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Abstract
We consider a C1 vector field X defined on an open subsetU of the plane with compact
closure. If X has no singular points and if U is simply connected, a weak version of
the Poincaré–Bendixson theorem says that the limit sets of X in U are empty but that
one can define non empty extended limit sets contained in the boundary ofU . We give
an elementary proof of this result, independent of the classical Poincaré–Bendixson
theorem. A trapping triangle T based at p, for a C1 vector field X defined on an open
subset U of the plane, is a topological triangle with a corner at a point p located on the
boundary ∂U and a good control of the tranversality of X along the sides. The principal
application of the weak Poincaré–Bendixson theorem is that a trapping triangle at p
contains a separatrix converging toward the point p. This does not depend on the
properties of X along ∂U . For instance, X could be non differentiable at p, as in the
example presented in the last section.

Keywords Weak Poincaré–Bendixson theorem · Extended limit sets · Trapping
triangles · Separatrix
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1 Introduction

Weconsider a C1 vector field X on an open subsetU⊂R
2. This vector field is integrable

with a C1 flowϕ(t,m): for eachm ∈ U , themap t �→ ϕ(t,m) is themaximal trajectory
with initial condition ϕ(0,m) = m and is defined for t ∈ (τ−(m), τ+(m)), interval
whose end points satisfy −∞ ≤ τ−(m) < 0 < τ+(m) ≤ +∞.

Of primordial importance is to know the future of the trajectory when t → τ+(m)

and its past when t → τ−(m). To this end, one introduces the limit sets ω(m), α(m)

of X defined by:
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Fig. 1 Possible ω-limit sets

ω(m) = {p ∈ U | ∃(tn) → τ+(m), such that (ϕ(tn,m)) → p},

and

α(m) = {p ∈ U | ∃(tn) → τ−(m), such that (ϕ(tn,m)) → p},

The image of the trajectory: γ = γm = ϕ((τ−(m), τ+(m)),m) is the orbit of m. The
limit sets depend only on γ and we can denote them by: ω(γ ), α(γ ). More precisely,
if γ +

m = ϕ([0, τ+(m)),m) is the positive half-orbit and γ −
m = ϕ((τ−(m)), 0],m) the

negative half-orbit,ω(m) depends only on γ +
m and α(m) just of γ −

m . See [4,6] for more
information.

A description of the possible limit sets was given by Poincaré in [11] and this
result was proved by Bendixson in [1]. More recent proofs of the so-called Poincaré–
Bendixson Theorem may be found in [7,9]. The following version appeared in [6]:

Theorem 1.1 (Poincaré–Bendixson Theorem) Let X be a C1 vector field X defined
on an open set U⊂R

2. Assume that the singular points of X are isolated. Consider
a point m ∈ U such that γ +

m is contained into a compact subset of U. Then ω(m)

is either a singular point, a periodic orbit or a graphic: a topological immersion of
the circle S1, union of a finite number of regular orbits connecting a finite number of
singular points (see Fig. 1). A similar result stands for the α-limit sets.

Remark 1.2 Moreover for real analytic vector fields, it is possible to extend Theo-
rem 1.1 to vector fields with non-isolated singularities (see [10]).

If γ +
m is not contained in a compact subset ofU , it may happen that ω(m) is empty.

But, if Ū is compact, it is always possible to extract from any sequence (ϕ(tn,m))

defined as above, a subsequence converging toward a point of Ū . Then, in the case that
Ū is compact, it is natural to extend the definition of the limit sets by taking the limit
of sequences (ϕ(tn,m)) in Ū . In this way, one defines what we call here the extended
limit sets ω̄(m) and ᾱ(m) (see Definition 2.1). These extended limit sets are always
non empty.

Using this notion of extended limit sets, Theorem 1.3 below gives conditions on
U such that the limit sets in Ū are always contained in ∂U (or equivalently, such that
the usual limit sets inU are empty). We call this result: the weak Poincaré-Bendixson
Theorem, because it can be seen in some cases as a rather trivial particular case of the
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Theorem 1.1. In fact we will give in Sect. 3 a simple proof of it, independent of the
Theorem 1.1.

Theorem 1.3 (Weak Poincaré–Bendixson Theorem) Let X be a C1 vector field defined
on an open subset U of R

2 with a compact closure Ū Assume that X has no singular
points and that U is simply connected. Let m be a point in U. Then, the limit sets
ω(m) and α(m) are empty or equivalently the extended limit sets ω̄(m) and ᾱ(m) are
contained in the boundary ∂U = Ū\U (see Definition 2.1).

Remark 1.4 If one drops the condition that X has no singular points or thatU is simply
connected, it is very easy to find examples of extended limit sets not contained in ∂U .

