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Abstract
This article is devoted to study the nonlinear Schrödinger-Poisson system with pure
power nonlinearities

{−�u + u + φu = |u|p−1u + |u|4u, x ∈ R
3,

−�φ = u2, x ∈ R
3,

where 4 < p < 5. By employing constraint variational method and a variant of
the classical deformation lemma, we show the existence of one ground state sign-
changing solution with precisely two nodal domains, which improves and generalizes
the existing results by Wang, Zhang and Guan (J. Math. Anal. Appl. 479 (2019),
2284–2301).
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1 Introduction

In present paper, we deal with the Schrödinger-Poisson system with critical growth

{−�u + u + φu = |u|p−1u + |u|4u, x ∈ R
3,

−�φ = u2, x ∈ R
3,

(1.1)

where 4 < p < 5. It is a special form of the more general system as follows

{−�u + V (x)u + K (x)φu = f (x, u), x ∈ R
3,

−�φ = K (x)u2, x ∈ R
3,

(1.2)

where V , K ∈ C(R3, R), f ∈ C(R3 × R, R). As quoted by Boenci and Vartunato in
[6], system (1.2) works as a solitary wavemodel for describing the interaction between
a nonlinear fixed Schrödinger equation and an electrostatic field. Another different jus-
tification of system (1.2) can be found also in [26], where it appears in semiconductor
theory to model the evolution of an electron ensemble in a semiconductor crystal. For
further details of the physical background of system (1.2), we refer the reader to the
papers [2,3] and the references therein.

As far as system (1.2) is concerned, due to the appearance of the term K (x)φu, it is
viewed as being nonlocal and is no longer a pointwise identity. This observation brings
mathematical challenges to the analyses, and at the same time makes the study of such
a problem particularly interesting. Under different conditions of potential functions
V (x) and K (x), many authors have already obtained the existence and nonexistence
of positive solutions, multiple solutions, ground state solutions, radial and non-radical
solutions and semiclassical states to system (1.2), see e.g. [2–4,10,12,17,24,25,34,35]
and the references listed therein.

In present paper, we are interested in the existence of sign-changing solutions
of system (1.1), which is a very interesting subject and has gained many attentions
more recently. In fact, several abstract theories and methods have been established for
the existence of sign-changing solutions to system (1.2), for example by employing a
dynamical approach togetherwith a limit procedure (Ianni [16]), constructing invariant
sets and descending flow (Liu et al. [21]), applying variational methods together with
the Brouwer degree theory (Wang and Zhou [30]), combining constraint variational
method and quantitative deformation lemma (Shuai and Wang [27], Chen and Tang
[11], Wang et al. [29]), choosing appropriate minimizing sequence of sign-changing
solutions constraint on bounded domain [1,5], verifying the (PS)-condition (Zhong
and Tang [36]). For more discussions on the existence of sign-changing solutions of
system (1.2), we refer the reader to [15,19,33] and the references mentioned therein.

Since the embedding H1(R3) ↪→ L6(R3) is not compact, the investigations on
Schrödinger-Poisson system with critical growth are more complicated and interest-
ing from the mathematical point view. As far as we know, there are few results on
sign-changing solutions for the Schröginger-Poisson system with critical growth, see
[15,29,33,36]. In these works, Huang et al. [15] considered the Schrödinger-Poisson
system
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{−�u + u + K (x)φu = a(x)|u|4u + μh(x)u, x ∈ R
3,

−�φ = K (x)u2, x ∈ R
3,

(1.3)

where μ is a positive constant, K (x), a(x) and h(x) are nonnegative functions in R
3.

Under suitable assumptions on potentials, they proved that system (1.3) has a pair of
sign-changing solutions in H1(R3) ×D1,2(R3). In addition, Zhang [33] also focused
on the Schrödinger-Poisson system with critical growth

{−�u + u + K (x)φu = a(x)|u|p−1u + u5, x ∈ R
3,

−�φ = K (x)u2, x ∈ R
3,

(1.4)

with 3 < p < 5 and the potentials satisfying some decay rate assumptions, he obtained
the existence of ground state and sign-changing solutions of system (1.4). However,
as pointed out in [36], actually these two works mentioned above only studied the
case that system (1.3) and system (1.4) are not involved the nonlocal terms, that is,
K (x) ≡ 0. In light of this discovery, Zhong and Tang [36] studied the following system

{−�u + u + K (x)φu = λh(x)u + |u|4u, x ∈ R
3,

−�φ = K (x)u2, x ∈ R
3,

(1.5)

where 0 < λ < λ1, λ1 is the first eigenvalue of the problem −�u + u = λh(x)u in
H1(R3) and the weight functions K (x), h(x) satisfy the following conditions:

(HK ) K ∈ L2(R3) ∩ L∞(R3) \ {0} for some p ∈ [2,+∞) and K (x) is nonnegative;

(Hh1) h ∈ L
3
2 (R3) \ {0} is nonnegative;

(Hh2) there exist ρ > 0 and α > 0 such that h(x) ≥ C |x |−α for |x | < ρ.

By using the constraint variational method and quantitative deformation lemma, they
showed that system (1.5) possesses at least one ground state sign-changing solution for
each 0 < λ < λ1 and its energy is strictly larger than twice that of ground state solution.
As far as we know, the latest result about the sign-changing solutions of system (1.2)
is obtained in [29]. Explicitly, Wang et al. considered the following system

{−�u + V (x)u + λφu = |u|4u + μ f (u), x ∈ R
3,

−�φ = u2, x ∈ R
3,

(1.6)

and, by restricting the parameterμ > 0 large enough, obtained the existence of ground
state sign-changing solution for the case that f is of subcritical. Moreover, the authors
also studied the asymptotic behavior of the sign-changing solutions of system (1.6)
as the parameter λ → 0. Here, it must be pointed out that the parameter μ > 0 large
enough plays a vital role for their argument.

Consequently, a natural question is that if system (1.6) possesses sign-changing
solutions without any restriction on the parameter μ > 0. In present paper, we give
one affirmative answer to this question partially. Actually, we focus our attention on
system (1.1) with 4 < p < 5, and show the existence of ground state sign-changing
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solution.Before stating themain result,we introduce somenecessary notations.Denote
by H1(R3) the usual Sobolev space with the inner product and norm

〈u, v〉 =
∫
R3

(∇u · ∇v + uv)dx, ‖u‖ =
(∫

R3
(|∇u|2 + u2)dx

) 1
2
,

and

D1,2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)}

with the norm

‖u‖D1,2(R3) =
(∫

R3
|∇u|2dx

) 1
2
.

