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Abstract
In the present paper, we introduce two classes L+ and L− of nonlinear stochastic
operators acting on the simplex of �1-space. For each operator V from these classes,
we study omega limiting sets ωV and ω

(w)
V with respect to �1-norm and pointwise

convergence, respectively. As a consequence of the investigation, we establish that
every operator from the introduced classes is weak ergodic. However, if V belongs to
L−, then it is not ergodic (w.r.t �1-norm) while V is weak ergodic.

Keywords Stochastic operator · Infinite dimensional · Ergodic · Pointwise
convergence

Mathematics Subject Classification 37B25 · 37A30 · 46N60

1 Introduction

It is known [8,14] that nonlinear (in particular, quadratic) mappings appear in various
branches of mathematics and their applications: the theory of differential equations,
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probability theory, the theory of dynamical systems, mathematical economics, math-
ematical biology, statistical physics, etc.

Recently nonlinear Markov chains become an interesting subject in many areas
of applied mathematics. These chains are discrete time stochastic processes whose
transitions, which are defined by stochastic hypermatrix P = (Pi1,...,im ,k)i1,...,im ,k∈I ,
where I ⊂ N depend on both the current state and the current distribution of the process
[11]. These processes were introduced by McKean [15] and have been extensively
studied in the context of the nonlinear Chapman- Kolmogorov equation [7,19] as well
as the nonlinear Fokker-Planck equation.On the other hand,we stress that such types of
chains are generated by tensors (hypermatrices), therefore, this topic is closely related
to the geometric and algebraic structures of tensors which have been systematically
studied and has wide applications in scientific and engineering communities [12,13,
24].

Let us denote

S =
{
x = (xi )i∈N ∈ R

N : xi ≥ 0,
∑
i∈N

xi = 1

}
.

By means of P one defines an operator V : S → S by

(B(x))k =
∑

i1,i2,...,im∈N
Pi1i2...im ,k xi1xi2 . . . xim , k ∈ N.

This operator is called m-ordered polynomial stochastic operator (in short m-ordered
PSO). Recently, in [18,20] we have studied surjectivity and bijectivity properties of
B. However, limiting properties of the operator B is not investigated (over infinite
dimensional state space) at all. We stress that if the state space ofB is finite then such
kind of operators have been examined in [24,26].

On the other hand, if one looks at the interacting populations which can be modeled
by the Kolmogorov system

dxk
dt

= xk fk(x1, . . . , xn),

xk(0) ≥ 0, k = 1, . . . , n,

where fk(x1, . . . , xn) are continuous differentiable functions. Such kind of models
arise in biology, e.g., as food chain models [5] which lead to the investigation of
Lotka–Volterra dynamical systems [27]. It is important to investigate dynamics of the
associated system when the spices in the system is huge [3,23]. Roughly speaking,
what happens if the game involves a large number of players? This naturally leads
our attention to the following problem: what is the dynamical behavior of infinite
dimensional operators acting on an infinite dimensional simplex? These investigations
have essential applications in the game theory, evolutionary and dynamical aspects of
population [1,8].

It is known that in statistical mechanics an ergodic hypothesis proposes a con-
nection between dynamics and statistics. In the classical theory the assumption was
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made that the average time spent in any region of phase space is proportional to the
volume of the region in terms of the invariant measure, or, more generally, that time
averages may be replaced by space averages. On the basis of numerical calculations,
Ulam [28] conjectured that an ergodic theorem holds for any 2-odered PSO acting on
finite dimensional simplex. Afterwards, Zakharevich [29] proved that in general this
conjecture is false. There are many results have been appeared to extend this result to
Lotka–Volterra systems [10,21,25]. In the present paper, we are going to investigate
this ergodicity question for general infinite dimensional stochastic operators.

In this present paper, we introduce two classes L+ and L− of nonlinear stochastic
operators acting on the simplex of �1-space. For each operator V from these classes,
we study omega limiting sets ωV and ω

(w)
V with respect to �1-norm and pointwise

convergence, respectively. As a consequence of the investigation, we establish that
every operator from the introduced classes is weak ergodic. However, if V belongs
to L−, then it is not ergodic (w.r.t �1-norm) while V is weak ergodic. Besides, at the
final section, we described all linear stochastic operators belonging to the classes L+
and L−.

2 Nonlinear Stochastic Operators

By �1 we denote the usual sequence space with the norm:

‖x‖ =
∞∑
k=1

|xk |.

As usual we denote

c0 =
{
x = (x1, x2, x3, . . .) : lim

n→∞ xn = 0
}

.

For a given r > 0 we denote

B+
r = {x ∈ �1 : xk ≥ 0 for all k ∈ N, ‖x‖ ≤ r}

and

Sr = {x ∈ B+
r : ‖x‖ = r}.

By S we denote S1, i.e. S := S1. This set S is called simplex in �1. By support
of x = (x1, x2, x3, . . .) ∈ S we mean a set supp(x) = {i ∈ N : xi 	= 0} . In what
follows, by ei we denote the standard basis in S, i.e. ei = (δi1, δi2, δi3, . . .) (i ∈ N),
where δi j is the Kroneker delta.

