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Abstract
This paper discusses the asymptotic behavior of the solution for a class of perturbed
nonlocal stochastic functional differential equations (SFDEs, in short). By comparing
it with the solution of the corresponding unperturbed one, we derive the conditions
under which their solutions are close. Firstly, the results are established on finite time-
intervals. Then, we also show the results hold when the length of time-interval tends
to infinity as small perturbations tend to zero.

Keywords Nonlocal stochastic functional differential equation · Small perturbation ·
Closeness
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1 Introduction

For the practical applications in mechanics, medicine biology, ecology and so on,
stochastic functional differential equations (SFDEs, in short) attracted researchers’
more attention.One can see [7,9–11,13] and the references therein.Moreover, nonlocal
stochastic differential equations have potential application in finance market, one can
see [1,8,12,14] for the details. Especially, Wu and Hu [15] introduced the following
nonlocal SFDEs with infinite delay with the form
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dy(t) = g
(
t, yt , ||yt ||p

)
dt + σ

(
t, yt , ||yt ||p

)
dB(t), t ≥ 0, (1)

where yt = yt (θ) =: {y(t + θ) : θ ∈ (−∞, 0]}, g and σ are two Borel measurable
functions defined on the space R+ × BC((−∞, 0];Rd) ×R+. For p ≥ 2, || · ||p is a
norm in the space L p((−∞, 0] × �;Rd) with the form

||yt ||p =
[∫ 0

−∞
E|y(t + θ)|p dη(θ)

]1/p
,

where η is a probability measure and BC((−∞, 0];Rd) is the family of bounded
continuous functions from (−∞, 0] to R

d with the norm ||ϕ|| = sup−∞<θ≤0 |ϕ(θ)|.
In [15], by virtue of the fixed point theorem, the authors proved the existence and
uniqueness of the solution for the nonlocal SFDE (1) with the coefficients g and σ

satisfying the Lipschitz condition and the linear growth condition.
In addition, SDEswith perturbations are very important not only from the theoretical

point of view but also from the point of view of various application. One can see
the related works by Janković and Jovanović [2–6] for discussing different class of
perturbed stochastic differential equations.

If A is a vector, we denote its transpose as AT . If A is a matrix, we denote its
Frobenius norm as |A| = √

trace(AT A). Let | · | be the Euclidean norm in R
d and

(�,F ,P) be a complete probability space with its filtration {Ft }t≥0 satisfying the
usual conditions. In the sequel, we assume that B(t) is an d-dimensional Brownian
motion defined on the complete probability space (�,F ,P). For given constants
r , p > 0, let L p([−r , 0];Rd) denote the family of Rd -valued, Borel measurable
functions ψ(s),−r ≤ s ≤ 0, which is equipped with the following norm

||ψ ||L p =
(∫ 0

−r
|ψ(s)|p ds

)1/p

< ∞.

Let BCF0([−r , 0];Rd) be the family of continuous bounded R
d -valued stochastic

process φ = {φ(s),−r ≤ s ≤ 0} such that φ(s) is F0-measurable for every s, here,
we require that Fs = F0 for −r ≤ s ≤ 0.

In this paper, we consider the following nonlocal SFDE with delay with the form

{
dy(t) = g(t, yt , ||yt ||2) dt + σ(t, yt , ||yt ||2) dB(t), t ≥ 0,
y(t) = φ(t), −r ≤ t ≤ 0,

(2)

where yt = yt (θ) = {y(t +θ) : −r ≤ θ ≤ 0} is an L2([−r , 0];Rd)-valued stochastic
process, g : R+ × L2([−r , 0];Rd) × R+ → R

d and σ : R+ × L2([−r , 0];Rd) ×
R+ → R

d×n are two Borel measurable functions, and || · ||2 is a norm in the space
L2([−r , 0] × �;Rd) defined by

||yt ||2 =
(∫ 0

−r
E|y(t + θ)|2 dμ(θ)

)1/2

,
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where μ is a probability measure.
Let the coefficients g and σ satisfy the following Lipschitz and linear growth con-

ditions, that is, there exists a positive constant K > 0, for t ≥ 0, y, y′ ∈ R
d ,