‖ · ‖s (1 ≤ s ≤ ∞) is the norm of usual Lebesgue space Ls(R3) and S is the best
Sobolev constant for the embedding of D1,2 ↪→ L6(R3), i.e.,

S := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

‖u‖26
. (1.7)

Due to the fact that our system (1.1) is autonomous, it is usual to discuss the existence
of solutions in radial space H1

r (R3), that is,

H1
r (R3) = {u ∈ H1(R3) : u(x) = u(|x |)}.

Since the embedding H1(R3) ↪→ L p(R3) (2 ≤ p ≤ 6) is continuous, then the
embedding H1

r (R3) ↪→ L p(R3) is also continuous, that is, there exist Cp > 0 such
that

‖u‖p ≤ Cp‖u‖, ∀u ∈ H1
r (R3), p ∈ [2, 6]. (1.8)

Moreover, the embedding H1
r (R3) ↪→ L p(R3) is compact for p ∈ (2, 6), see [31].

It is obvious that the technique used in [29] cannot be adopted anymore. Fortunately,
with the help of the methods in [36], we can successfully overcome the difficulties
caused by the absence of parameter. Since our work is based on variational methods,
it is necessary to transform system (1.1) into a single Schrödinger equation with the
nonlocal term. Recalling the Lax-Milgram theorem, for each u ∈ H1

r (R3), there exists
a unique φu ∈ D1,2(R3) such that−�φu = u2. Inserting this φu into the first equation
of system (1.1), we obtain

− �u + u + φuu = |u|p−1u + |u|4u, u ∈ H1
r (R3), (1.9)

where

φu(x) = 1

4π

∫
R3

u2(y)

|x − y|dy. (1.10)
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Define the corresponding energy functional I : H1
r (R3) → R to system (1.1) as

follows:

I (u) = 1

2

∫
R3

(|∇u|2 + u2)dx + 1

4

∫
R3

φuu
2dx − 1

p + 1

∫
R3

|u|p+1dx

− 1

6

∫
R3

|u|6dx, ∀u ∈ H1
r (R3).

(1.11)

Then, I ∈ C1(H1
r (R3), R) and its Gâteaux derivative is given by

〈I ′(u), ϕ〉 =
∫
R3

(∇u · ∇ϕ + uϕ)dx +
∫
R3

φuuϕdx −
∫
R3

|u|p−1uϕdx

−
∫
R3

|u|4uϕdx, ∀ϕ ∈ H1
r (R3).

(1.12)

For notational convenience, we shall denote

Lφu (u) =
∫
R3

φuu
2dx = 1

4π

∫
R3

∫
R3

u2(x)u2(y)

|x − y| dxdy. (1.13)

As iswell known,weak solutions for (1.9) correspond to critical points of the functional
I . Here, we call that u is aweak solution of (1.9) if u ∈ H1

r (R3) satisfies 〈I ′(u), ϕ〉 = 0
for any ϕ ∈ H1

r (R3). Moreover, if u is a solution of (1.9) with u± �≡ 0, then u is called
a sign-changing solution (nodal solution) of (1.9), where

u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

A solution is called a ground state solution if its energy is minimal among all nontrivial
solutions.

In order to obtain ground state sign-changing solutions of system (1.1), inspired
by [36], we show that the energy functional I satisfies the (PS)-condition at the mini-
mization level m constrained on the following nodal set:

M := {u ∈ H1
r (R3) : u± �= 0, 〈I ′(u), u+〉 = 0 = 〈I ′(u), u−〉},

namely,
m := inf{I (u) : u ∈ M}, (1.14)

see Lemma 3.2 below. To estimate the energy of ground state sign-changing solution,
we define the following Nehari manifold associated with system (1.1)

N := {u ∈ H1
r (R3) \ {0} : 〈I ′(u), u〉 = 0},

and let
c := inf{I (u) : u ∈ N }. (1.15)

Now we are in the position to state our main result.
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Theorem 1.1 System (1.1) with 4 < p < 5 possesses one radially ground state sign-
changing solution with precisely two nodal domains such that m > 2c.

Remark 1.2 Theorem 1.1 implies that we have answered the natural question raised
above.However, our approach is still not universal, due to the reason that it could not be
applied for the case that that 3 < p ≤ 4 in system (1.1). Indeed, throughout the paper,
except Lemma 3.3, the other preliminary results are valid for 3 < p < 5. Explicitly,
4 < p < 5 is only used to obtain the inequality (3.30), which is impossible for
3 < p ≤ 4.Consequently, it isworth exploringnew techniques to discus sign-changing
solutions for 3 < p ≤ 4 in system (1.1), even for more general case 1 < p ≤ 3.

In what follows, we discuss some difficulties need to be solved for our problem.
First of all, as usual, since we are dealing with the problem in the whole space R

3,
the lack of compactness needs to be overcome. Secondly, from (1.13) and Fubini’s
theorem, we see that

Lφu− (u+) =
∫
R3

φu−(u+)2dx =
∫
R3

φu+(u−)2dx = Lφu+ (u−).

Then, it deduces the following decompositions

I (u) = I (u+) + I (u−) + 1

2
Lφu+ (u−), (1.16)

〈I ′(u), u+〉 = 〈I ′(u+), u+〉 + Lφu− (u+), (1.17)

and
〈I ′(u), u−〉 = 〈I ′(u−), u−〉 + Lφu+ (u−). (1.18)

According to (1.17) and (1.18), one can easily observe that if u is a sign-changing
solution of system (1.1), then both the functions u± do not belong to the Nehari
manifold. Therefore, the usual methods used to prove the existence of sign-changing
solutions for semilinear local problems can not be used here. In addition, since we
add |u|p−1u as a perturbation for the critical growth, the techniques adopted in [36]
can not be applied directly to system (1.1). These difficulties make the problem more
complex.

To overcome the difficulties mentioned above, in this article, we choose H1
r

(
R
3
)

as the energy space because the embedding H1
r

(
R
3
)

↪→ Ls
(
R
3
)
(2 < s < 6) is

compact, and study the energy functional I on a neighbourhood U (see (3.1)) of the
nodal set M. Then, after some subtle estimates for the energy functional I on U, we
successfully check the (PS)-condition about the minimization level m, see Lemmas
3.1–3.3 below.

Remark 1.3 Because our system is autonomous, the compactness of H1
r (R3) ↪→

Ls(R3) (2 < s < 6) plays a vital role in checking the convergence of bounded
(PS) sequences, see Lemma 3.2 below. However, one could not achieve this point in
H1(R3). In fact, up to now, we have not seen the literature dealing with system (1.2)
in non-radial framework for the autonomous situation. Therefore, as pointed out in



Ground State Sign-Changing Solution for Schrödinger-Poisson… Page 7 of 23 48

[13], see its Remark 1.1, for autonomous Schrödinger-Poisson system it is still an
open problem to prove the existence of sign-changing solutions in non-radial setting.