Every mapping V : S → S is called stochastic. In present paper, we deal with such
kind of operators.

Now, let us provide some concrete examples of stochastic operators.
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Example 2.1 Let f : x ∈ S 
→ f (x) ∈ (0, 1] be a continuous functional (in �1-norm).
Let us consider a nonlinear map defined by

(V (x))k = xk

(
1 +

∑
i∈N

aki xi f (x)

)
, ∀k ∈ N, ∀x = (x1, x2, x3, . . .), (2.1)

where A = (ai j ) is a skew-symmetric matrix with

aki = −aik, |aki | ≤ 1 for every k, i ∈ N. (2.2)

One can check that the operator (2.1) is stochastic. Such kind of mapping is a
particular Lotka–Volterra operator one [22,27]. Moreover, if f (x) ≡ 1, then such
operator reduces to the Volterra one (see [16]). Hence, for each f , by LV f we denote
the set of all Lotka–Volterra operators given by (2.1). The symbol A denotes the set
of all skew-symmetric matrices with (2.2). The representation (2.1) establishes a one-
to-one correspondence g : LV f → A by g(V ) = (aki ). It is clear that g is affine,
hence LV f is convex, and moreover, this correspondence allows to investigate certain
geometric properties of LV f by means of structure of the set A (see [16] for more
details).

Remark 2.2 We notice that if the population which obeys the Volterra rule and at the
same time a number of species is huge, then it is convenient to investigate dynamical
behavior of Volterra operators on an infinite dimensional simplex [23].

In statistical mechanics an ergodic hypothesis proposes a connection between
dynamics and statistics. In the classical theory the assumption was made that the
average time spent in any region of phase space is proportional to the volume of the
region in terms of the invariant measure, or, more generally, that time averages may be
replaced by space averages. Therefore, in the present paper, our main aim is to study
ergodicities of infinite dimensional stochastic operators.

For a given operator V on S, by {V n(x0)}∞n=0 we denote the trajectory of a point

x0 ∈ S under V . ByωV (x0) (respectively,ω
(w)
V (x0)) we denote the set of limit points of

{V n(x0)}∞n=0 with respect to �1-norm (respectively, pointwise convergence). Namely,
one has

ωV (x0) :=
⋂
n≥0

⋃
k≥n

V k(x0)
‖·‖

.

Equivalently, x∗ ∈ ωV (x0) means that there exists a subsequence {nk} such that

V nk (x0)
‖·‖−→ x∗, nk → ∞.

Similarly, we have

ω
(w)
V (x0) :=

⋂
n≥0

⋃
k≥n

V k(x0)
ρ

,
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here ρ is the metric given by (A.1).
So, x∗ ∈ ω

(w)
V (x0) means that there exists a subsequence {nk} such that

V nk (x0)
p.w.−→ x∗, nk → ∞.

In what follows, by a fixed point of V we mean a vector x ∈ S such that V (x) = x.
By Fix(V ) we denote the set of all fixed points of V .

Obviously, if ωV (x0) consists of a single point, i.e. ωV (x0) = {x∗}, then the tra-
jectory {V n(x0)}∞n=0 converges to x∗. Moreover, x∗ is a fixed point of V . However,
looking ahead, we remark that convergence of trajectories is not a typical case for
the dynamical systems (2.1). Therefore, it is of particular interest to obtain an upper
bound for x0 ∈ S, i.e., to determine a sufficiently “small” set containing limiting point
x∗ under trajectory of Volterra operators.

Remark 2.3 If we consider stochastic operator V on finite dimensional simplex Sd−1

the compactness of Sd−1 implies ωV (x0) 	= ∅ for any x0 ∈ Sd−1. It turns out that
this property is violated in the infinite dimensional setting (see Example 2.5). If we
consider a stochastic operator V on infinite dimensional simplex, then according to
Lemma A.4 one has ω

(w)
V (x0) 	= ∅ for any x0 ∈ S. That fact gives a motivation in

studying relationship between the sets ωV (x0) and ω
(w)
V (x0)

Definition 2.4 A stochastic operator V : S → S is called

(i) ergodic, if for every x0 ∈ S the limit

lim
n→∞

1

n

n∑
k=0

V k(x0)

exists in �1-norm.

(i i) weak ergodic, if for every x0 ∈ S the limit

lim
n→∞

1

n

n∑
k=0

V k(x0)

exists in pointwise convergence.

On the basis of numerical calculations, Ulam [28] conjectured that an ergodic
theorem holds for any QSO V on finite dimensional simplex. Afterwards, Zakharevich
[29] proved that in general this conjecture is false. In the present paper, we investigate
this ergodic property for general infinite dimensional stochastic operators.

Let us consider one interesting example.

Example 2.5 Let (ai j )i, j≥1 be an infinite dimensional skew-symmetric matrix such
that aki = a ∈ [−1, 0) for all i > k. Then the corresponding Volterra operator has the
following form
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(V (x))k = xk(1 + a − axk) − 2axk
∑
i<k

xi , ∀k ∈ N, ∀x ∈ S.