ϕ, ϕ′ ∈ L2([−r , 0];Rd), such that

|g(t, ϕ, y) − g(t, ϕ′, y′)| ∨ |σ(t, ϕ, y) − σ(t, ϕ′, y′)| ≤ k(||ϕ − ϕ′||L2 + |y − y′|),
|g(t, ϕ, y)| ∨ |σ(t, ϕ, y)| ≤ k(||ϕ||L2 + |y|). (3)

Now,we propose the perturbed nonlocal SFDEwith delay, that is, for a small parameter
ε ∈ (0, 1) with the form

{
dyε(t) = g̃(t, yε

t , ||yε
t ||2, ε) dt + σ̃ (t, yε

t , ||yε
t ||2, ε) dB(t), t ≥ 0,

yε(t) = φε(t), −r ≤ t ≤ 0,
(4)

where g̃, σ̃ , φε have the following form

g̃(t, ϕ, y, ε)=g(t, ϕ, y) + α(t, ϕ, y, ε), σ̃ (t, ϕ, y, ε)=σ(t, ϕ, y) + β(t, ϕ, y, ε),

(5)

where α, β are the perturbed parameters defined as g, σ respectively. In what way, (4)
could be regarded as the perturbed equation with respect to the unperturbed equation
(2).

Motivated by the above works, the aim of this paper is to establish the relation
between y(t), the solution of (2), and yε(t), the solution of (4) and show their closeness
in the sense of (2m)-th moment for m ∈ N. In doing so, we introduce the following
assumptions.

(H1) For m ≥ 1 and a non-random function δ(ε), it holds that

E

[

sup
t∈[−r ,0]

|φ(t)|2m
]

< ∞,E

[

sup
t∈[−r ,0]

|φε(t)|2m
]

< ∞,

E

[

sup
t∈[−r ,0]

|φε(t) − φ(t)|2m
]

≤ δ(ε). (6)

(H2) There exist two non-negative bounded functions α(·) and β(·), defined on [0, T ]
and dependent on ε such that

sup
ϕ∈L2([−r ,0];Rd ),y∈Rd

|α(t, ϕ, y, ε)| ≤ α(t, ε),

sup
ϕ∈L2([−r ,0];Rd ),y∈Rd

|β(t, ϕ, y, ε)| ≤ β(t, ε). (7)

(H3) We assume that the functions g, σ, α, β satisfy the Lipschitz and linear growth
conditions proposed previously.
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Then, under the above conditions and by the same procedures as Wu and Hu
[15], we can easily show that (2) has a unique solution. Moreover, it holds that

E

[

sup
−r≤t≤T

|y(t;φ)|2m
]

< ∞ and E

[

sup
−r≤t≤T

|yε(t;φε)|2m
]

< ∞.

The paper is organized as follows. In Sect. 2, we introduce some preliminaries.
Section 3 is devoted to the main result. In Sect. 4, an example is given to illustrate the
obtained result. In the last Section, concluding remarks are given.

2 Preliminaries

Let’s first prove an independent result, which is crucial for the next part.

Lemma 1 ([6], Gronwall-Bellman inequality) For three non-negative and continuous
functions defined on [0, T ], ν(t), b(t) and c(t) satisfying that

ν(t) ≤ C +
∫ t

0
b(s)ν(s)ds +

∫ t

0
c(s)να(s)ds, t ∈ [0, T ],

where C > 0, 0 ≤ α < 1 are constants. Then, it holds the following relation

ν(t)≤
[
C1−αe(1−α)

∫ t
0 b(s)ds+(1 − α)

∫ t

0
c(s)e(1−α)

∫ t
s b(r)drds

]1/(1−α)

, t ∈ [0, T ].
(8)

Theorem 1 Let yε(t) and y(t) be the solutions of the (2) and (4), respectively, defined
on a finite interval [0, T ] , and let the assumption (H1)– (H3) be satisfied. Then, for
t ∈ [0, T ] and m > 1,

E

[

sup
s∈[−r ,t]

|yε(s) − y(s)|2m
]

≤
[
(5δ(ε))

m−1
m e8m(m−1)

∫ t
0 (am+bm+cm )ds

+8m(m − 1)
∫ t

0
(bm + cm)e8m(m−1)

∫ t
s (am+bm+cm)dτds

] m
m−1

, (9)

where

am = T k2r + 8k2r + 8(m − 1)2T k4r2,

bm = T k2Aeϕs + 8k2Aeϕs + 8(m − 1)2T k4(Aeϕs)2,

cm = T ᾱ2 + 4β̄2 + (m − 1)2T β̄4,

A = A(φ, T , ε),

ϕ = ϕ(T ).
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Proof Let us take

zε(t) = yε(t) − y(t), �ε(t) = E

[

sup
s∈[−r ,t]

|zε(s)|2m
]

.