The remainder of this paper is structured as follows. In the next Sect. 2, we present
some preliminary results to pave the way for obtaining the ground state sign-changing
solution. In Sect. 3, we are devoted to finish the proof of Theorem 1.1.

Throughout the paper, we use C to denote universal positive constants.

2 Preliminaries Results

In this section, we show the following lemmas which will play crucial roles in the
sequel. We first list some properties that the function φu satisfies, see [24, Lemma
2.1].

Lemma 2.1 For the function φu defined in (1.10), one has

(i) φu ≥ 0, ∀u ∈ H1(R3);
(ii) φtu = t2φu, ∀t > 0 and u ∈ H1(R3);
(iii) if un⇀u in H1

r (R3), then, φun → φu in D1,2(R3) and

∫
R3

φun u
2
ndx →

∫
R3

φuu
2dx;

(iv) there is a constant C such that

∫
R3

φuu
2dx ≤ ‖φu‖6‖u‖212

5
≤ C‖u‖4.

To seek a minimizer of the energy functional I on M, the following lemma illus-
trates that the set M is nonempty.

Lemma 2.2 For any u ∈ H1
r (R3) with u± �= 0, there exists a unique pair (su, tu),

with su, tu > 0 such that suu+ + tuu− ∈ M. Furthermore, we have the following
relationship I (suu++tuu−) = maxs,t≥0 I (su++tu−). In addition, if 〈I ′(u), u±〉 ≤ 0,
then su, tu ≤ 1.

Proof Based on our nonlinearity, it directly follows from the procedure of Lemma 2.1
in [29]. So we omit the details. ��
Denote by (su, tu) the unique pair of positive numbers obtained from Lemma 2.2. We
have proved that su and tu are well defined. Moreover, we can also get the following
properties.

Lemma 2.3 For any u ∈ H1
r (R3) with u± �= 0, there hold

(i) the functionals s, t are continuous in H1
r (R3);

(ii) sun → ∞ if u+
n → 0 in H1

r (R3) as n → ∞; tun → ∞ if u−
n → 0 in H1

r (R3)

as n → ∞;
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(iii) if {un} ⊂ M, limn→∞ I (un) = m, then m > 0 and�1 ≤ ‖u±
n ‖ ≤ �2 for some

�1, �2 > 0.

Proof (i) Take a sequence {un} ∈ H1
r (R3) such that un → u in H1

r (R3), then we
have u±

n → u± in H1
r (R3). By Lemma 2.2, there exist (sun , tun ) and (su, tu) such that

sun u
+
n + tun u

−
n ∈ M and suu+ + tuu− ∈ M. By the definition of M, it yields that

⎧⎪⎨
⎪⎩

‖u+
n ‖2 + s2un Lφ

u+
n

(u+
n ) + t2un Lφ

u−
n

(u+
n ) = s p−1

un

∫
R3

|u+
n |p+1dx + s4un

∫
R3

|u+
n |6dx,

‖u−
n ‖2 + t2un Lφ

u−
n

(u−
n ) + s2un Lφ

u+
n

(u−
n ) = t p−1

un

∫
R3

|u−
n |p+1dx + t4un

∫
R3

|u−
n |6dx .

(2.1)
We claim that {sun } and {tun } are bounded in R

+. In fact, by contradiction, there holds
sun → ∞ as n → ∞. Then, it follows from u±

n → u± �= 0 in H1
r (R3) and the first

equality of (2.1) that tun
sun

→ ∞ as n → ∞, which is in contradiction with the second
equality of (2.1). Therefore, passing if necessary to a subsequence, still denoted by
{sun } and {tun }, we can assume that there exists a pair nonnegative number (s0, t0)
such that

lim
n→∞ sun = s0 and lim

n→∞ tun = t0.

Taking the limit n → ∞ in (2.1), we see that

⎧⎪⎨
⎪⎩

‖u+‖2 + s20 Lφu+ (u+) + t20 Lφu− (u+) = s p−1
0

∫
R3

|u+|p+1dx + s40

∫
R3

|u+|6dx,
‖u−‖2 + t20 Lφu− (u−) + s20 Lφu+ (u−) = t p−1

0

∫
R3

|u−|p+1dx + t40

∫
R3

|u−|6dx .

Since u± �= 0, we have s0, t0 > 0, which means that s0u+ + t0u− ∈ M. From the
uniqueness of (su, tu), we derive that su = s0 and tu = t0. This completes the proof
of (i).

(i i) We just need to prove sun → ∞ if u+
n → 0 in H1

r (R3) as n → ∞, and the
other one follows from the same argument. Suppose that, there exists M > 0 such
that sun ≤ M . Using (1.8), one has

s4un

∫
R3

|u+
n |6dx ≤ C‖u+

n ‖6 = o(‖u+
n ‖2)

and

s p−1
un

∫
R3

|u+
n |p+1dx ≤ C‖u+

n ‖p+1 = o(‖u+
n ‖2).
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Therefore, it gives that

〈I ′(sun u+
n + tun u

−
n ), sun u

+
n 〉

s2un
≥ ‖u+

n ‖2 + s2un Lφ
u+
n
(u+

n ) + t2un Lφ
u−
n
(u+

n ) − o(‖u+
n ‖2)

≥ ‖u+
n ‖2 − o(‖u+

n ‖2) > 0.

Hence, we are lead to a contradiction since sun u
+
n + tun u

−
n ∈ M.

(iii) On the one hand, since {un} ⊂ M, we have

‖u±
n ‖2 + Lφun

(u±
n ) =

∫
R3

|u±
n |p+1dx +

∫
R3

|u±
n |6dx .

Then, from (1.8), we obtain

‖u±
n ‖2 ≤

∫
R3

|u±
n |p+1dx +

∫
R3

|u±
n |6dx

≤ C(‖u±
n ‖p+1 + ‖u±

n ‖6),

which means that there exists �1 > 0 such that ‖u±
n ‖ ≥ �1 > 0. On the other hand,

from {un} ⊂ M ⊂ N , one has

m + o(1) = I (un) = I (un) − 1

p + 1
〈I ′(un), un〉

=
(1
2

− 1

p + 1

)
‖un‖2 +

(1
4

− 1

p + 1

)
Lφun

(un) −
(1
6

− 1

p + 1

) ∫
R3

|un |6dx

≥
(1
2

− 1

p + 1

)
‖un‖2,

which signifies that m > 0 and {un} is bounded in H1
r (R3). That is to say there exists

�2 > 0 such that �1 ≤ ‖u±
n ‖ ≤ �2. This concludes the proof. ��

With the exception of the previous conclusions, to establish the existence of ground
state sign-changing solution, we also need the following lemma which can be derived
from [20, Lemma 3.1] and [32, Theorem 1.2].

