satisfy (6.15). If m0 + min{α, β} > 1, then, thanks to
Theorem 6.5(iii), F ∈ X .

In the remainder of this section,we focus on functions constituted essentially by xγi
i ,

where xi ’s are coordinates of a vector x ∈ R
d . We will consider more general forms

of these power functions, and also combine them with other positively homogeneous
functions such as ‖x‖γi

pi .

Notation 6.8 Wewill use the following notation for different types of power functions.

• Define ω, a subset of R2, by ω = (Z+ × {0}) ∪ ([0,∞) × {−1, 1}).
• For x ∈ R and (γ, τ ) ∈ ω, denote 〈x〉γτ as follows

〈x〉00 = 〈x〉01 = 〈x〉0−1 = 1, for γ = 0, and (6.18)

〈x〉γ0 = xγ , 〈x〉γ1 = |x |γ , 〈x〉γ−1 = |x |γ sign(x), for γ > 0. (6.19)

• For γ = (γ1, γ2, . . . , γn) ∈ R
n and τ = (τ1, τ2, . . . , τn) ∈ R

n , denote

[τ, γ ] =
(
(γ1, τ1), (γ2, τ2), . . . , (γn, τn)

)
∈ (R2)n .

• For vector x = (x1, x2, . . . , xn) ∈ R
n , multi-index γ = (γ1, γ2, . . . , γn) ∈

[0,∞)n and τ = (τ1, τ2, . . . , τn) ∈ {−1, 0, 1}n with [γ, τ ] ∈ ωn , denote

〈x〉γτ = 〈x1〉γ1τ1 · 〈x2〉γ2τ2 . . . 〈xn〉γnτn . (6.20)

• For x ∈ R
n , p = (p1, p2, . . . , pn) ∈ [1,∞)n and γ = (γ1, γ2, . . . , γn) ∈

[0,∞)n , denote

‖x‖γ
p = ‖x‖γ1

p1 · ‖x‖γ2
p2 . . . ‖x‖γn

pn ,

with the convention ‖x‖0pi = 1.

The last type of power in (6.19) can be used to re-write the terms like |xi |αxi
as 〈xi 〉α+1

−1 . Also, when some power γi in (6.20) is zero, then, thanks to (6.18), the
corresponding term 〈xi 〉γiτi is 1 regardless the value of xi .

Let m ∈ N, p ∈ [1,∞)m , ν ∈ [0,∞)m , and γ, τ ∈ R
d with [γ, τ ] ∈ ωd , and a

constant vector c ∈ R
d . Then

the function x ∈ R
d �→ ‖x‖ν

p〈x〉γτ c belongs toH|ν|+|γ |(Rd) ∩ C(Rd) ∩ C∞(Rd∗),

(6.21)

where |ν| and |γ | denote the lengths of multi-indices, see (6.2).
In the following presentation, condition |ν| = 0 is used to indicate that the term

‖x‖ν
p is not present in (6.21). In this case, the values of m and p are irrelevant.

When, in general, the term 〈x〉γτ is a homogeneous polynomial, or, in particular,
|γ | = 0, the function in (6.21) is reduced to the form (6.1), which was already dealt
with in Theorem 6.1.



Infinite Series Asymptotic Expansions for Decaying Page 35 of 38 62

Theorem 6.9 Assume that all eigenvectors of matrix A belong to V = R
d∗ .

(i) Suppose function F : Rd → R
d and number β ∈ (1,∞) satisfy that F is a finite

sum of the functions in (6.21) with |ν| + |γ | = β. Then

F(0) = 0 and F ∈ Hβ(Rd) ∩ C(Rd) ∩ C∞(V ). (6.22)

Consequently, F belongs to X 0(V ), and can also play the role of a function Fk in
(4.3) or (5.1) with βk = β.

(ii) Suppose F is a finite sumof functions in (6.21)withmulti-indices ν = (ν1, . . . , νm)

and γ = (γ1, . . . , γd) satisfying

(a) |ν| + |γ | > 1, and
(b) |ν| = 0 or (∀i = 1, . . . ,m : νi ≥ 1), and
(c) ∀ j = 1, . . . , d : γ j = 0 or γ j ≥ 1.

Then F ∈ X (V ).

Proof Part (i) clearly comes from property (6.21) and the fact β > 1.
Consider part (ii). Thanks to Proposition 5.4, it suffices to prove (ii) for F(x) =

‖x‖ν
p〈x〉γτ c given as in (6.21) with p = (p1, . . . , pm) and τ = (τ1, . . . , τd). By

(6.21), F ∈ Hβ(Rd) ∩C∞(V ), with β = |ν| + |γ |, which is greater than 1, thanks to
condition (a). Conditions (b) and (c) guarantee that the functions x ∈ R

d �→ ‖x‖νi
pi ,

for i = 1, . . . ,m, and x = (x1, . . . , xd) ∈ R
d �→ 〈x j 〉γ j

τ j , for j = 1, . . . , d, are locally
Lipschitz on Rd . Therefore, the function F , as a multiplication of these functions and
the constant vector c, is locally Lipschitz. All together, we have F ∈ X (V ). ��

Example 6.10 Consider the following system of ODEs in R2:

matri x A =
(
2 1
1 2

)
,

y′
1 + 2y1 + y2 = |y|2/3|y1|1/2y32 ,
y′
2 + y1 + 2y2 = ‖y‖1/35/2y1|y2|1/4sign(y2).