To estimate �ε(t), applying the Itô formula to |zε(t)|m and taking expectations, we
have

|zε(t)|m = |zε(0)|m + m

(
I1(t) + I2(t) + 1

2
(m − 1)I3(t)

)
, (10)

where

I1(t) =
∫ t

0

[
g̃

(
s, yε

s , ||yε
s ||2, ε

) − g(s, ys, ||ys ||2)
] |zε(s)|m−1ds,

I2(t) =
∫ t

0

[
σ̃

(
s, yε

s , ||yε
s ||2, ε

) − σ(s, ys, ||ys ||2)
] |zε(s)|m−1dB(s),

I3(t) =
∫ t

0

[
σ̃

(
s, yε

s , ||yε
s ||2, ε

) − σ(s, ys, ||ys ||2)
]2 |zε(s)|m−2ds.

Then, we get

E

[

sup
s∈[0,t]

|zε(s)|2m
]

= E

[

sup
s∈[0,t]

(|zε(s)|m)2
]

≤ 4δ(ε) + 4m2
E

[

sup
s∈[0,t]

|I1(s)|2
]

+ 4m2
E

[

sup
s∈[0,t]

|I2(s)|2
]

+m2(m − 1)2E

[

sup
s∈[0,t]

|I3(s)|2
]

. (11)

Step 1. From (5) and (10), for t ∈ [0, T ], we have

E

[

sup
s∈[0,t]

|I1(s)|2
]

= E

[

sup
u∈[0,t]

(∫ u

0
[̃g(s, yε

s , ||yε
s ||2, ε) − g(s, ys, ||ys ||2)]|zε(s)|m−1ds

)2
]

= E

[

sup
u∈[0,t]

(∫ u

0
[g(s, yε

s , ||yε
s ||2) − g(s, ys, ||ys ||2)

+α(s, yε
s , ||yε

s ||2, ε)]|zε(s)|m−1ds
)2]

.



82 Page 6 of 15 Q. Zhang, Y. Ren

By applying Holder’s inequality to E

[

sup
s∈[0,t]

|I1(s)|2
]

, we get

E

[

sup
s∈[0,t]

|I1(s)|2
]

≤ tE

[

sup
u∈[0,t]

∫ u

0

[
g

(
s, yε

s , ||yε
s ||2

) − g(s, ys, ||ys ||2)

+α
(
s, yε

s , ||yε
s ||2, ε

)]2 |zε(s)|2m−2ds
]

≤ 2tE

[

sup
u∈[0,t]

∫ u

0

(
[g (

s, yε
s , ||yε

s ||2
) − g(s, ys, ||ys ||2)]2

+α
(
s, yε

s , ||yε
s ||2, ε

)2]
)

|zε(s)|2m−2ds
]
.

In view of (3), we have

E

[

sup
s∈[0,t]

|I1(s)|2
]

≤ 2tk2E

[

sup
u∈[0,t]

∫ u

0

(||yε
s − ys ||L2 + ∣

∣||yε
s ||2 − ||ys ||2

∣
∣)2 |zε(s)|2m−2ds

]

+2tE

[

sup
u∈[0,t]

∫ u

0
α2(s, yε

s , ||yε
s ||2, ε)|zε(s)|2m−2ds

]

. (12)

Since

E

[

sup
u∈[0,t]

∫ u

0

(||yε
s − ys ||L2 + |||yε

s ||2 − ||ys ||2|
)2 |zε(s)|2m−2ds

]

≤ 2E

[

sup
u∈[0,t]

∫ u

0
(||yε

s − ys ||2L2)|zε(s)|2m−2ds

]

+2E

[

sup
u∈[0,t]

∫ u

0

∣∣||yε
s ||2 − ||ys ||2

∣∣2 |zε(s)|2m−2ds

]

, (13)

we have

E

[

sup
u∈[0,t]

∫ u

0
(||yε

s − ys ||2L2)|zε(s)|2m−2ds

]