Lemma 2.4 (i) For any u ∈ H1
r (R3) \ {0}, there exists a unique s̃u > 0 such that

s̃uu ∈ N . Moreover,

I (̃suu) = max
s≥0

I (su).

(ii) System (1.1) has a positive ground state solution u0 ∈ N such that I (u0) = c and

c ∈
(
0, 1

3 S
3
2

)
.

Remark 2.5 Since system (1.1) is equivalent to Eq.(1.9), applying for [18, Theorem
1.11] directly, we have u0 ∈ L∞(R3) and C1,α

loc (R3) for some 0 < α < 1. The
boundedness and regularity of u0 are also very important for the proof of Theorem
1.1 in Sect. 3.
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3 Sign-Changing Solution

In this section, we examine the existence of ground state sign-changing solution for
problem (1.1). Before starting the proof, inspired by [9], we recall the following
notations. Let P denote the cone of nonnegative functions in H1

r (R3), Q = [0, 1] ×
[0, 1] and � be the set of continuous maps σ such that for each s, t ∈ [0, 1],
(a) σ(s, 0) = 0, σ (0, t) ∈ P and σ(1, t) ∈ −P;

(b) (I ◦ σ)(s, 1) ≤ 0,
∫
R3 |σ(s,1)|p+1dx+∫

R3 |σ(s,1)|6dx
‖σ(s,1)‖2+Lφσ(s,1) (σ (s,1))

≥ 2.

For any u ∈ H1
r (R3) with u± �= 0, we can take σ(s, t) = γ t(1− s)u+ + γ tsu− ∈ �

for γ large enough and this implies that � �= ∅. Define the functional

ξ(u, v) =
⎧⎨
⎩

∫
R3 |u|p+1dx+∫

R3 |u|6dx
‖u‖2+Lφu (u)+Lφv (u)

, u �= 0,

0, u = 0.

It is obvious that ξ(u, v) > 0 if u �= 0. u ∈ M if and only if ξ(u+, u−) = ξ(u−, u+) =
1. Next we define

U =
{
u ∈ H1

r (R3) : |ξ(u+, u−) − 1| <
1

2
, |ξ(u−, u+) − 1| <

1

2

}
. (3.1)

Lemma 3.1 There exists a sequence {un} ⊂ U such that I (un) → m and I ′(un) → 0.

Proof We will break the proof into three claims.
Claim 1: infu∈M I (u) = infσ∈� supu∈σ(Q) I (u) = m.

We first recall that, for each u ∈ M, there exists σ(s, t) = γ t(1− s)u+ +γ tsu− ∈
� for γ > 0 large enough. Therefore, from Lemma 2.2 we conclude that

I (u) = max
s,t≥0

I (su+ + tu−) ≥ sup
u∈σ(Q)

I (u) ≥ inf
σ∈�

sup
u∈σ(Q)

I (u),

which means that

inf
u∈M

I (u) ≥ inf
σ∈�

sup
u∈σ(Q)

I (u).

In what follows, we prove the opposite. Due to the facts that for each σ ∈ � with
t ∈ [0, 1], σ(0, t) ∈ P and σ(1, t) ∈ −P , it holds that

ξ(σ+(0, t), σ−(0, t)) − ξ(σ−(0, t), σ+(0, t)) = ξ(σ+(0, t), σ−(0, t)) ≥ 0 (3.2)

and

ξ(σ+(1, t), σ−(1, t))−ξ(σ−(1, t), σ+(1, t)) = −ξ(σ−(1, t), σ+(1, t)) ≤ 0. (3.3)
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Again from the definition of �, for all σ ∈ � and s ∈ [0, 1], there exists

ξ(σ+(s, 1), σ−(s, 1)) + ξ(σ−(s, 1), σ+(s, 1))

≥
∫
R3 |σ(s, 1)|p+1dx + ∫

R3 |σ(s, 1)|6dx
‖σ(s, 1)‖2 + Lφσ(s,1) (σ (s, 1))

≥ 2.

So, we have

ξ(σ+(s, 1), σ−(s, 1)) + ξ(σ−(s, 1), σ+(s, 1)) − 2 ≥ 0 (3.4)

and
ξ(σ+(s, 0), σ−(s, 0)) + ξ(σ−(s, 0), σ+(s, 0)) − 2 = −2 < 0. (3.5)

On account of (3.2), (3.3), (3.4) and (3.5), it follows fromMiranda’s theorem [22] that
there exists (sσ , tσ ) ∈ Q such that

0 = ξ(σ+(sσ , tσ ), σ−(sσ , tσ )) − ξ(σ−(sσ , tσ ), σ+(sσ , tσ ))

= ξ(σ+(sσ , tσ ), σ−(sσ , tσ )) + ξ(σ−(sσ , tσ ), σ+(sσ , tσ )) − 2,

which evidently gives

ξ(σ+(sσ , tσ ), σ−(sσ , tσ )) = ξ(σ−(sσ , tσ ), σ+(sσ , tσ )) = 1.

That is, for all σ ∈ �, there exists uσ = σ(sσ , tσ ) ∈ σ(Q) ∩ M. Hence, we have

sup
u∈σ(Q)

I (u) ≥ I (uσ ) ≥ inf
u∈M

I (u),

namely

inf
σ∈�

sup
u∈σ(Q)

I (u) ≥ inf
u∈M

I (u).

Claim 2: There is a (PS)m-sequence {un} in H1
r (R3) for I .

With the previous in our mind, we now consider a minimizing sequence ωn ∈ M
and σn(s, t) ∈ �. Then, by Claim 1, it gives

lim
n→∞ max

ω∈σn(Q)
I (ω) = lim

n→∞ I (ωn).

Using a variant form of the classical deformation lemma [23] due to Hofer [14], we
claim that there exists {un} ⊂ H1

r (R3) such that

I (un) → m, I ′(un) → 0 and dist(un, σn(Q)) → 0 as n → ∞. (3.6)
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Nevertheless,wewill give a detailed proof below for the reader’s convenience. Suppose
by contradiction, there exists δ > 0 such that σn(Q) ∩ Wδ = ∅ for n large enough,
where

Wδ = {u ∈ E : ∃v ∈ H1
r (R3), s.t . ‖v − u‖ ≤ δ, ‖I ′(v)‖ ≤ δ, |I (v) − m| ≤ δ}.