Remark 1.5 In Theorem 1.3 we consider the closure Ū in R
2. To say that Ū is com-

pact is equivalent to say that U is bounded. We could consider the closure in any
compactification of R

2 and prove the same result as Theorem 1.3, with exactly the
same proof. Taking the closure in a compactification of R

2 would allow for instance
to study trajectories in U with a limit set at infinity. It may be observed that there
are different possible compactifications. The more usual compactifications in geome-
try are the Alexandroff compactification where R

2 is identified with C\{∞} and the
Lyapunov–Poincaré compactification where R

2 is identified with the interior of the
trigonometric disk (see [6]). In this paper, we are just interested in limit sets at finite
distance. Then, Theorem 1.3 is just stated for bounded open sets.

The principal interest of Theorem 1.3 is that there is no assumption on the vector
field X along ∂U . For instance, X could be non differentiable at some points of ∂U
and the classical Poincaré-Bendixson Theorem could not be applied in neighborhoods
of such points. In Section 5, we will present an example of a vector field with a
non-differentiable singular point, which stems from combustion theory (see [2]). The-
orem 1.3 can be applied by putting the singular point at the boundary of the domain
of study.

The extended limit sets are defined in Sect. 2, where some properties are given and
where they are compared with the usual limit sets. In Sect. 3, we give the proof of
Theorem 1.3. This very simple proof is based on the non-recurrence property satisfied
by a vector field without singular points, defined on a simply connected open setU . In
Sect. 4 we present some applications of Theorem 1.3. The most important one is the
notion of trapping trianglewhich gives conditions to have a trajectory tending toward
a point of the boundary.

This is illustrated in somedetail in Sect. 5wherewe recall how trapping triangles can
be used to obtain interesting properties for a non-differentiable vector field introduced
in [2]. The appendix is devoted to a sketch of proof of the Jordan-Schoenflies Theorem
for C1 vector fields. This theorem enters as a key argument in the proof of Theorem 1.3.

2 Extended Limit Sets

In the whole section we assume that X is a C1 vector field, defined on an open set U
of R

2 with a compact closure Ū .
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Definition 2.1 (Extended limit sets) The ω̄-limit set of m (in Ū ) is the compact subset
of Ū defined as:

ω̄(m) = {p ∈ Ū | ∃(tn) → τ+(m) such that ϕ(tn,m) → p}.

The ᾱ-limit set α(m) (in Ū ) is the ω̄-set of m, (in Ū ), for the field −X (we have just
to replace τ+(m) by τ−(m) in the above definition).

Remark 2.2 Extended limit sets ω̄(m), ᾱ(m) are different from the usual ones, since
we consider the limit values in Ū and not in U . It is the reason why we call them
extended limit sets. We will write ω(m), α(m) for the usual limit sets in U . Clearly,
one has that ω(m) = ω̄(m) ∩ U and α(m) = ᾱ(m) ∩ U . In fact, in Theorem 1.3 we
are interested in a situation where the usual limit sets are empty, or equivalently where
the extended limit sets are contained in ∂U .

It is easy to see that the extended limit sets are non-empty compact subsets of Ū . The
more important property is that they are limits of the trajectory of m in the Haudorff
sense, for positive or negative time. We recall that the Hausdorff distance between a
point p and a non-empty compact subset A of R

2 is given by:

distH (p, A) = Inf{||m − p|| | m ∈ A},

where || · || is the Euclidean norm of R
2. One has the following result:

Lemma 2.3 For m ∈ U : distH (ϕ(t,m), ω̄(m)) → 0 when t → τ+(m). There is a
similar result for ᾱ(m) when t → τ−(m).

Proof We have just to consider the case of ω̄(m). Assume that dist(ϕ(t,m), ω̄(m)) �

0. This means that there exist ε0 > 0 and a sequence (tn) → τ+(m) such that ∀n one
has that ϕ(tn,m) ∈ K (ε0) = {p ∈ Ū | dist(p, ω̄(m)) ≥ ε0}. As K (ε0) is compact,
we can extract a subsequence (t ′i ) = (tni ) such that the sequence (ϕ(t ′i ,m)) converges
toward some point p0 ∈ K (ε0), while (t ′i ) → τ+(m). This point p0 belongs to ω̄(m).

We arrive to a contradiction, since distH (p0, ω̄(m)) ≥ ε0 > 0 by passing to the limit.
�

Remark 2.4 We will use the following particular case of Lemma 2.3: to say that ω̄(m)

is reduced to a single point p is equivalent to say that ϕ(t,m) → p when t → τ+(m).

With a similar proof as in Lemma 2.3, one has the following:

Lemma 2.5 The extended limit sets are connected subsets of Ū .