= E

[

sup
u∈[0,t]

∫ u

0

(∫ 0

−r
|yε(s + τ) − y(s + τ)|2dτ

)
|zε(s)|2m−2ds

]
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≤ r
∫ t

0
�ε(s)ds, (14)

E

[

sup
u∈[0,t]

∫ u

0

∣∣||yε
s ||2 − ||ys ||2

∣∣2 |zε(s)|2m−2ds

]

≤ E

[

sup
u∈[0,t]

∫ u

0

(∫ 0

−r
E |z(s + θ)|2dμ(θ)

)
|zε(s)|2m−2ds

]

≤ E

[

sup
u∈[0,t]

∫ u

0

(
sup

−r<τ≤s
|zε(τ )|2

)
|zε(s)|2m−2ds

]

≤ E

[

sup
u∈[0,t]

∫ u

0
Aeϕs |zε(s)|2m−2ds

]

=
∫ t

0
Aeϕs(�ε(s))

m−1
m ds, (15)

where

A = A(φ, T , ε), ϕ = ϕ(T ).

E

[

sup
u∈[0,t]

∫ u

0
α2 (

s, yε
s , ||yε

s ||2, ε
) |zε(s)|2m−2ds

]

≤
∫ t

0
ᾱ2(s, ε)

(
�ε(s)

)m−1
m ds, (16)

Therefore, from (12)–(15) and (16), we get

E

[

sup
s∈[0,t]

|I1(s)|2
]

≤ 2tk2r
∫ t

0
�ε(s)ds

+2t
∫ t

0

[
k2Aeϕs + ᾱ2(s, ε)

]
(�ε(s))

m−1
m ds. (17)

By the following elementary inequality |a|r1 ≤ |a|r2 + |a| , 0 < r2 ≤ r1 < 1 and

putting a = �ε(s), r1 = m−1
m , r2 = 1

m , we get (�ε(s))
m−1
m ≤ (�ε(s))

1
m + �ε(s).

Thus, the relation (17) becomes

E

[

sup
s∈[0,t]

|I1(s)|2
]

≤
∫ t

0

[
2tk2r + 2tk2Aeϕs + 2t ᾱ2(s, ε)

]
(�ε(s))ds

+
∫ t

0
2t

[
k2Aeϕs + ᾱ2(s, ε)

]
(�ε(s))

1
m ds. (18)
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Step 2. In order to estimate E

[
sup

s∈[0,t]
|I2(s)|2

]
, by the Burkholder–Davis–Gundy

inequality, we have

E

[
sup

s∈[0,t]
|I2(s)|2

]

= E

[
sup

u∈[0,t]

(∫ u

0
[̃σ(s, yε

s , ||yε
s ||2, ε) − σ(s, ys, ||ys ||2)]|zε(s)|m−1dB(s)

)2]

≤ 4E
∫ t

0

[
σ̃

(
s, yε

s , ||yε
s ||2, ε

) − σ(s, ys, ||ys ||2)
]2 |zε(s)|2m−2ds

= 4E
∫ t

0

[
σ

(
s, yε

s , ||yε
s ||2

) + β(s, yε
s , ||yε

s ||2, ε)
−σ(s, ys, ||ys ||2)]2 |zε(s)|2m−2ds

≤ 8E
∫ t

0

(
σ

[(
s, yε

s , ||yε
s ||2

) − σ(s, ys, ||ys ||2)
]2

+β2(s, yε
s , ||yε

s ||2, ε)
)

|zε(s)|2m−2ds. (19)

Similarly,

E

[

sup
s∈[0,t]

|I2(s)|2
]

≤ 8k2E
∫ t

0

(||yε
s − ys ||L2 + ∣∣||yε

s ||2 − ||ys ||2
∣∣)2 |zε(s)|2m−2ds

+8E
∫ t

0
β2(s, yε

s , ||yε
s ||2, ε)|zε(s)|2m−2ds. (20)

Furthermore, we have

E

∫ t

0

(||yε
s − ys ||L2 + ∣∣||yε

s ||2 − ||ys ||2
∣∣)2 |zε(s)|2m−2ds

≤ 2E
∫ t

0

(
||yε

s − ys ||2L2
+ ∣∣||yε

s ||2 − ||ys ||2
∣∣2

)
|zε(s)|2m−2ds (21)

and

E

∫ t

0
(||yε

s − ys ||2L2)|zε(s)|2m−2ds

= E

∫ t

0

( ∫ 0

−r
|yε(s + τ) − y(s + τ)|2dτ

)
|zε(s)|2m−2ds

≤ r
∫ t

0
�ε(s)ds, (22)