In light of Hofer [14, Lemma 1], there exists a continuous map η : [0, 1] × H1
r (R3)

satisfying for some ε ∈ (0,m/2) and all t ∈ [0, 1],
(i) η(0, u) = u, η(t,−u) = −η(t, u),
(ii) η(t, u) = u, ∀u ∈ Im−ε ∪ (H1

r (R3) \ Im+ε),
(iii) η(1, Im+ ε

2 \ Wδ) ⊂ Im− ε
2 ,

(iv) η(1, (Im+ ε
2 ∩ P) \ Wδ) ⊂ Im− ε

2 ∩ P , where I d := {u ∈ H1
r (R3) : I (u) ≤ d}.

Since

lim
n→∞ max

ω∈σn(Q)
I (ω) = lim

n→∞ I (ωn) = m,

we can choose n large enough such that

σn(Q) ⊂ Im+ ε
2 and σn(Q) ∩ Wδ = ∅. (3.7)

Denoting by σ̃n(s, t) = η(1, σn(s, t)), ∀(s, t) ∈ Q, we declare that σ̃n ∈ �. Thus
σ̃n(Q) ⊂ Im− ε

2 by using (3.7) and property (iii) of η, which leads to a contradiction,
since

m = inf
σ∈�

sup
ω∈σ(Q)

I (ω) ≤ max
ω∈σ̃n(Q)

I (ω) ≤ m − ε

2
.

Actually, since σn ∈ �, it follows from (i i) that σ̃n(s, 0) = η(1, σn(s, 0)) =
η(1, 0) = 0. On the one hand, recalling from (3.7), σn(0, t) ∈ P and (iv), we
see that σ̃n(0, t) ∈ P . On the other hand, due to (3.7) and σn(1, t) ∈ −P ,
we have −σn(1, t) ∈ (Im+ ε

2 ∩ P) \ Wδ , which implies from (i) and (iv) that
σ̃n(1, t) = η(1, σn(1, t)) = −η(1,−σn(1, t)) ∈ −P . Then σ̃n satisfies property
(a). Moreover, using the fact that (I ◦ σn)(s, 1) ≤ 0, we deduce from (ii) that
σ̃n(s, 1) = η(1, σn(s, 1)) = σn(s, 1), thus σ̃n satisfies property (b). Therefore, upon
the continuity of η and σn , we deduce that σ̃n ∈ �.
Claim 3: The sequence {un} in Claim 2 satisfies {un} ⊂ U for n large enough.

We note that

m + ‖un‖ + o(1) ≥ I (un) = I (un) − 1

p + 1
〈I ′(un), un〉

=
(1
2

− 1

p+1

)
‖un‖2+

(1
4

− 1

p + 1

)
Lφun

(un)−
(1
6

− 1

p+1

) ∫
R3

|un |6dx

≥
(1
2

− 1

p + 1

)
‖un‖2,
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which means {un} is bounded. Then we have 〈I ′(un), u±
n 〉 = o(1) since I ′(un) → 0.

Therefore, to reach the claim, it suffices to show that u±
n �= 0, which means that

ξ(u+
n , u−

n ) → 1, ξ(u−
n , u+

n ) → 1 and then {un} ⊂ U for n large enough. From (3.6),
there exists a sequence {vn} such that

vn = αnω
+
n + βnω

−
n ∈ σn(Q) and ‖vn − un‖ → 0. (3.8)

We now prove that αnω
+
n �= 0 and βnω

−
n �= 0 for n large enough, so it indicates

that u±
n �= 0. Since ωn ∈ M, using Lemma 2.3 (i i i), we only need to show that

αn � 0 and βn � 0 for n large enough. Suppose by contradiction that αn → 0, by
the continuity of I and (3.8) one has that

0 < m = lim
n→∞ I (vn) = lim

n→∞ I (αnω
+
n + βnω

−
n ) = lim

n→∞ I (βnω
−
n ).

Then, by Lemma 2.2 and �1 ≤ ‖ω+
n ‖ ≤ �2, we see that

m = lim
n→∞ I (ωn) = lim

n→∞ max
s,t≥0

I (sω+
n + tω−

n )

≥ lim
n→∞max

s≥0
I (sω+

n + βnω
−
n )

= lim
n→∞max

s≥0

[ s2
2

‖ω+
n ‖2 + s4

4
Lφ

ω
+
n

(ω+
n ) − s p+1

p + 1

∫
R3

|ω+
n |p+1dx − s6

6

∫
R3

|ω+
n |6dx

+ s2β2
n

2
Lφ

ω
+
n

(ω−
n ) + I (βnω

−
n )

]

≥ lim
n→∞max

s≥0

[ s2
2

‖ω+
n ‖2 − C(s p+1‖ω+

n ‖p+1 + s6‖ω+
n ‖6)

]
+ m

≥ max
s≥0

[Cs2

2
− C(s p+1 + s6)

]
+ m > m,

which reaches to a contradiction. This concludes the proof. ��
Lemma 3.2 Any bounded {un} ⊂ U ⊂ H1

r (R3) such that I (un) → b ∈ (0, c + 1
3 S

3
2 )

and I ′(un) → 0 contains a convergent subsequence.

Proof Since {un} is bounded in H1
r (R3), there exists u ∈ H1

r (R3) such that, up to a
subsequence,

un⇀u in H1
r (R3), un → u in L p+1(R3), un → u a.e. in R

3.

First we show that I ′(u) = 0. In fact, let us definewn = |un|4un andw = |u|4u. Since
{un} is bounded in L6(R3), then wn is bounded in L

6
5 (R3) and so wn⇀w in L

6
5 (R3).

According to the fact that for any v ∈ H1
r (R3), one has v ∈ L6(R3). Therefore, it

holds that
∫
R3

wnvdx →
∫
R3

wvdx, i.e.,
∫
R3

|un|4unvdx →
∫
R3

|u|4uvdx, (3.9)
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and ∫
R3

(∇un · ∇v + unv)dx →
∫
R3

(∇u · ∇v + uv)dx . (3.10)

Similar to (3.9), we can also conclude that

∫
R3

|un|p−1unvdx →
∫
R3

|u|p−1uvdx and
∫
R3

φun unvdx →
∫
R3

φuuvdx .

(3.11)
Combining (3.9)–(3.11), we derive that

〈I ′(un), v〉 =
∫
R3

(∇un · ∇v + unv)dx +
∫
R3

φun unvdx

−
∫
R3

|un|p−1unvdx −
∫
R3

|un|4unvdx

→
∫
R3

(∇u · ∇v + uv)dx +
∫
R3

φuuvdx

−
∫
R3

|u|p−1uvdx −
∫
R3

|u|4uvdx = 〈I ′(u), v〉.