Nowwe show that V n(x)
p.w.−→ 0 for any initial point x ∈ Swith |supp(x)| = ∞. Let us

suppose that |supp(x)| = ∞. For any m ≥ 1 we define a point x(m) = ∑
i≤m xi . One

can see that x(m) ∈ [0, 1). We consider a function fa(x(m)) = x(m)

(
1 + a − ax(m)

)
,

where a ∈ [−1, 0). From 0 ≤ x(m) < 1 we can easily verify that 0 ≤ fa(x(m)) <

x(m). Hence, a sequence { f na (x(m))}∞n=1 is a decreasing and bounded. From these and
Fix( fa) ∩ [0, 1) = {0} we conclude that f na (x(m)) → 0 as n → ∞. Consequently,
we obtain

∑
k≤m(V n(x))k → 0 as n → ∞. This yields that for any k ≤ m it holds

(V n(x))k → 0 as n → ∞. From arbitrariness of m ≥ 1 we have V n(x)
p.w.−→ 0. Due

to 0 /∈ S and Lemma A.5 one concludes ωV (x) = ∅.
Now let us suppose that |supp(x)| = m0. Then we have

∑m0
k=1 xk = 1 and xk = 0

for any k > m0. So, one has (V n(x))k = 0 for any n ∈ N and k > m0.
On the other hand, from

∑m0−1
k=1 xk < 1 it follows that fa(x(m0−1)) → 0 as n → ∞.

Consequently, one gets

m0∑
k=1

(V n(x))k → 0, as n → ∞

It yields that

(V n(x))k → 0, for any k < m0 (2.3)

Finally, the equality

m0∑
k=1

(V n(x))k = 1

togetherwith (2.3) implies (V n(x))m0 → 1, whichmeans that V n(x)
p.w.−→ em0 . Hence,

by Lemma A.5 we obtain V n(x)
‖·‖−→ em0 .

Consequently, for any x ∈ S we find that

ωV (x) =
{
em0 , if max{supp(x)} = m0,

∅, if |supp(x)| = ∞.
(2.4)

ω
(w)
V (x) =

{
em0 , if max{supp(x)} = m0,

0, if |supp(x)| = ∞.
(2.5)

From (2.4) one can see that V is ergodic at x0 ∈ S if |supp(x0)| < ∞.
Now we consider a case |supp(x0)| = ∞ and we show that V is not ergodic at x0.
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Assume that V is ergodic at x0 ∈ S (|supp(x0)| = ∞). Then there exists x̂ ∈ S
such that

1

n

n∑
k=0

V k(x0)
‖·‖−→ x̂, as n → ∞. (2.6)

Then by Lemma A.5 we obtain

1

n

n∑
k=0

V k(x0)
p.w.−→ x̂, as n → ∞.

On the other hand, from (2.5) it follows that

1

n

n∑
k=0

V k(x0)
p.w.−→ 0, as n → ∞. (2.7)

Hence, (2.6),(2.7) implies x̂ = 0, which contradicts to x̂ ∈ S. So, we infer that V
is not ergodic at point x0 ∈ S.

In the present paper, we extend an idea of this example for more general stochastic
operators. To do so, we need to introduce several notions.

We recall that an �1-continuous function ϕ : S → R is called a Lyapunov function
for stochastic operator V if the limit limn→∞ ϕ(V n(x)) exists for any initial point
x ∈ S.

Obviously, if ϕ is Lyapunov function for V and limn→∞ ϕ(V n(x0)) = x∗, then
ωV (x0) ⊂ ϕ−1(x∗). Consequently, to determine more precisely of ωV (x0) we should
construct as much as possible Lyapunov functions.

However, to investigate ω
(w)
V (x0) of stochastic operator usual Lyapunov functions

may not be applicable. Therefore, we want to introduce a notion quasi Lyapunov
function which is pointwise continuous rather than �1-norm continuity.

First, we denote by b↓ a non-increasing sequence {bk}, i.e.

b↓ = (b1, b2, b3 . . . , ), such that b1 ≥ b2 ≥ b3 ≥ · · ·

A pointwise continuous function ϕ : B+
1 → R is called a quasi Lyapunov function

for V if the limit lim
n→∞ ϕ(V n(x)) exists for any initial point x ∈ S.

We note that in Lemma A.6 it has been described all pointwise continuous linear
functionals defined on B+

1 . Based on that result, we introduce the following class of
stochastic operators. Given a sequence b↓ ∈ c0 let us denote

ϕb↓(x) =
∞∑
k=1

bkxk . (2.8)
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Definition 2.6 We say a stochastic operator V belongs to the class L+ ( resp. L−) if
for every b↓ ∈ c0 and for any x ∈ S the sequence

{
ϕb↓(V n(x))

}∞
n≥0 is increasing

(resp. decreasing).

We point out that, due to 0 ≤ bn ≤ b1 for any n ≥ 1, one has 0 ≤ ϕb↓(y) ≤ b1 for
every y ∈ B+

1 . Therefore,

0 ≤ ϕb↓(V n(x)) ≤ b1, ∀n ∈ N, ∀x ∈ S.