E

∫ t

0

∣
∣||yε

s ||2 − ||ys ||2
∣
∣2 |zε(s)|2m−2ds
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≤ E

∫ t

0

(∫ 0

−r
E[ sup

−r<τ≤s
|zε(τ )|2]

)
|zε(s)|2m−2ds

≤
∫ t

0
Aeϕs |zε(s)|2m−2ds

≤
∫ t

0
Aeϕs(�ε(s))

m−1
m ds, (23)

E

∫ t

0
β2(r , yε

r , ||yε
r ||2, ε)(zε(r))2m−2dr

≤
∫ t

0
β̄2(r , ε)(�ε(r))

m−1
m dr . (24)

Now, substituting (21)–(24) into (20) yields that

E

[

sup
s∈[0,t]

|I2(s)|2
]

≤ 16k2r
∫ t

0
�ε(u)du

+2
∫ t

0
[8k2Aeϕu + 4β̄2(u, ε)](�ε(u))

m−1
m du. (25)

Since a = �ε(u) , r1 = m−1
m , r2 = 1

m , we obtain (�ε(u))
m−1
m ≤ (�ε(u))

1
m + �ε(u).

(25) yields that

E

[

sup
s∈[0,t]

|I2(s)|2
]

≤
∫ t

0

[
16k2r + 16k2Aeϕu + 8β̄2(u, ε)

]
(�ε(u))du

+
∫ t

0

[
16k2Aeϕu + 8β̄2(u, ε)

]
(�ε(u))

1
m du. (26)

Step 3. Now, we give the estimate for E

[

sup
s∈[0,t]

|I3(s)|2
]

.

E

[

sup
s∈[0,t]

|I3(s)|2
]

= E

[

sup
u∈[0,t]

(∫ u

0
[̃σ(s, yε

s , ||yε
s ||2, ε) − σ(s, ys, ||ys ||2)]2|zε(s)|m−2ds

)2
]

≤ E

[

sup
u∈[0,t]

(∫ u

0
[σ(s, yε

s , ||yε
s ||2) − σ(s, ys, ||ys ||2)

+β(s, yε
s , ||yε

s ||2, ε)]2|zε(s)|m−2ds
)2]

≤ tE

[

sup
u∈[0,t]

∫ u

0
[σ(s, yε

s , ||yε
s ||2) − σ(s, ys, ||ys ||2)
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+β(s, yε
s , ||yε

s ||2, ε)]4|zε(s)|2m−4ds
]

≤ 8tE

[
sup

u∈[0,t]

∫ u

0
[σ(s, yε

s , ||yε
s ||2) − σ(s, ys, ||ys ||2)]4|zε(s)|2m−4ds

]

+8tE

[

sup
u∈[0,t]

∫ u

0
β4(s, yε

s , ||yε
s ||2, ε)|zε(s)|2m−4ds

]

≤ 64k4tE

[

sup
u∈[0,t]

∫ u

0

(
||yε

s − ys ||4L2
+ ∣∣||yε

s ||2 − ||ys ||2
∣∣4

)
|zε(s)|2m−4ds

]

+8tE

[

sup
u∈[0,t]

∫ u

0
β4(s, yε

s , ||yε
s ||2, ε)|zε(s)|2m−4ds

]

. (27)

While,

E

[

sup
u∈[0,t]

∫ u

0
||yε

s − ys ||4L2
|zε(s)|2m−4ds

]

= E

[

sup
u∈[0,t]

∫ u

0

(∫ 0

−r
|yε(s + τ) − y(s + τ)|2dτ

)2

|zε(s)|2m−4ds

]

≤ r2
∫ t

0
�ε(s)ds, (28)

E

[

sup
u∈[0,t]

∫ u

0

∣∣||yε
s ||2 − ||ys ||2

∣∣4 |zε(s)|2m−4ds

]

≤ E

[

sup
u∈[0,t]

∫ u

0

(∫ 0

−r
E|zε(s + θ)|2dμ

)2

|zε(s)|2m−4ds

]