3 Proof of the weak Poincaré–Bendixson Theorem

We want to present a direct and simple proof, independent of the classical Poincaré-
Bendixson Theorem. In fact this proof will just use an easy form of the non-existence
of non-trivial recurrence property, adapted to the context. It is given in Lemma 3.1.



Some Applications of the Poincaré–Bendixson Theorem Page 5 of 17 64

Of course, the non-trivial recurrence property is also a key ingredient in the proof of
the classical Poincaré-Bendixson Theorem (see [7] or [9] for instance). One has the
following:

Lemma 3.1 Let X be a C1 vector field defined on a simply connected open set U,
without singular points. Then, an orbit of X has at most one intersection point with
an open transverse section to X, contained in U .

Proof Let γ be an orbit of X and 	⊂U be an open transverse section to X . Assume
that γ ∩	 contains at least two points. Let p, q be two such points, consecutive on γ.

We denote by γ (p, q) the closed segment of the orbit between p, q and by 	(p, q)

the closed segment on 	 between p, q. Since the points p, q are consecutive on γ,

one has that γ (p, q) ∩ 	(p, q) is the set with two points {p, q}. This means that

 = γ (p, q) ∪ 	(p, q) is a C1-piecewise simple curve inU . It is easy to smoothen 


in order to obtain a C1 curve 
̃, transverse to X . This curve can be chosen C0 arbitrarily
near 
, and then contained in U (see Fig. 2: the segment of orbit γ (p, q) is replaced
by a transverse arc of curve γ̃ (p′, q) inside a thin flow box T along γ (p, q); this flow
box is a curved rectangle with corners the points p, q, q ′, p′; a detailled proof can
be found in [12]). It follows from the C1 Jordan-Schoenflies Theorem that this curve
bounds a topological disk D̃⊂U . As X is transverse to ∂ D̃ = 
̃, the disk D̃ must
contain a singular point of X , as it follows for instance from the Brouwer Theorem.
We have thus arrived to a contradiction. �
Remark 3.2 The Jordan-Schoenfies Theorem is true for any topological closed curve
embedded in R

2, also called a Jordan curve. This theorem says that there is a homeo-
morphism ofR

2 to itself sending the trigonometric circle
0 onto
. As a consequence,

 bounds a topological disk contained in a neighborhood U of 
. The proof in this
general C0 context is rather delicate (nevertheless, one can see [3] for an elementary
proof). The proof is much easier for a C1 closed curve 
. Since it is the only case used
in this paper, a sketch of proof is given in Appendix.

Remark 3.3 One can find in [8] an easy topological proof of the Poincaré-Hopf for-
mula, whose Brouwer Theorem is easily deduced, since the Euler characteristic of the
disk is equal to 1.

Fig. 2 Construction of 
̃
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Fig. 3 The orbit {H(x, y) = 0}

Lemma 3.1 easily implies that:

Proof of Theorem 1.3 Consider a point m ∈ U . We have just to prove that ω̄(m)⊂∂U :
the proof for ᾱ(m) is the same, changing X by −X .

We prove this result by contradiction. Let us assume that a point p ∈ ω̄(m) belongs
to U . There exists a sequence (tn) → τ+ such that ϕ(tn,m) → p. By hypothesis
this point is regular: (X(p) �= 0). Take a flow-box W in U , diffeomorphic to a closed
rectangle 	 × I , centered at (0, 0) ∈ R

2, where p = (0, 0) and 	 = 	 × {0} is a
transverse section to X . For n large enough, it is easy to change sligthly tn in order
that ϕ(tn,m) ∈ 	. As a consequence the half-orbit γ+(m) cuts 	 in infinitely many
points. This contradicts Lemma 3.1. Then, one has that ω(m) = ω̄(m) ∩ U = ∅, i.e.
that ω̄(m)⊂∂U . �

4 Applications of the weak Poincaré–Bendixson Theorem

Applications of the weak Poincaré-Bendixson Theorem depend on the properties that
one assumes for the vector field X on the boundary of U . It follows from Lemma 2.5
that an extended limit set is a compact connected subset of ∂U . Then, if ∂U is a
topological curve, an extended limit set is either an isolated point or it is homeomorphic
to a closed interval. This last possibility may occur when the properties of X are rather
wild near the boundary. For instance, consider the Hamiltonian vector field XH of
Hamiltonian function H(x, y) = y − x sin x . This Hamiltonian vector field has no
singular points in the whole plane. Each trajectory oscillates indefinitely between a
pair of lines {y ± x = Const.} (see Fig. 3). If we take the direct image of XH by a
smooth diffeomorphism of R