Hence, from Definition 2.6 it immediately follows that for every V ∈ L+ ∪ L− the
functional ϕb↓ is a quasi Lyapunov function for V .

Remark 2.7 We notice that if V ∈ L+ if and only if

ϕb↓(V (x)) ≥ ϕb↓(x), x ∈ B+
1 . (2.9)

Similarly, if V ∈ L− if and only if

ϕb↓(V (x)) ≤ ϕb↓(x), x ∈ B+
1 . (2.10)

The following result described some properties of the classes L+, L−.
Proposition 2.8 The following statements hold true:

(i) the sets L+ and L− are convex;
(ii) for every V1, V2 ∈ L+ one has V1 ◦ V2 ∈ L+;
(iii) for every V1, V2 ∈ L− one has V1 ◦ V2 ∈ L−;
(iv) one has L+ ∩ L− = {I d}, here Id is an identity operator;
(v) For every V ∈ L+ ( resp. V ∈ L−) and every x ∈ S the trajectory {V n(x)}

pointwise converges.

Proof (i). Let V1, V2 ∈ L+ and λ ∈ (0, 1). Then it is clear that V = λV1 + (1− λ)V2
is stochastic operator. Take any b↓ ∈ c0. Then, due to (2.9), one gets

ϕb↓(V (x)) = λϕb↓(V1(x)) + (1 − λ)ϕb↓(V2(x))

≥ λϕb↓(x) + (1 − λ)ϕb↓(x)

≥ ϕb↓(x)

which, due Remark 2.7, yields V ∈ L+.
By the same argument, one can prove that L− is convex.
The statements (ii) and (iii) obviously follow from Remark 2.7.
(iv). Let V ∈ L+ ∩ L−. Then for all b↓ ∈ c0 from Remark 2.7 it follows that

ϕb↓(V (x)) = ϕb↓(x), ∀x ∈ S. (2.11)

For any integer k ≥ 0, let us define linear functionals by

ϕk(x) =
{∑k

j=1 x j , if k ≥ 1,
0, if k = 0,

∀x ∈ S.
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It is clear that ϕk is a quasi Lyapunov function for V . From the equality

ϕk+1(x) − ϕk(x) = xk+1,

and (2.11) we obtain

(V (x))k = xk, ∀k ∈ N,

which implies the statement.
(v). Let V ∈ L+ ∪L−. Then the convergence {ϕk(V n(x))} yields that the sequence

{V n(x)k} converges for every k ∈ N which implies the required assertion. ��
Now let us show that the introduced classes are not empty.

Example 2.9 Denote

A
+ = {(aki ) ∈ A : aki ≥ 0 for all k < i},

A
− = {(aki ) ∈ A : aki ≤ 0 for all k < i}.

We define two subclasses of Lotka–Volterra operators (see (2.1)) corresponding to
these sets by

LV+
f = {V ∈ LV f : g(V ) ∈ A

+}, LV−
f = {V ∈ LV f : g(V ) ∈ A

−}.

Let us show that LV+
f ⊂ L+ and LV−

f ⊂ L−. Indeed, take any b↓ ∈ c0. One can
check that bk ≥ 0 for any k ∈ N, since b↓ is a decreasing sequence with bn → 0.
Then, from (2.1), we obtain

ϕb↓(V (x)) − ϕb↓(x) = f (x)
∞∑
k=1

∞∑
i=k+1

aki (bk − bi )xkxi .

Since the sequence {bn} is decreasing, then one gets

ϕb↓(V (x)) − ϕb↓(x)

{
≥ 0, if V ∈ LV+

f ,

≤ 0, if V ∈ LV−
f .

This yields that for any x ∈ S the sequence {ϕb↓(V n(x))} is increasing if V ∈ LV+
f ,

and it is decreasing if V ∈ LV−
f .

Example 2.10 Let T be a right shift operator on �1, i.e. T (x) = (0, x1, x2, x3, . . .) for
every x ∈ �1. One can see that T is a stochastic. Moreover, for any b↓ ∈ c0 one has
bi+1xi ≤ bi xi , ∀i ∈ N. Consequently, we have ϕb↓(T (x)) ≤ ϕb↓(x) for every x ∈ S.
By definition this means that T ∈ L−.
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3 Main Results

In this section, we prove main results of this paper. First we study the limiting sets
ωV (x), ω(w)

V (x) for operators from the classes L+ and L−.

Theorem 3.1 Let V ∈ L+ ∪ L− and x0 ∈ S. Then the following statements hold:

(i) if V ∈ L+ then ω
(w)
V (x0) ⊂ S;

(ii) if V ∈ L− then ω
(w)
V (x0) ⊂ Sr for some r ≤ 1.

Proof First, we note that if x0 ∈ Fix(V ) then the statements are obvious. Now, let us
assume x0 ∈ S\Fix(V ). According to Proposition A.4 (see also Proposition 2.8) we
infer that ω(w)

V (x0) 	= ∅ for any V ∈ L+ ∪ L−. Moreover, ω(w)
V (x0) ⊂ B+

1 .