≤ E

[

sup
u∈[0,t]

∫ u

0
(Aeϕs)2|zε(s)|2m−4ds

]

=
∫ t

0
(Aeϕs)2(�ε(s))

m−2
m ds, (29)

E

[

sup
u∈[0,t]

∫ u

0
β4(s, yε

s , ||yε
s ||2, ε)]|zε(s)|2m−4ds

]

≤
∫ t

0
β̄4(s, ε)(�ε(s))

m−2
m ds. (30)

Then, it follows from (27) that
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E

[

sup
s∈[0,t]

|I3(s)|2
]

≤ 64k4tr2
∫ t

0
�ε(u)du + 8t

(∫ t

0
[8k4(Aeϕu)2 + β̄4(u, ε)](�ε(u))

m−2
m du

)

≤
∫ t

0
[64k4tr2 + 64k4t(Aeϕu)2 + 8t β̄4(u, ε)](�ε(u))du

+
∫ t

0
[64k4t(Aeϕu)2 + 8t β̄4(u, ε)](�ε(u))

1
m du. (31)

Step 4. It follows from the definition of �ε(t), we can derive

�ε(t) ≤ δ(ε) + E

[

sup
s∈[0,t]

|zε(s)|2m
]

. (32)

Substituting (18), (26) and (31) into (32), we have

�ε(t) ≤ 5δ(ε) + 8m2
∫ t

0
(am + bm + cm)(�ε(s))ds

+8m2
∫ t

0
(bm + cm)(�ε(s))

1
m ds, (33)

where am , bm and cm are determined by (9). In view of the Gronwall-Bellman inequal-
ity, the estimate (9) holds. 	


3 Main Result

Since the magnitude of the perturbations of (2) is determined by the quantities
δ(·), α(·), β(·), and A(·) , it is natural to impose some conditions on these quanti-
ties and see how �ε

t = E
[
sups∈[−r ,t] |yε(s) − y(s)|2m] → 0 as ε → 0 and on which

intervals this convergence holds.

Theorem 2 Under the conditions of Theorem 1, let δ(·), ᾱ(·), β̄(·), and Ā(·) tend to
zero as ε tends to zero. Then, it holds that

E

[

sup
t∈[−r ,T ]

|yε(t) − y(t)|2m
]

→ 0 as ε → 0. (34)

Proof In the sequel, let

ᾱ(ε) = sup
t∈[0,T ]

ᾱ(t, ε), β̄(ε) = sup
t∈[0,T ]

β̄(t, ε), Ā(ε) = sup
t∈[0,T ]

A(φ, t, ε), (35)

ξ(ε) = max{ δ(ε), ᾱ2(ε), β̄2(ε), Ā(ε)}. (36)
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It is obvious that limε→0 ξ(ε) = 0. And from the bm and cm defined in Theorem 1,
we can have two polynomials pm and qm satisfy

bm ≤ ξ(ε)pm, cm ≤ ξ(ε)qm .

Then, one get

E

[

sup
t∈[−r ,T ]

|yε(t) − y(t)|2m
]

≤
[
(5ξ(ε))

m−1
m e8m(m−1)

∫ T
0 (am+bm+cm )ds

+16m(m − 1)ξ(ε)(pm + qm)

∫ T

0
e8m(m−1)

∫ t
s (am+bm+cm )dτds

] m
m−1

≤ ξ(ε)

[
5

m−1
m e8m(m−1)

∫ T
0 (am+bm+cm )ds

+16m(m − 1)(pm + qm)

∫ T

0
e8m(m−1)

∫ t
s (am+bm+cm )dτds

] m
m−1

= ξ(ε)e8m
2
∫ T
0 (am+bm+cm )ds

[
5

m−1
m + 16m(m − 1)(pm + qm)T

] m
m−1

= ξ(ε)η(T )e8m
2
∫ T
0 (am+bm+cm)ds, (37)

where

η(T ) =
[
5

m−1
m + 16m(m − 1)(pm + qm)T

] m
m−1

.

For T is finite and lim
ε→0

ξ(ε) = 0, it yields that

�ε(T ) → 0 as ε → 0.

In what follows, we show that when the finite time-intervals whose length tends to
infinity as ε → 0 such that

lim
ε→0

E

[

sup
t∈[−r ,T ]

|yε(t) − y(t)|2m
]

= 0

on these intervals. 	