2 onto the open disk U of radius 1, preserving the radial
directions, we obtain a smooth vector field on U , whose limit sets are one of the
intervals {−π

2 ≤ θ ≤ +π
2 } or { 3π2 ≤ θ ≤ + 5π

2 } on the trigonometric circle.
The above example is of course rather pathological. We are more interested in

finding conditions such that a trajectory in U tends toward a point of the boundary
∂U . There is a circumstance when this occurs rather trivially:
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Lemma 4.1 Let X be a C1 vector field defined on an open subset U of R
2 with a

compact closure. Let p be a point in ω̄(m) ∩ ∂U, for some m ∈ U . Assume that X
can be extended in a neighbohood W of p in R

2 as a C1 vector field, that will still be
called X. Also assume that ∂U is a regular C1 curve in a neighborhood of p and that
X(p) �= 0 is transverse to it. Then ω̄(m) = {p} and the trajectory of the extended
vector field X arrives to p at the time τ+(m), which is the finite positive limit time of
the trajectory in U .

Proof We chooseW to be a flow box of the extended vector field X , diffeomorphic to
[−ε0, ε0] × [−δ0, δ0], where p = (0, 0). The intervals [−ε0, ε0] × {δ} are segments
of orbits and the intervals {ε} × [−δ0, δ0] are transverse sections, for all (ε, δ) ∈
[−ε0, ε0] × [−δ0, δ0]. As p ∈ ω̄(m) there is a time t0 such that ϕ(t0,m) ∈ W , and
more precisely ϕ(t0,m) = (εt0 , 0) for some εt0 ∈ [ε0, 0). Then, for all t ≥ t0, ϕ(t,m)

must be also a point of the same type (εt , 0) for some εt ∈ [εt0 , 0). The conclusions
of the lemma clearly follow. �

4.1 Existence of Flow Boxes

Let X be a Ck vector field, with k ≥ 1, defined on an open setU . The usual Flow-Box
Theorem gives a normal form for X in a neighborhood of any regular point: ifm ∈ U is
such that X(m) �= 0, there exists a neighborhood W of (0, 0) ∈ R

2 (with coordinates
(x, y)) and a Ck diffeomorphism � of W into U , sending the vector field ∂

∂x on the
vector field X . T = �(W )⊂U is called a flow box of X . Using Theorem 1.3, we can
prove the following:

Proposition 4.2 Let X be a Ck vector field, with k ≥ 1, defined on an open set U,
without singular points. Let T⊂U be a Ck-piecewise rectangle. Assume that T has two
sides [A, B], [DC] which are segments of orbits and the two sides [AD], [BC] which
are transverse sections such that X is pointing inward T along [AD] and outward T
along [BC] (see Fig. 4). Then the trajectory starting at a point m ∈ [AD] arrives at
a point of [BC] in a finite time t(m). The function t(m) is Ck .

Proof Wecan applyTheorem1.3 to the interior Int(T ) of T . Ifm ∈ [AD], its trajectory
passes through a nearby point m′ located in Int(T ). It follows from Theorem 1.3 that
ω̄(m′) ∈ ∂T . Since ω̄(m′) cannot contain points of the open arcs of trajectory ]AB[
and ]DC[, nor points of [AB] because X is entering along this side, we have that
ω̄(m′)⊂[BC]. It follows from Lemma 4.1 that ω̄(m′) is just a point of [BC] and as a
consequence, there is a finite time t(m) such thatϕ(t(m),m) ∈ [BC].As the trajectory
ofm arrives transversally on [BC], we can use the Cauchy Theorem in class Ck (which
states that the flow is a Ck map) and the Inverse Function Theorem to show that t(m)

is a function of class Ck . �
In fact a rectangle as in Proposition 4.2 is a flow box. More precisely one has the

following:

Corollary 4.3 Let X, U and T and t(m) as in Proposition 4.2. Parametrize [AD] by
y ∈ [0, 1]. Let W be the curved rectangle of R

2 defined by W = {(x, y) ∈ R
2 | y ∈
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Fig. 4 A flow box

Fig. 5 Closed nodal region

[0, 1], x ∈ [0, t(y)]}. Then, the map (x, y) �→ ϕ(x, y) is a Ck diffeomorphism from
W onto T , sending ∂

∂x on X .