Due to the fact that I ′(un) → 0 in H1
r (R3), it therefore follows that I ′(u) = 0 in

H1
r (R3).
Denoting by ũn := un − u, from Brézis-Lieb lemma (see [7, Theorem 1]), Lemma

2.1 (i i i) and the compactness of H1
r (R3) ↪→ Ls(R3) for s ∈ (2, 6), we deduce that

b = I (un) + o(1)

= 1

2
‖un‖2 + 1

4
Lφun

(un) − 1

p + 1

∫
R3

|un|p+1dx − 1

6

∫
R3

|un|6dx + o(1)

= 1

2
‖u‖2 + 1

4
Lφu (u) − 1

p + 1

∫
R3

|u|p+1dx − 1

6

∫
R3

|u|6dx

+ 1

2
‖ũn‖2 − 1

6

∫
R3

|̃un|6dx + o(1)

= I (u) + 1

2
‖ũn‖2 − 1

6

∫
R3

|̃un|6dx + o(1)

= I (u) +
(1
2
‖ũ+

n ‖2 − 1

6

∫
R3

|̃u+
n |6dx

)
+

(1
2
‖ũ−

n ‖2 − 1

6

∫
R3

|̃u−
n |6dx

)
+ o(1),

(3.12)

0 = 〈I ′(un), u+
n 〉 + o(1)

= ‖u+
n ‖2 + Lφun

(u+
n ) −

∫
R3

|u+
n |p+1dx −

∫
R3

|u+
n |6dx + o(1)

= ‖u+‖2 + Lφu (u
+) −

∫
R3

|u+|p+1dx −
∫
R3

|u+|6dx

+ ‖ũ+
n ‖2 −

∫
R3

|̃u+
n |6dx + o(1)
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= 〈I ′(u), u+〉 + ‖ũ+
n ‖2 −

∫
R3

|̃u+
n |6dx + o(1)

= ‖ũ+
n ‖2 −

∫
R3

|̃u+
n |6dx + o(1), (3.13)

and

0 = 〈I ′(un), u−
n 〉 + o(1)

= ‖u−
n ‖2 + Lφun

(u−
n ) −

∫
R3

|u−
n |p+1dx −

∫
R3

|u−
n |6dx + o(1)

= ‖u−‖2 + Lφu (u
−) −

∫
R3

|u−|p+1dx −
∫
R3

|u−|6dx

+ ‖ũ−
n ‖2 −

∫
R3

|̃u−
n |6dx + o(1)

= 〈I ′(u), u−〉 + ‖ũ−
n ‖2 −

∫
R3

|̃u−
n |6dx + o(1)

= ‖ũ−
n ‖2 −

∫
R3

|̃u−
n |6dx + o(1).

(3.14)

In what follows, we show that un → u in H1
r (R3) by excluding the other three

possibilities.
Case 1. ũ+

n ⇀0 and ũ−
n → 0 in H1

r (R3).
From ũ−

n → 0 strongly in H1
r (R3), it gives u−

n → u− in H1
r (R3). Then, for un ∈ U,

by the definition of ξ(u, v), we see that

1

2
‖u−

n ‖2 <
1

2

(
‖u−

n ‖2 + Lφun
(u−

n )
)

<

∫
R3

|u−
n |p+1dx +

∫
R3

|u−
n |6dx

≤ C(‖u−
n ‖p+1 + ‖u−

n ‖6).

Thus, there exists � > 0 such that ‖u−
n ‖ ≥ � > 0 for any un ∈ U. It therefore follows

that ‖u−‖2 = limn→∞ ‖u−
n ‖2 ≥ �2 > 0, which means that u �= 0. Since I ′(u) = 0,

then u ∈ N and I (u) ≥ c.
Moreover, since ũ+

n ⇀0 in H1
r (R3), we may assume that for n large enough,

‖ũ+
n ‖2 → d > 0. Then, by (3.13) we have

∫
R3 |̃u+

n |6dx → d > 0. It follows

from (1.7) that
∫
R3 |̃u+

n |6dx ≤ S−3‖ũ+
n ‖6. So, it gives that d ≥ S

3
2 and

1

2
‖ũ+

n ‖2 − 1

6

∫
R3

|̃u+
n |6dx → 1

3
d ≥ 1

3
S

3
2 .

Noting that ũ−
n → 0 in H1

r (R3), we deduce from (3.12) that

b + o(1) = I (un) = I (u) +
(1
2
‖ũ+

n ‖2 − 1

6

∫
R3

|̃u+
n |6dx

)
≥ c + 1

3
S

3
2 + o(1),
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which contradicts the fact that b ∈ (0, c + 1
3 S

3
2 ).

Case 2. ũ−
n ⇀0 and ũ+

n → 0 in H1
r (R3).

From a similar argument as in Case 1, it can also lead to a contradiction.
Case 3. ũ±

n ⇀0 in H1
r (R3).

In the same way as Case 1 and Case 2, one has from (3.13) and (3.14) that

1

2
‖ũ+

n ‖2 − 1

6

∫
R3

|̃u+
n |6dx → 1

3
d ≥ 1

3
S

3
2

and

1

2
‖ũ−

n ‖2 − 1

6

∫
R3

|̃u−
n |6dx → 1

3
d ≥ 1

3
S

3
2 .

Note that I (u) = I (u) − 1
p+1 〈I ′(u), u〉 ≥

(
1
2 − 1

p+1

)
‖u‖2 ≥ 0, it can be concluded

from Lemma 2.4 (i i) that

b = I (un) + o(1)

= I (u) +
(1
2
‖ũ+

n ‖2 − 1

6

∫
R3

|̃u+
n |6dx

)
+

(1
2
‖ũ−

n ‖2 − 1

6

∫
R3

|̃u−
n |6dx

)
+ o(1)

≥ 1

3
S

3
2 + 1

3
S

3
2 + o(1) > c + 1

3
S

3
2 + o(1),

which is impossible since b ∈ (0, c + 1
3 S

3
2 ). ��

Lemma 3.3 m < c + 1
3 S

3
2 .

Proof The idea here is to find an element inM such that the value of I is strictly less

than c + 1
3 S

3
2 on this element. For this purpose, we need the extremal function uε,y

defined by

uε,y = (3ε)
1
4(

ε + |x − y|2
) 1

2

, ∀ε > 0, y ∈ R
3.