Theorem 3 Under the conditions of Theorem 2, for t ∈ [−r ,∞] and an arbitrary
ρ ∈ (0, 1), there is a positive number T (ε) > 0, which is determined by

T (ε) = 1

3ϕ
ln

−ρ ln ξ(ε) − jm
dm + em + hm

, (38)
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where

dm = 64m2k2r + 32m2β̄2(ε) + 64m2k2ϕ−1A − 64m2k2Aϕ−2,

em = 4m2k2r + 32m2(m − 1)2k4r2 + 4m2ᾱ2(ε)

+4m2(m − 1)2β̄4(ε) − 16m2(m − 1)2k4ϕ−2A2 + 64m2k2ϕ−1A,

hm = 32m2(m − 1)2k4ϕ−1A2,

jm = 64m2k2Aϕ−2 + 16m2(m − 1)2k4A2ϕ−2, (39)

such that

E

[

sup
t∈[−r ,T (ε)]

|yε(t) − y(t)|2m
]

→ 0 , as ε → 0. (40)

Proof For fixed T > 0, on the fixed time-interval [−r , T ], it holds that

lim
ε→0

E

[

sup
t∈[−r ,T ]

|yε(t) − y(t)|2m
]

= 0.

Thus, we know that there is a positive constant T = T (ε) and determine effectively
T (ε) such that (40) holds. We know from the given requirements, if we let

e8m
2
∫ T
0 (am+bm+cm )ds → 0, as ε → 0,

the corresponding conclusion can be obtained.

8m2
∫ T (ε)

0
(am + bm + cm)ds

≤
[
64m2k2r + 32m2β̄2(ε) + 64m2k2ϕ−1A − 64m2k2Aϕ−2

]
eϕT (ε)

+4m2k2r + 32m2(m − 1)2k4r2 + 4m2ᾱ2(ε)e2ϕT (ε)

+32m2(m − 1)2k4ϕ−1A2e3ϕT (ε)

+32m2(m − 1)2k4ϕ−1A2ϕ−2

≤ (dm + em + hm)e3ϕT (ε) + jm
= −ρ ln ξ(ε), (41)

which yields that (38). 	
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4 An Example

Example 1 Let us discuss the following perturbed SFDE

dy(t)ε =
[∫ 0

−0.1

|yε(t + θ)|
1 + |yε(t + θ)|dθ + sin

2−tε

1 + |yε(t + θ)|
]
dt

+
[
ln(e−s)

∣∣∣
∣

∫ 0

−0.1
[yε(t + θ) + (2 + r)

−1
m ]dBθ

∣∣∣
∣ + 1

]
dBt , (42)

while

dy(t) =
(∫ 0

−0.1

|y(t + θ)|
1 + |y(t + θ)|dθ

)
dt

+ ln

(
e−s

∣∣∣∣

∫ 0

−0.1
y(t + θ)dBθ )

∣∣∣∣ + 1

)
dBt , (43)

is the corresponding unperturbed one. It is obvious that (42) and (43) satisfy
the global Lipschitz condition and the linear growth condition and holds that
E

(
sup−r≤t≤T |y(t;φ)|2m)

< ∞. Then, these equations has unique solutions. More-
over, all the conditions of Theorems 1, 2 and 3 are satisfied. Here,

δ(ε) = ε2m, ᾱ(ε) = sin ε, β̄(ε) = 2
−1
ε ,

ξ(ε) = max{ ξ2, sin ε, 2
−2
ε } = sin ε.

Therefore, by (38), it holds that

E

[

sup
t∈[−r ,T (ε)]

|yε(t) − y(t)|2m
]

→ 0, as ε → 0.

5 Conclusions

In this paper, we study perturbed nonlocal SFDEs with delay.We establish the relation
between y(t) and yε(t) . What’s more, for an interval [0, T (ε)] whose length tends to
infinity as ε → 0, it holds that E

[
supt∈[0,T (ε)] |yε(t) − y(t)|2m] → 0 as ε → 0.

An example is provided to illustrate the feasibility of the obtained result.
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2. Janković, S., Jovanović, M.: Perturbed stochastic hereditary differential equations with integral con-
tractors. Comput. Math. Appl. 42, 871–881 (2001)
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