Proof We identify [AD] with the interval [0, 1] parametrized by y. For any y ∈ (01)
the arc of orbit starting at y is disjoint from the sides [AB] and [DC]. The same
argument than the one used in Proposition 4.2 shows that if y �= y′ are two points
on [AD], then the arcs of trajectories in T , starting at y and y′ are disjoint. As the
flow is injective on each arc, one has that the map (x, y) �→ ϕ(x, y) is one-to-one
from W onto T . As a consequence of the Cauchy Theorem, this map is Ck . Since
Dϕ(x, y)[ ∂

∂x ] = X(ϕ(x, y)) and Dϕ(x, y)[ ∂
∂ y ] is a vector tranverse to X(ϕ(x, y)),

the map (x, y) → ϕ(x, y) has a maximal rank at each (x, y) ∈ W . Then, this map
is a Ck diffeomorphism from W onto T . Finally, since Dϕ(x, y)[ ∂

∂x ] = X(ϕ(x, y)),

this map sends the vector field ∂
∂x to the vector field X . �

4.2 Closed Nodal Region

We consider a vector field X on an open setU . We assume that X has a singular point
O inU and that X is C1 inU\{O}. The following notion was introduced by Bendixson
in [1]:

Definition 4.4 (Bendixson)Aclosednodal region atO for X is a topological disk D(
)

pinched at a singular point O , bounded by an orbit 
 such that ω(
) = α(
) = {O}
and consisting of orbits with the same limit property (see Fig. 5).

The following result was proved by Bendixson in [1]:
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Lemma 4.5 Let X be a vector field on a simply connected open set U. Assume that X
has a unique singular point O in U and that X is C1 in U \{O}. One also assumes that
X is a has an orbit 
 such that ω(
) = α(
) = {O}. Then 
 ∪ {O} is the boundary
in U of a topological disk which is a closed nodal region at O for X.

Proof It follows from the Jordan–Schoenflies Theorem that 
 ∪ {O} is the boundary
of a topological disk D inU . Since the interior of this disk D is simply connected and
contains no singular point, we can apply Theorem 1.3 to it: the extended limit sets of
any point of the interior of D are contained in ∂D = 
 ∪ {O}. Since these limit sets
cannot contain any point of 
, they are reduced to {O}. �
Remark 4.6 Elliptic sectors, used in the classification of the phase portrait of the vector
fields near an isolated singular point (see [5,12]), are simple examples of closed nodal
regions. We can introduce an order in the set of orbits contained in D(
), stating that

̃1 is less than 
̃2 if and only if 
̃1⊂D(
̃2). This order is total for an elliptic sector but
is just partial in general. As a consequence, the phase portrait inside a general closed
nodal region may be much more complicated than the simple 1-parameter family of
orbits that one finds inside an elliptic sector. See Fig. 5 for an example of a closed
nodal region which is not an elliptic sector.

4.3 Trapping Triangles

We consider a vector field X defined on an open subsetU ofR
2, with a not necessarily

compact closure Ū . We assume that X is C1 onU , but nothing is said about a possible
extention of X along the boundary ∂U = Ū \U . We look for conditions which could
ensure that a trajectory in U converges toward some point p ∈ ∂U . We will use the
following:

Definition 4.7 A trapping triangle T = [pqr ] at p ∈ ∂U , for the vector field X , is
a topological triangle contained in Ū , with corners p, q, r such that T ∩ ∂U = {p}
(or equivalently T \{p}⊂U ). This triangle has three sides [pq], [p, r ] and [qr ]. The
arcs (pq], (p, r ] and [qr ] are C1 regular arcs (i.e. contained into regular open curves
of class C1) . We assume that X has no singular point in the interior of T and that X
is tranverse to (p, q], [r , p) and [qr ]. Moreover, we assume that X points outside T
along (p, q), (p, r) and inside T along (q, r) (see Fig. 6).

As a consequence of Theorem 1.3, one has the following result:

Lemma 4.8 Let T = [pqr ] be a trapping triangle as in Definition 4.7. There exist
points m ∈ (q, r) whose trajectories ϕ(t,m) remain in T for all times and tends
toward p for t → τ+(m). Trajectories starting at other points of (q, r) cut the side
(p, q] or the side (p, r ] after a finite time.
Proof We begin by extending slightly the triangle T into a new triangle T ′ = [pq ′r ′],
with the same properties than T , by taking a C1 regular arc [q ′, r ′] near [q, r ] (see
Fig. 6). We call U the interior of T ′. It is clear that the pair (U , X) satisfies the
statements of Theorem 1.3 and one considers X restricted to U in the rest of the proof.
Letm be a point of (q, r). As (q, r)⊂U , by Theorem 1.3 one has that ω̄(m)⊂[p, q ′]∪
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Fig. 6 Trapping Triangle

Fig. 7 Dynamics inside the
trapping triangle

[p, r ′] ∪ [q ′, r ′] . As a consequence of the direction of X along (q ′, r ′), no point of
ω̄(m) can belong to (q ′, r ′). Then, ω̄(m)⊂[q ′, p] ∪ [p, r ′].