Let ϕ ∈ C∞
0 (B2ρ(0)) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Bρ(0) and supp(ϕ) ⊂ B2ρ(0)

for some ρ > 0. Set vε = ϕ ◦ uε,0 and then vε ∈ H1
r (R3) with vε(x) ≥ 0 for

each x ∈ R
3. According to the argument in [8, Lemma 1.1], we have the following

asymptotic estimates

∫
R3

|∇vε|2dx = k1 + O(ε
1
2 ),

(∫
R3

|vε|6dx
) 1

3 = k2 + O(ε
3
2 ),

k1
k2

= S,

(3.15)
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∫
R3

|vε|sdx =

⎧⎪⎨
⎪⎩
O(ε

s
4 ), s ∈ [2, 3),

O(ε
s
4 | ln ε|), s = 3,

O(ε
6−s
4 ), s ∈ (3, 6).

(3.16)

Suppose that u0(x) is the positive ground state solution of system (1.1) obtained
in Lemma 2.4. We first prove that there exist sε, tε > 0 such that sεu0 − tεvε ∈ M.
Actually, denote ψ(τ) = 1

τ
u0 − vε, τ > 0 and define τ1, τ2 ∈ (0,∞] by

τ1 = sup{τ ∈ R
+ : ψ+(τ ) �= 0}, τ2 = inf{τ ∈ R

+ : ψ−(τ ) �= 0}.

In view of the positivity and regularity of u0, we have τ1 = ∞ and 0 < τ2 < τ1. If
τ → τ+

2 , this immediately implies ψ−(τ ) → 0 and ψ+(τ ) → 1
τ2
u0 − vε �= 0. Thus

we use Lemma 2.3 (i i) to obtain that tψ(τ) → ∞ as τ → τ+
2 . Furthermore, since

ψ+(τ ) → 1
τ2
u0 − vε �= 0 in H1

r (R3) and

0 = 〈I ′(sψ(τ)ψ
+(τ ) + tψ(τ)ψ

−(τ )), sψ(τ)ψ
+(τ )〉

s4ψ(τ)

= ‖ψ+(τ )‖2
s2ψ(τ)

+ Lφψ+(τ )
(ψ+(τ )) + t2ψ(τ)

s2ψ(τ)

Lφψ−(τ )
(ψ+(τ ))

− s p−3
ψ(τ)

∫
R3

|ψ+(τ )|pdx − s2ψ(τ)

∫
R3

|ψ+(τ )|6dx,

it is evident to see that
tψ(τ)

sψ(τ)
is unbounded, and so

sψ(τ) − tψ(τ) → −∞ as τ → τ+
2 .

If τ → τ1 = ∞, following a similar argument as above, we can derive that
sψ(τ)

tψ(τ)
is

unbounded and

sψ(τ) − tψ(τ) → ∞ as τ → τ1.

Then, thanks to the continuity of s and t , there exists τε ∈ (τ2, τ1) such that sψ(τε) =
tψ(τε). Let sε = 1

τε
sψ(τε) and tε = tψ(τε), it is obvious that

sψ(τε)ψ
+(τε) + tψ(τε)ψ

−(τε) = sεu0 − tεvε ∈ M.

Furthermore, it follows from Lemma 2.2 that I (sεu0 − tεvε) = sups,t≥0 I (su0 − tvε).

Secondly, we shall show that sups,t≥0 I (su0− tvε) < c+ 1
3 S

3
2 . A direct calculation

implies that I (su0 − tvε) < 0 as s or t large enough. In addition, the continuity of I

respect to t also means that I (su0 − tvε) < c + 1
3 S

3
2 for t small enough. So we just

need to consider the case that s and t are contained in some bounded domain such
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that t has a positive lower bound. For this case, we analyse the energy functional as
follows. A straightforward calculation gives that

I (su0 − tvε) = I (su0) + 1

2
‖tvε‖2 − 1

p + 1

∫
R3

|tvε|p+1dx − 1

6

∫
R3

|tvε|6dx

+ 1

4

[
Lφsu0−tvε

(su0 − tvε) − Lφsu0
(su0)

]

− 1

p + 1

∫
R3

(
|su0 − tvε|p+1 − |su0|p+1 − |tvε|p+1

)
dx

− 1

6

∫
R3

(
|su0 − tvε|6 − |su0|6 − |tvε|6

)
dx

− st
∫
R3

(∇u0 · ∇vε + u0vε)dx .

(3.17)
In light of the estimates (3.15) and (3.16), we deduce that as ε → 0,

max
t≥0

(1
2
‖tvε‖2 − 1

6

∫
R3

|tvε|6dx
)

= 1

3

‖vε‖3(∫
R3 |vε|6dx

) 1
2

= 1

3
S

3
2 + O(ε

1
2 ). (3.18)

By the definition of vε, if ε ∈ (0, ρ2], we have

∫
R3

|tvε|p+1dx ≥ C
∫

|x |≤ρ

|ϕ ◦ uε,0|p+1dx = C
∫

|x |≤ρ

∣∣∣ (3ε)
1
4

(ε + |x |2) 1
2

∣∣∣p+1
dx

= Cε
p+1
4

∫ ρ

0

r2

(ε + r2)
p+1
2

dr = Cε
5−p
4

∫ ρε
− 1
2

0

μ2

(1 + μ2)
p+1
2

dμ

≥ Cε
5−p
4

∫ 1

0

μ2

2
p+1
2

dμ = Cε
5−p
4 .

(3.19)
Since u0 is a positive ground state solution of system (1.1), we are led to

− st
∫
R3

(∇u0 · ∇vε + u0vε)dx

= st
∫
R3

[
φu0u0vε − |u0|p−1u0vε − |u0|4u0vε

]

≤ st
∫
R3

φu0u0vε ≤ st‖φu0‖6‖u0‖ 12
5
‖vε‖ 12

5

≤ C‖vε‖ 12
5

≤ Cε
1
4 .

(3.20)

Through a simple calculation, we see that
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1

4

[
Lφsu0−tvε

(su0 − tvε) − Lφsu0
(su0)

]

= −st
(∫

R3
φsu0u0vεdx +

∫
R3

φtvεu0vεdx
)

+ t2s2

2

∫
R3

φu0v
2
εdx

+ t4

4

∫
R3

φvεv
2
εdx + s2t2

∫
R3

∫
R3

u0(x)u0(y)vε(x)vε(y)

|x − y| dxdy.