(i). Let V ∈ L+, and pick a point a ∈ ω
(w)
V (x0). Let us show that ‖a‖ = 1.

Assume that ‖a‖ < 1. Due to ‖x0‖ = 1, for a positive number ε = 1−‖a‖
2 , there

exists an integer m ≥ 1 such that

m∑
k=1

x (0)
k > 1 − ε.

For a given m let us define a sequence b[m]
↓ = (b̃1, b̃2, b̃3, . . .) as follows

b̃k =
{
1, k ≤ m;
1
2k

, k > m.
(3.1)

It is clear that b[m]
↓ ∈ c0. Since V ∈ L+, the functional ϕb[m]

↓
is a quasi Lyapunov

function for V . Hence,

ϕb[m]
↓

(x0) =
m∑

k=1

x (0)
k +

∞∑
k=m+1

x (0)
k

2k
≥

m∑
k=1

x (0)
k > 1 − ε

and

ϕb[m]
↓

(a) =
m∑

k=1

ak +
∞∑

k=m+1

ak
2k

≤
∞∑
k=1

ak = ‖a‖ .

From the definition of the class L+, we infer that the sequence {ϕb[m]
↓

(V n(x0))} is

increasing. Therefore,

ϕb[m]
↓

(V n(x0)) − ϕb[m]
↓

(a) ≥ ϕb[m]
↓

(x0) − ϕb[m]
↓

(a)

> 1 − ε − ‖a‖
= 1 + ‖a‖

2
> 0.
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This contradicts to the pointwise continuity of ϕb[m]
↓

at point a. So, we conclude

‖a‖ = 1, which yields ω
(w)
V (x0) ⊂ S.

(i i). Let V ∈ L−. Pick any x, y ∈ ω
(w)
V (x0). Now, let us show that ‖x‖ = ‖y‖.

Suppose that ‖x‖ > ‖y‖. For a positive ε = ‖x‖−‖y‖
2 there exists an integer m ≥ 1

such that

m∑
k=1

xk > ‖x‖ − ε.

Furthermore, for a given m ≥ 1, let us consider b[m]
↓ ∈ c0 given by (3.1). Then, due

to V ∈ L−, the functional ϕb[m]
↓

is a quasi Lyapunov function for V , and there exists

ξ ∈ [0, 1] such that

lim
n→∞ ϕb[m]

↓
(V n(x0)) = ξ. (3.2)

On the other hand, we have

ϕb[m]
↓

(x) =
m∑

k=1

xk +
∞∑

k=m+1

xk
2k

≥
m∑

k=1

xk > ‖x‖ − ε

= ‖x‖ + ‖y‖
2

> ‖y‖

≥
m∑

k=1

yk +
∞∑

k=m+1

yk
2k

= ϕb[m]
↓

(y).

Thus, ϕb[m]
↓

(x) > ϕb[m]
↓

(y) while ‖x‖ > ‖y‖. However, it contradicts to (3.2). This

means ‖x‖ = ‖y‖ which yields ω
(w)
V (x0) ⊂ Sr for some r ≥ 0. Finally, Proposi-

tion A.4 implies r ≤ 1. ��
Next result establishes relation between ωV (x0) and ω

(w)
V (x0).

Theorem 3.2 Let V ∈ L+ ∪ L− and x0 ∈ S. Then the following statements hold:

(i) if V ∈ L+ then ωV (x0) = ω
(w)
V (x0);

(ii) if V ∈ L−, then ωV (x0) = ω
(w)
V (x0) iff ωV (x0) 	= ∅.

Proof(i). Let V ∈ L+. Then according to Theorem 3.1, we have ω
(w)
V (x0) ⊂ S. By

Lemma A.5 one gets ωV (x0) = ω
(w)
V (x0).
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(i i) Let V ∈ L−. First, we assume that ωV (x0) = ω
(w)
V (x0). Then, Proposition A.4

yields ω
(w)
V (x0) 	= ∅ which means ωV (x0) 	= ∅.

Now, suppose that ωV (x0) 	= ∅. By Lemma A.3 one has ωV (x0) ⊂ S. Therefore,
Lemma A.5 (i) yields ωV (x0) ⊂ ω

(w)
V (x0), so, ω

(w)
V (x0) ∩ S 	= ∅. Finally, from

Theorem 3.1 it follows thatω(w)
V (x0) ⊂ S. Hence, LemmaA.5 (i i) impliesω

(w)
V (x0) ⊂

ωV (x0), which means ωV (x0) = ω
(w)
V (x0). This completes the proof. ��

Remark 3.3 Wepoint out that (i i) part of the theorem is an essential difference between
finite and infinite dimensional cases. Since, at the finite dimensional setting, we always
have ωV (x0) = ω

(w)
V (x0) 	= ∅ [6,9].

Now it would be interesting to know the cardinality ofω(w)
V (x0). Next result clarifies

this question.

Proposition 3.4 Let V ∈ L+ ∪ L−. Then
∣∣∣ω(w)

V (x0)
∣∣∣ = 1 for any x0 ∈ S.