By Lemma 4.1, we know that, if ω̄(m) contains a point a of [q ′, p] ∪ [p, r ′]\{p}
then, ω̄(m) = {a}. For the same reason, if ω̄(m) contains the point p, it cannot contain
any other point in [q ′, p]∪ [p, r ′] and then its is reduced to {p}. It follows that one has
just three possibilities: ω̄(m) is a point in (p, q ′], a point of (p, r ′] or the point p. The
set Oq of the points of (q, r) whose ω̄-set belongs to (p, q ′] is a non empty open set
of (q, r). The reason is that, if a is such a point, one has that X(a) �= 0. Then τ+(m)

is finite and is a value attained by the flow of X on U . Moreover, as the trajectory is
transverse at a to the regular curve (p, q ′], these properties remain true for the points
m′ near m on (q, r) : the trajectory through m′ attains also (p, q ′] after a finite time.
For the same reason, the set Or of the points of (q, r) whose ω̄-set belongs to (p, r ′]
is a non empty open set of (q, r). Since (q, r) is connected Fp = (q, r)\Oq ∪ Or

is non-empty. A point m ∈ Fp is such that ω̄(m) = {p}. By Lemma 2.3 (see also
Remark 2.4) this means that the trajectory of m tends toward p when t → τ+(m). It
is clear that this trajectory remains in U . �

It is possible to give more information about the phase portrait of X in T :

Lemma 4.9 Assume that X is Ck for 1 ≤ k ≤ +∞. Let T = [pqr ] be a trapping
triangle as in Definition 4.7. The set of points of (q, r) whose trajectories tend toward
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p is a closed interval [m0,m1]⊂(q, r),maybe reduced to a single point. The trajectory
from m ∈ (q,m0) reaches (q, p) after a finite time t(m). Similarly, the trajectory from
m ∈ (m1, r) reaches (r , p) after a finite time t(m) These functions t(m) are Ck (see
Fig. 7).

Proof We use the notations introduced in the proof of Lemma 4.8: U is the interior
of a larger triangle [pq ′r ′] and Oq ,Or , Fp the subsets of (q, r) defined as above in
the proof of Lemma 4.8. Let m0 be the upper bound of points m ∈ (q, r) such that
(q,m)⊂Oq . As Oq and Or are open subsets of (q, r) the point m0 cannot belong
to any of them. Then m0 ∈ Fp. In a similar way, we can find a point m1 ∈ Fp

associated to Or . Clearly we have that m0 ≤ m1 for the orientation going from q to
r . If m0 �= m1, we can apply Theorem 1.3 to the triangle [pm0m1] with sides the
positive half orbits γ +(m0), γ

+(m1) union their ω̄-limit p and the subarc [m0,m1]
on (q, r): for any point m ∈ (m0,m1) the limit set ω̄(m) = {p}, since this limit
set cannot contains points of the regular orbits γ +(m0), γ

+(m1). Then, we have that
[m0,m1] is the set Fp of points on (q, r) whose trajectory tends toward p and that
Oq = (q,m0), Or = (m1, r). The fact that the function t(m) is Ck follows from the
Cauchy Theorem in class Ck , which states that the flow map (t,m) �→ ϕ(t,m) is Ck ,
and from the Inverse Function Theorem used to define implicitly the functions t(m).

�

5 How to Use Trapping Triangles?

Trapping triangles can be used in order to obtain the existence of a separatrix tending
toward a singular point p. To this end one places this point at the boundary of an open
set U , shows that there exists a trapping triangle at p and applies Lemma 4.8. Next,
by chosing suitable other trapping triangles, it may be possible to obtain more precise
information about the detected separatrix. This method uses principally qualitative
arguments with a minimum of computations which are in general rather direct. More-
over, one can apply the method to a vector field not differentiable for instance at the
point p. In such a case, it is not possible to apply the classical Poincaré-Bendixson
Theorem in a neighborhood of p.

We would like to illustrate this method with an example presented in a recent
paper (see [2]), which deals with a free interface problem in combustion theory. More
specifically, one considers a system of two reaction-diffusion equations that models
diffusional-thermal combustionwith ignition-temperature kinetics and fractional order
α. Looking for special solutions, namely one-dimensional traveling waves, turns out
to be equivalent to finding a trajectory tending towards the origin for the vector field
Xc with differential equation :

⎧
⎨

⎩

x ′ = y,

y′ = 1

�

(
cy + xα

)
.