(3.21)

Note that s and t are bounded, we can infer from Hölder’s inequality, Lemma 2.1 (iv)

and (3.16) that

st
∫
R3

φsu0u0vεdx ≤ st‖φsu0‖6‖u0‖ 12
5
‖vε‖ 12

5
≤ C‖vε‖ 12

5
≤ Cε

1
4 , (3.22)

st
∫
R3

φtvεu0vεdx ≤ st‖φtvε‖6‖u0‖ 12
5
‖vε‖ 12

5
≤ C‖vε‖312

5
≤ Cε

3
4 , (3.23)

t2s2

2

∫
R3

φu0v
2
εdx ≤ C‖φu0‖6‖vε‖212

5
≤ Cε

1
2 , (3.24)

t4

4

∫
R3

φvεv
2
εdx ≤ C‖φvε‖6‖vε‖212

5
≤ C‖vε‖412

5
≤ Cε, (3.25)

and, by Hardy-Littlewood-Sobolev inequality, we get

s2t2
∫
R3

∫
R3

u0(x)u0(y)vε(x)vε(y)

|x − y| dxdy

≤ s2t2
(∫

R3
|u0(x)vε(x)| 65 dx

) 5
3 ≤ C‖u0‖212

5
‖vε‖212

5
≤ Cε

1
2 .

(3.26)

Then, in view of (3.22)–(3.26), we deduce that

1

4

[
Lφsu0−tvε

(su0 − tvε) − Lφsu0
(su0)

]
≤ Cε

1
4 . (3.27)

To proceed further, we need the inequality |x − y|q − xq − yq ≥ −C(xq−1y+ xyq−1)

for all x, y ≥ 0 and q ≥ 1 (see [28, Calculus Lemma]). This, combining with u0 ∈
L∞(R3), supp(vε) ⊂ B2ρ(0), Hölder’s inequality, (3.16) and the boundedness of s, t ,
readily shows that

− 1

p + 1

∫
R3

(
|su0 − tvε|p+1 − |su0|p+1 − |tvε|p+1

)
dx

≤ C
∫
R3

(
|su0|p|tvε| + |su0||tvε|p

)
dx

≤ Cε
1
4 + C‖vε‖p

p ≤ Cε
1
4

(3.28)
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and

− 1

6

∫
R3

(
|su0 − tvε|6 − |su0|6 − |tvε|6

)
dx

≤ C
∫
R3

(
|su0|5|tvε| + |su0||tvε|5

)
dx

≤ Cε
1
4 + C‖vε‖55 ≤ Cε

1
4 .

(3.29)

Substituting (3.18), (3.19), (3.20), (3.27), (3.28) and (3.29) into (3.17), we obtain from
Lemma 2.4 and 4 < p < 5 that

m ≤ I (su0 − tvε) ≤ I (u0) + 1

3
S

3
2 + Cε

1
4 − Cε

5−p
4 < c + 1

3
S

3
2 (3.30)

as ε → 0. That is, we complete the proof of this lemma. ��
Proof of Theorem 1.1 Based on Lemma 3.1, there exists a sequence {un} ∈ U such that
I (un) → m and I ′(un) → 0 as n → ∞. Then, Lemmas 3.2 and 3.3 indicate that
there exists a nontrivial ũ0 ∈ H1

r (R3) such that un → ũ0 as n → ∞. Thus, by the
continuity of I and I ′, it gives that I (̃u0) = m and I ′(̃u0) = 0. Moreover, similar to
the proofs of Claim 1 and Claim 2 in Lemma 3.2, we can derive that ‖ũ±

0 ‖ > 0, which
immediately implies that ũ0 is a ground state sign-changing solution to system (1.1).

In what follows, we claim that ũ0 has exactly two nodal domains. We shall prove
this by a contradiction argument. Supposing otherwise, then we assume that ũ0 =
u1 + u2 + u3 with

ui �= 0, u1 ≥ 0, u2 ≤ 0, u3 ≥ 0

and

supp(ui ) ∩ supp(u j ) = ∅, i �= j (i, j = 1, 2, 3).

By a direct calculation, we have

Lφũ0
(̃u0) = Lφu1

(u1) + Lφu2
(u2) + Lφu3

(u3) + 2Lφu1
(u2) + 2Lφu1

(u3) + 2Lφu2
(u3).

Let v = u1 + u2, then it follows from I ′(̃u0) = 0 that

{ 〈I ′(v), v+〉 = 〈I ′(u1 + u2), u1〉 = 〈I ′(̃u0), u1〉 − Lφu3
(u1) < 0,

〈I ′(v), v−〉 = 〈I ′(u1 + u2), u2〉 = 〈I ′(̃u0), u2〉 − Lφu3
(u2) < 0.

Therefore, by Lemma 2.2, there exists (sv, tv) ∈ (0, 1] × (0, 1] such that

svv
+ + tvv

− = svu1 + tvu2 ∈ M and I (svu1 + tvu2) ≥ m.

Since 〈I ′(̃u0), ũ0〉 = 0 and 〈I ′(svu1 + tvu2), svu1 + tvu2〉 = 0, we are led to
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m = I (̃u0) − 1

6
〈I ′(̃u0), ũ0〉

= 1

3
‖ũ0‖2 + 1

12
Lφũ0

(̃u0) +
(1
6

− 1

p + 1

) ∫
R3

|̃u0|p+1dx

>
1

3
‖u1‖2 +

(1
6

− 1

p + 1

) ∫
R3

|u1|p+1dx + 1

3
‖u2‖2 +

(1
6

− 1

p + 1

) ∫
R3

|u2|p+1dx

+ 1

12
Lφu1

(u1) + 1

12
Lφu2

(u2) + 1

6
Lφu1

(u2)

≥ s2v
3

‖u1‖2 + s p+1
v

(1
6

− 1

p + 1

) ∫
R3

|u1|p+1dx

+ t2v
3

‖u2‖2 + t p+1
v

(1
6

− 1

p + 1

) ∫
R3

|u2|p+1dx

+ s4v
12

Lφu1
(u1) + t4v

12
Lφu2

(u2) + s2v t
2
v

6
Lφu1

(u2)

= 1

3
‖svu1 + tvu2‖2 +

(1
6

− 1

p + 1

) ∫
R3

|svu1 + tvu2|p+1dx

+ 1

12
Lφsvu1+tvu2

(svu1 + tvu2)

= I (svu1 + tvu2) − 1

6
〈I ′(svu1 + tvu2), svu1 + tvu2〉

= I (svu1 + tvu2) ≥ m,

which is a contradiction.
It remains to show that that m > 2c. Indeed, in view of Lemma 2.4 (i), there exist

s̃, t̃ > 0 such that s̃ũ+
0 , t̃ ũ−

0 ∈ N . Thus, we infer from Lemma 2.2 that

m = I (̃u0) ≥ I (̃sũ+
0 + t̃ ũ−

0 )

= I (̃sũ+
0 ) + I (̃t ũ−

0 ) + s̃ 2̃t2

2
Lφ

ũ−
0
(̃u+

0 )

> I (̃sũ+
0 ) + I (̃t ũ−

0 ) ≥ 2c.

��
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