Proof It is clear thatωV (x0) = {x0} for any x0 ∈ Fix(V ). So,we prove the assumption
of Theorem only for x0 ∈ S\Fix(V ).

Let x0 ∈ S\Fix(V ). Take a sequence {b(n)
↓ }n≥1 ⊂ c0 defined by

b(n)
k =

{ 1
k , k ≤ n;
0, k > n.

, k ∈ N

Then by definition 2.6 we infer that ϕb(n)
↓

(for every n ≥ 1) on B+
1 is a quasi Lyapunov

function for V ∈ L+ ∪ L−.
Assume that x, y ∈ ω

(w)
V (x0). Then the argument of the proof of Theorem 3.1

yields

ϕb(n)
↓

(x) = ϕb(n)
↓

(y) for any n ≥ 1,

which means x = y. This completes the proof. ��
Remark 3.5 The proved result reveals crucial information about the limiting set (in
the weak topology) of the dynamics of stochastic operators. Such kind of result never
observed in the theory of quadratic stochastic operators. Most of the results concern
the norm convergence of the trajectories (see, for example, [2,4,9]).

Theorem 3.6 Let V ∈ L+ ∪ L−. Then for any x0 ∈ S the following statements hold:

(i) V is weak ergodic at point x0;
(ii) if V ∈ L+ then V is ergodic at point x0;
(iii) if V ∈ L− then is ergodic at point x0 iff ωV (x0) 	= ∅.
Remark 3.7 Thanks to Theorem 3.6 we infer that if ωV (x0) 	= ∅ then V is weak
ergodic, but not ergodic (w.r.t. �1-norm) at that point, while it is weak ergodic. This is
an essential difference between finite and infinite dimensional settings. For an explicit
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example we refer to Example 2.5. This is the first example in the theory of nonlinear
operators, in the infinite dimensional setting, for which the operator is not ergodic
while it is weakly ergodic. We point out that there several results about non-ergodicity
of finite dimensional Volterra operators (see, for example, [10,21]).

Proof of Theorem 3.6 (i) From Proposition 3.4 we infer that V is weak ergodic at any
point of S.

(i i) Let V ∈ L+. Then, Theorem 3.2 (i) and Proposition 3.4 yield |ωV (x0)| = 1 for
any x0 ∈ S. This implies the ergodicity of V at x0.

(i i i) Let V ∈ L−. At first, we suppose that ωV (x0) 	= ∅. Then, from Theorem 3.2
and Proposition 3.4 we find |ωV (x0)| = 1. Hence, V is ergodic at x0.

Now, let us assume ωV (x0) = ∅. We are going to establish that V is not ergodic at
x0. Suppose that V is ergodic at x0. This means that there exists a ∈ S such that

1

n

n∑
k=0

V k(x0)
‖·‖−→ a, as n → ∞.

Then, Lemma A.5 implies

1

n

n∑
k=0

V k(x0)
p.w.−→ a, as n → ∞. (3.3)

Hence, from Proposition 3.4 together with (3.3) we obtain

V n(x0)
p.w.−→ a, as n → ∞.

From the last one and noting ωV (x0) = ∅ one gets ‖a‖ < 1. This contradicts to a ∈ S.
So, we conclude that V is not ergodic at x0. ��

4 Description of Linear Stochastic Operators fromL+ andL−

Example 2.10 shows that there exists a linear operator T such that T ∈ L−. This
naturally leads us to the descriptionof the set of all linear stochastic operators belonging
to L+ (resp. L−). In this section we do such kind of description.

Let T = (ti j ) be an infinite dimensional matrix. By T denote a linear operator from
�1 to itself defined by

T (x) = xtT (4.1)

here xt is the standard transpose of a vector.
The equality (4.1) means

(T (x))k =
∞∑
i=1

tik xi , ∀k ∈ N.
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The following Proposition is useful our next investigations.

Proposition 4.1 Let T = (ti j )∞i, j=1. Then the following statements are equivalent:

(i) T is a stochastic;
(ii) T (Sr ) ⊂ Sr for some r > 0;
(iii) It holds

ti j ≥ 0,
∞∑
k=1

tik = 1, ∀i, j ∈ N. (4.2)

Proof Due to the linearity T the implications (i)⇔(ii) are obvious. So, it is enough to
establish T (S) ⊂ S if and only if it holds (4.2).

Let us assume that T (S) ⊂ S. Then for any i ≥ 1, T (ei ) = (ti1, ti2, ti3, . . .)which,
due to T (ei ) ∈ S, implies ti j ≥ 0 for every j ≥ 1 and

∑∞
k=1 tik = 1. From the

arbitrariness of i we arrive at (4.2).
Now, we suppose that (4.2) holds. Then for every x ∈ S, we get (T (x))k ≥ 0,

∀k ≥ 1 and

∞∑
k=1

(T (x))k =
∞∑
k=1

∞∑
i=1

tik xi =
∞∑
i=1

xi

∞∑
k=1

tik =
∞∑
i=1

xi = 1.