(5.1)
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Moreover, this trajectory must satisfy the initial conditions: x(0) = v0 and y(0) =
− c

�
(1 − v0). Here, on the one hand, c > 0 is the speed of the traveling wave (to

be determined), v0 ∈ [0, 1] is fixed at this phase of the study; on the other hand,
� > 0 (the inverse of the Lewis number) and α ∈ [0, 1] are physical parameters. For
instance, the parameter α can change with the ratio of the two reactants and may take
non integer values. For such values of α the vector field Xc is just defined for x ≥ 0
and is not differentiable along the axis {x = 0}.

For physical reasons, the vector field Xc is considered in the quadrant Q = {x ≥
0, y ≤ 0}. For c = 0, the vector field X0 is Hamiltonian with Hamiltonian function

H(x, y) = 1

2
y2 − 1

�(1 + α)
x1+α.

In Q, this vector field has a stable separatrix L0 at the origin O :

L0 :=
{

y = y0(x) = −
(

2

�(1 + α)

)1/2

x
1+α
2

}

. (5.2)

For any c ≥ 0, we have that:

Xc · H(x, y) = − 1

�
yxα + 1

�
(cy + xα)y = c

�
y2.

This implies that, for c > 0, the vector field Xc is transverse to L0 and directed
downwards all along L0, outside O .

Now, for any v0 > 0, we consider in Q a trapping triangle Tv0 . This triangle has
three corners: O, Av0 = (v0, 0) and Bv0 = (v0, y0(v0)); and three sides denoted as
follows: [OAv0 ] on the 0x-axis, [OBv0 ] on the curve L0 and [Av0Bv0 ]. Since the vector
field Xc is vertical at the point Av0 , one chooses for side [Av0Bv0 ] a vertical segment
in {x = v0} modified by a small bump near Av0 , in order that Xc be transverse along
this side with a left direction. The vector field Xc is transverse and has an upward
direction along (OAv0 ] = [OAv0 ]\{O}. As already mentioned, Xc is transverse and
has a downward direction along (OBv0 ] = [OBv0 ]\{O}. (see Fig. 8).

As a consequence of Lemma 4.8, there exists an orbit Lc of Xc in Q which tends
toward O and which is a stable separatrix at this singular point. Muchmore is obtained
in [2] about Lc. This orbit is the unique one tending toward O . Essentially, it is a graph
of a smooth function yc(x) defined for x ∈ (0,+∞) and which extends continuously
by yc(0) = 0.

It is possible to use a finer trapping triangle T ′
v0

in order to obtain the following
expression:

yc(x) = −
(

2

�(1 + α)

)1/2

x
1+α
2 + o

(
x

1+α
2

)
. (5.3)
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Fig. 8 Trapping triangle Tv0

Fig. 9 Trapping triangle T ′
v0

To this end, we consider the curve:

lc :=
{

y = ỹc(x) = −
(

2

(1 + α)�

)1/2

x
1+α
2 + c

�
x

}

. (5.4)

It is easy to see that the vector field Xc is transverse along lc, with an upward
direction (see [2] for the computation). One can observe that the curve lc cuts the

Ox-axis at the value x1(c) =
(

2�
(1+α)c2

) 1
1−α

> 0 and remains in the quadrant Q only

for x ∈ [0, x1(c)]. Nevertheless, we can construct a new trapping triangle T ′
v0
, using

the curves L0 and lc, with a vertical side in {x = v0} when 0 < v0 < x1(c) (see
Fig. 9; since v0 < x1(c), one does not need now to modify the vertical side by a
bump). The graph of Lc is trapped inside T ′

v0
. It follows that y0(x) < yc(x) < ỹc(x)

for 0 < x < v0 and these inequalities imply the asymptotic relation (5.3).
In [2], it is also shown that for any x > 0, the function c → yc(x) is continuous

and increasing. This allows to find a value c(v0) in order to fulfill the above initial
conditions: c(v0) is the unique solution of the equation yc(v0) = − c

�
(1− v0). These

results are obtained using a new well-chosen trapping triangle.
It follows from (5.3) that the time R(v0) “to arrive at O from the initial condition

(v0,− c
�

(1 − v0))” is finite if α < 1 (stated more precisely, R(v0) is the finite limit
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time τ+(v0,− c
�

(1− v0)) for the vector field Xc(v0)). Moreover, using estimations on
c(v0) given in [2] (which may be also obtained by a qualitative argument) and a new

trapping triangle where the curve lc is replaced by a curve dk := {y = −kx
1+α
2 } for a

well-chosen k < 0, one obtains the following inequalities:

(2(1 + α)�)1/2

1 − α
v

1−α
2

0 < R(v0) <
4�1/2

(1 − α)(1 + α)1/2

v
1−α
2

0

1 − v0
, (5.5)

for 0 < v0 < 1 and 0 ≤ α < 1.
The value of R(v0) is directly related to the trailing interface at which the deficient

reactant is completely comsumed in the combustion model. As explained in [2], the
result that R(v0) is finite for 0 ≤ α < 1 and the inequalities (5.5) are highly significant
for this problem.