The correspondingmatri x A =
(
2 1
1 2

)
has eigenvalues and bases of the corresponding

eigenspaces as follows: λ1 = 1, basis {(−1, 1)}, and λ2 = 3, basis {(1, 1)}. Then any
eigenvector of A belongs to V = R

2∗. The corresponding function F belongs toX 0(V ),
thanks to Theorem 6.9(i), and we can apply Theorem 5.3(ii).

Example 6.11 Consider the following system in R
2:

y′
1 + y1 = −|y2|α y1,

y′
2 + y1 + 2y2 = −y21 y2,
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where α > 0 is not an even integer. The matrix A, its eigenvalues and bases of
corresponding eigenspaces are

A =
(
1 0
1 2

)
,

λ1 = 1, basis {(1,−1)},
λ2 = 2, basis {(0, 1)}.

In this case, F = f + g, where

f (x1, x2) = (−|x2|αx1, 0) ∈ H1+α(R2) and g(x1, x2) = (0,−x21 x2) ∈ H3(R
2).

(6.23)

One finds that any eigenvector of A belongs to V = R × R∗, and

f , g ∈ C∞(V ). (6.24)

Hence, F ∈ X 0(V ) and we can apply Theorem 5.3(ii).
In the case α ≥ 1, we have F is locally Lipschitz on R

2. This fact, together with
(6.23) and (6.24), implies that F ∈ X (V ) and we can apply Theorem 5.3(i).

Example 6.12 Our results can be applied to many other situations, especially in multi-
dimensional spaces higher than R

2. We present one example here. Let d = 3, and
assume the 3×3matrix A has the following eigenvalues and bases of the corresponding
eigenspaces

λ1 = λ2 = 1, basis {ξ1 = (1, 0, 1), ξ2 = (0, 1, 0)}, and λ3 = 2, basis {ξ3 = (1, 1,−1)}.

Let F(x) = (x21 + x22 )
1/3 · (x62 + x63)

1/5P(x), where P is a polynomial vector field
on R3 of degree m0 ∈ N without the constant term, i.e., P(0) = 0.

Suppose ξ is an eigenvector of A. Then ξ = c1ξ1 + c2ξ2 for c21 + c22 > 0, or
ξ = c3ξ3 for c3 �= 0. One can verify that

ξ ∈ V = {(x1, x2, x3) : x2 �= 0 or x1x3 �= 0}
= (R × R∗ × R) ∪ (R∗ × R × R∗) = (R2

0 × R) ∩ (R × R
2
0).

Note that F ∈ Hβ(R3) ∩ C∞(V ) with β = 2/3 + 6/5 + m0, and, thanks to
Theorem 6.5(iii), F ∈ C1(R3). Then F ∈ X (V ) and, according to Theorem 5.3(i),
we can apply Theorem 4.3 to obtain an infinite series asymptotic expansion for any
non-trivial, decaying solution y(t) of (1.4).

Example 6.13 (by A. D. Bruno) Below is a specific case when a solution has a similar,
but different, asymptotic expansion. The system

y′
1 + y1 = 0

y′
2 + 3y2 = 3

2
y21 y

1/3
2

(6.25)
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has a solution (y1, y2) = (e−t , t3/2e−3t ) which, thanks to the term t3/2, does not have
an expansion (2.1).

We can examine system (6.25) and see that it does not satisfy the conditions in
Theorems 4.3, 5.1 and 5.3. Indeed, we always require that each positively homoge-
neous function Fk in approximations (4.3), (4.4), (5.1) of F is infinitely differentiable
in some neighborhood of any eigenvector of the matrix A, see Assumption 4.1(ii) and
Definition 5.2. In the current example,

A =
(
1 0
0 3

)
and F(x1, x2) = (0,

3

2
x21 x

1/3
2 ).

Clearly, ξ = (1, 0) is an eigenvector of A but F1 = F , with degree β1 = 2 + 1/3,
is not a C∞-function in any neighborhood of ξ . Thus, our results (Theorems 4.3, 5.1
and 5.3) cannot be applied to system (6.25).

Remark 6.14 In the case F is analytic, Lyapunov’s First Method yields that a decaying
solution solution y(t) of (1.4) equals a series

∑∞
n=1 qn(t)e

−μn t for sufficiently large
t , where qn(t)’s are some polynomials. See e.g. [1, Chapter I, §4] where the proof
is based on the Poincaré–Dulac normal form. Bruno investigates a much larger class
of equations of differential sums, which are not necessarily of a dissipative type like
ours. He develops the theory of power geometry and finds solutions that have certain
forms of asymptotic expansions. Specific algorithms are developed to calculate those
asymptotic expansions. See [2–7] and references there in. His equations can have
complex values, and the nonlinearity is comprised of power functions. His method and
results are totally different from ours. For example, he does not obtain the particular
expansion (1.3). Also, we obtain the asymptotic expansions for any given non-trivial,
decaying solutions, and our nonlinearity, in case of real-valued functions, can contain
more general terms such as in (2.6) and (6.21).
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