This means that T (S) ⊂ S. This completes the proof. ��
Theorem 4.2 Let T = (ti j )∞i, j=1 be a stochastic operator and T be the corresponding

linear operator (4.1). Then T ∈ L+ (resp. T ∈ L−) iff T is lower (resp. upper)
triangular matrix.

Proof Since the constructions of the proofs for the cases T ∈ L+ and T ∈ L− are
similar, therefore, we restrict ourselves to the case T ∈ L+.

Sufficiency. Let (ti j )∞i, j=1 be a lower triangular stochastic matrix. Then, for every
b↓ ∈ c0 we have

∞∑
k=1

tikbk ≥ bi , ∀i ∈ N. (4.3)

Indeed, due to b1 ≥ b2 ≥ b3 ≥ · · · and keeping in mind T is lower triangular, one
gets

∞∑
k=1

tikbk =
i∑

k=1

tikbk ≥ bi

i∑
k=1

tik, ∀i ∈ N.

The last one together with
∑i

k=1 tik = 1 implies (4.3).
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Let ϕb↓ be a linear functional given by (2.8). Then for every x ∈ S we obtain

ϕb↓(T (x)) =
∞∑
k=1

bk

∞∑
i=1

tik xi =
∞∑
i=1

xi

i∑
k=1

tikbk . (4.4)

Hence, from (4.3) and (4.4) it follows that ϕb↓(T (x)) ≥ ϕb↓(x), which implies that
T ∈ L+.

Necessity. Let T ∈ L+. Then for all b↓ ∈ c0, and ∀i ∈ N and for ϕb↓ given by
(A.2) we have

0 ≤ ϕb↓(T (ei )) − ϕb↓(ei ) =
∞∑
k=1

tikbk − bi .

This yields that

∞∑
k=1

tikbk ≥ bi , ∀i ∈ N. (4.5)

Let us suppose that tlm 	= 0 for some m > l ≥ 1. Then

l∑
k=1

tlk <

m∑
k=1

tlk ≤
∞∑
k=1

tlk = 1. (4.6)

Let us take b̃↓ = (1, 1, . . . , 1︸ ︷︷ ︸
l

, 0, 0, . . .). Then by (4.6) one finds

∞∑
k=1

tlk b̃k =
l∑

k=1

tlk < 1,

which implies
∑∞

k=1 tlk b̃k < b̃l . This contradicts to (4.5). So, (ti j )∞i, j=1 is lower
triangular. ��
Remark 4.3 From this result and (4.1), we infer that a stochastic operator T belongs
to L+ iff for every b↓ ∈ c0 one has

ϕb↓(xtT) ≥ ϕb↓(x) (4.7)

for all x ∈ S.

Wepoint out that as an applicationofTheorem4.2one can construct lots of examples
of nonlinear stochastic operators belonging to the classes L+ and L−. First, by L+

lin
(resp. L−

lin), we denote the set of all lower (resp. upper) triangular stochastic matrices.
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Let T : x ∈ S 
→ T(x) ∈ L+
lin be an affine mapping. Now, let us define a mapping

V : S → �1 by

V (x) = xtT(x), ∀x ∈ S. (4.8)

Due to the stochasticity of T(x) the mapping V is stochastic as well.

Theorem 4.4 Let T : S → L+
lin (resp. T : S → L−

lin) be an affine mapping. Then the
mapping V given by (4.8) belongs to L+ (resp. L−).

Proof Take any b↓ ∈ c0, then due to (4.7), we find

ϕb↓(V (x)) = ϕb↓(xtT(x))

≥ ϕb↓(x)

which means V ∈ L+. ��
From this result,wemay construct a lot examples of polynomial stochastic operators

belonging to the classes L+ and L−. We notice that in [17] it was investigated (in a
finite dimensional setting) b-bistochastic quadratic stochastic operators which have
more general form than (4.8) while they belong to L−. Therefore, we may formulate
the following problem:

Problem 4.5 Describe all polynomial stochastic operators belonging to the class L+
(resp. L−).

Now, as a consequence of Theorems 3.6 and 4.2, one gets the following fact.

Theorem 4.6 Let T = (ti j )∞i, j=1 be a stochastic matrix and T be the corresponding
operator. Then for any x0 ∈ S the following statements hold:

(i) if T is lower triangular then T is ergodic at point x0;
(ii) if T is upper triangular then T is weak ergodic at point x0. Moreover, T is ergodic

at point x0 iff ωT (x0) 	= ∅.
Acknowledgements The present work is supported by the UAEU UPAR Grant No. 31S391.

Appendix A. Pointwise Convergence on �1

In this section is devoted to some properties of point-wise convergence in �1.
It is known that S = convh(Extr S), where Extr(S) is the extremal points of S

and convh(A) is the convex hall of a set A. Any extremal point of S has the following
form:

ek = (0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, 0, . . .), ∀k ∈ N.
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Here and henceforth we denote

ri Sr = {x ∈ Sr : xk > 0, k ∈ N} , ∂Sr = Sr\ri Sr .

Let {x(n)}n≥1 be a sequence in �1. In what follows we write x(n) ‖·‖−→ a instead of∥∥x(n) − a
∥∥ → 0.