Acknowledgements The author wants to thank Claude-Michel Brauner for the suggestion to write this
article and the encouragements provided during this task. The IMB receives support from EIPHI Graduate
School (contract ANR-17-EURE-0002).

Data availability statement The author confirm that the data supporting the findings of this study are
available within this article (and the articles referred in bibliography).

Appendix: The Jordan–Schoenflies Theorem in class C1

Wewant to give a sketch of the proof for the following restricted version of the Jordan-
Schoenflies Theorem, the only version used in the present article. The support of a
diffeomorphism H of R

2 is the closure of the set: {m ∈ R
2| m �= H(m)}.

Theorem 5.1 (Jordan-Schoenflies Theorem in class C1) Let 
 be a C1 closed regular
curve inR

2. There exists a C1 diffeomorphism H ofR2,with compact support, sending
the trigonometric circle onto 
.

Proof Let (x, y) be Cartesian coordinates in the plane R
2. We choose a tubular neigh-

borhood T of 
 with a C1 trivialization T ∼= S1 × [−1,+1] such that S1 × {0}
corresponds to 
. The segments {θ} × [−1,+1] give a C1 normal fibration N along

. A first step is to approach 
 by a C∞ closed curve 
1 in the C1 topology. In a sec-
ond step 
1 can be approached in the C∞ topology by a smooth closed 
2 in generic
position in relation with the foliationF by the horizontal lines {y = Const.}, meaning
that all contact points of 
2 with F are quadratic and located on different leaves (see
Fig. 10). We can choose 
2 sufficiently near 
 in order that 
2 is inside the interior
of T and transverse to N . Then, 
2 is given in the trivialization, by the graph of a
map from S1 to ] − 1, 1[ and it is easy to construct a C1 diffeomorphism of R

2, with
support in T , sending each fiber ofN onto itself and sending 
 onto 
2 (see Fig. 11).

We now consider the smooth curve 
2. The position of 
2 with respect to the
horizontal foliation may be rather complicated, with a lot of horizontal contact points,
as it is suggested in Fig. 10. In the rest of the proof we explain how to simplify this
by means of a diffeomorphism of R

2 with compact support.
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Fig. 10 A curve 
2

Fig. 11 Smoothing 


Fig. 12 Curve 
2 with two contact points

If there are just two such horizontal contact points, a maximum and a minimum for
the y-function, we can displace 
2 by an affine map such that the maximum is on the
line {y = 1} and the minimum on the line {y = −1}. It is now very easy to construct
a smooth diffeomorphism G(x, y) = (g(x, y), y) sending 
0 onto 
2 (see Fig. 12)

If there are more than 3 contact points, it is possible to prove that there is at least
a pair of two successive contact points on 
2, a minimum p and a maximum q, in
the position illustrated in Fig. 13: there is a disk B such that ∂B is the union of an
arc 
2(p, p′) on 
2 containing q in its interior (and no other contact point) and the
horizontal segment [pp′].Moreover, at p, the complement
2\
2(p, p′) starts outside
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Fig. 13 Cleanning out a disk B

Fig. 14 Elimination of the pair
(p, q)

B. The disk B may contain other parts of 
2 disjoint from 
2(p, p′). Let 
B be their
union. The existence of such a pair (p, q) of contact points is the key point of the
proof. It can be obtained by an easy recurrence argument on the number of contact
points. We will not elaborate further on it.

We now consider such a pair (p, q) and explain how to eliminate it. We proceed
in two sub-steps. First, we choose a disk W disjoint from 
2(p, p′), and such that

B is inside W ∩ B. Then, we push 
B outside B by a smooth diffeomorphism,
with support in W which, in a neighborhood of 
B , sends horizontal intervals into
horizontal intervals located outside B (see Fig. 13).

We obtain a new curve 
3, in generic position and coinciding with 
2 in a neigh-
borhood of 
2(p, p′), with the same number of horizontal contact points as 
2. But
now the same disk B is associated to 
3 and does not contain other parts of 
3 than

2(p, p′). It is now easy to construct a diffeomorphism, with support in a compact
neighborhood of B, which pushes the arc 
2(p, p′) downward outside B, in order to
eliminate the pair (p, q) without modifying the other contact points nor creating new
ones (see Fig. 14)

One can apply this argument by recurrence to finish with a curve which has just
two contact points. Finally, we have obtained a sucession of diffeomorphisms of R

2,

with compact support and of class at least C1, whose composition (of them or their
inverse) sends the trigomometric circle onto the given initial closed curve 
. �
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