Remark A.1 Note that for any r > 0 the sets Sr and Br are not compact w.r.t. �1-
norm. In the finite dimensional setting, analogues of these sets are compact, and
hence, the investigation of the dynamics of nonlinear mappings over these kind of sets
use well-known methods and techniques of dynamical systems. In our case, the non
compactness (w.r.t. �1-norm) of the set B+

r complicates our further investigation on
dynamics of Volterra operators. Therefore, we need such a weak topology on �1 so
that the set B+

r would be compact with respect to that topology.

One of weak topologies on �1 is the Tychonov topology which generates the point-
wise convergence. We say that a sequence {x(n)}n≥1 ⊂ �1 converges pointwise to
x = (x1, x2, . . .) ∈ �1 if

lim
n→∞ x (n)

k = xk for every k ≥ 1.

and write x(n) p.w.−→ x.

Remark A.2 We notice that the set �1 is not closed w.r.t. pointwise topology, and its
completion is s which is the space of all sequences. It is known that this topology is
metrizable by the following metric:

ρ(a,b) =
∞∑
k=1

2−k |ak − bk |
1 + |ak − bk | , a,b ∈ s. (A.1)

Hence, for a given sequence {x(n)}n≥1 ⊂ s the following statements are equivalent:

(i) x(n) p.w.−→ x;

(ii) x(n) ρ−→ x.

In the sequel, we will show that the unit ball of �1 is compact w.r.t. pointwise conver-
gence, while whole �1 is not closed in s.

We recall that �∞ is defined to be the space of all bounded sequences endowed with
the norm

‖x‖∞ = sup {|xn| : n ∈ N} .

The following lemma plays a crucial role in our further investigations.

Lemma A.3 Let {x(n)}n≥1 ⊂ Sr , for some r > 0. If x(n) ‖·‖−→ a, then a ∈ Sr .
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Proof It is easy to check that ‖x − y‖ ≥ |r −ρ|, ∀x ∈ Sr , ∀y ∈ Sρ . This fact together

with x(n) ‖·‖−→ a yields that a ∈ Sr . ��
Proposition A.4 The set B+

1 is sequentially compact w.r.t. the pointwise convergence.

It is clear that x(n) ‖·‖−→ a implies x(n) p.w.−→ a. A natural question arises: is there
any equivalence criteria for these two types of convergence on some set? Next result
gives a positive answer to this question.

Lemma A.5 Let {x(n)}n≥1 be a sequence on Sr . Then the following statements are
equivalent:

(1) x(n) ‖·‖−→ a and a ∈ Sr ;

(2) x(n) p.w.−→ a and a ∈ Sr .

Recall that a functional ϕ : �1 → R is called pointwise continuous if for any a ∈ �1

and any sequence {x(n)}n≥1 ⊂ �1 with x(n) p.w.−→ a one has ϕ(x(n)) → ϕ(a).
Now we provide a criteria for linear functionals to be pointwise continuous.
Given b ∈ �∞, let us define

ϕb(x) =
∞∑
k=1

bkxk, x ∈ �1. (A.2)

Lemma A.6 Let b ∈ �∞, then the linear functional ϕb is pointwise continuous on B
+
1

iff b ∈ c0.

Proof Assume that ϕb is a pointwise continuous. Consider the sequence {en}n≥1 for

which one has en
p.w.−→ 0, where 0 = (0, 0, . . .). From ϕb(en) = bn , ϕb(0) = 0 and

the pointwise continuity of ϕb implies bn → 0 as n → ∞.
Now let us suppose that bk → 0 as k → ∞, and take any sequence {x(n)}n≥1 ⊂ B+

r

such that x(n) p.w.−→ x. We will show that ϕb(x(n)) → ϕb(x). If ‖b‖∞ = 0 then nothing
to proof. So, we consider ‖b‖∞ 	= 0.

Take an arbitrary positive number ε. Then there exists an integer m ≥ 1 such that

|bk | < ε
4r for all k > m. The pointwise convergence x(n) p.w.−→ x implies the existence

of an integer n0 such that

|x (n)
k − xk | <

ε

2 ‖b‖∞
, k ∈ {1, . . . ,m}, ∀n > n0.

Consequently, we have

∣∣∣ϕb(x(n)) − ϕb(x)
∣∣∣ ≤

∣∣∣∣∣∣
∑
k≤m

bk(x
(n)
k − xk)

∣∣∣∣∣∣ +
∣∣∣∣∣
∑
k>m

bk(x
(n)
k − xk)

∣∣∣∣∣
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≤
∑
k≤m

∣∣∣bk(x (n)
k − xk)

∣∣∣ +
∑
k>m

∣∣∣bk(x (n)
k − xk)

∣∣∣
≤ ‖b‖∞

∑
k≤m

∣∣∣x (n)
k − xk

∣∣∣ + ε

4r

∑
k>m

∣∣∣x (n)
k − xk

∣∣∣
< ‖b‖∞ · ε

2 ‖b‖∞
+ ε

4r
· 2r

= ε, for all n > n0.

This yields the desired assertion. ��
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