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Abstract
Environmental noise and infectious diseases are important factors affecting the devel-
opment of the population. This paper develops amathematical system to investigate the
impacts of environmental noise and infectious diseases on predator–prey interactions.
The globally unique positive solution is confirmed by using conventional methods.
The stochastic uniform boundedness of the solution is obtained under certain con-
ditions. Sufficient conditions for the persistence and extinction are given to measure
the level of population size. Asymptotic dynamics of the solutions are carried out by
two criteria parameters. The long-term dynamics of the solutions are demonstrated by
numerical simulations. The results show that small-intensity environmental perturba-
tions can cause population size to fluctuate around a certain level, while high-intensity
environmental perturbations may lead to population extinction.

Keywords Predator–prey model · Stochastic noise · Persistence and extinction ·
Asymptotic dynamics · Infectious disease

Mathematics Subject Classification 2B05 · 92D30 · 60H10

1 Introduction

Interaction between predator and prey is one of the cornerstones in bio and ecosystems.
Understanding the mechanism behind is of great significance for maintaining species
diversity, and therefore it remains high attention in many fields of science [26–28,31,
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35]. Mathematically, the basic frameworks of this kind of interaction can be described
as {

dS
dt = μ(S) − f (S,Y ),
dY
dt = δ f (S,Y ) − MY (Y ).

(1)

The biological meanings of parameters and functions appeared are listed in Table 1.
System (1) and its variants have extensively studied with attempts to understand the
predator–prey interactions [19,20,22,23]. However, the system (1) does not include
the effect of infectious diseases on predator–prey interactions explicitly. Recently,
Hethcote et al. [14] reported that the prevalence of infectious diseases is one of the
main factors that is troubling the development of the population community. The
spread of diseases in populations can lead to an increase inmortality, and predators can
catch more infected prey. Thus, it has practical significance to gain deep insights into
understanding the transmission dynamics of diseases in predator–prey interactions,
but there are limited literature in this regards [5,13,16,17,25].

May [24] pointed out that birth rate,mortality rate and someother parameters related
to population interactions could be affected by environmental noise. The biosphere
environment is often changeable, and stochastic noise is also the cause leading to the
extinction of individuals. By running a stochastic system several times, we can obtain
the distribution of the predicted number of individuals, while a deterministic system
will give a single predicted value. Traditionally, there are two common ways to intro-
duce stochastic factors into deterministic population models. One is to assume that the
predator–prey interactions are subject to some small random fluctuations. Physically,
these small random fluctuations can be described by white noise [4,6,9,11]. Another is
to assume that the predator–prey interactions are subject to sudden catastrophic shocks
including earthquake, flood, and drought. These catastrophic shocks can be described
mathematically by the Lévy process [2,21]. Several recent studies on predator–prey
interactions have focused on the effects of environmental noise [1,7,10]. They played
an irreplaceable role in studying the effects of diseases on predator–prey interactions.
However, most of these models have considered either white noise or Lévy noise
alone. Based on the work of [32], here we shall propose a new model, which allows
us to examine the effects of white noise, Lévy noise as well as the diseases on the
predator–prey interactions.

Table 1 The biological meanings of parameters and functions in (1)

Symbols Biological meaning

S(t) The abundance of the prey

Y (t) The abundance of the predator

μ(S) The growth rate of the prey in the absence of predation

f (S, Y ) The attack rate of the predator on the prey

δ f (S, Y ) The conversion rate from the prey to the predator

MY (Y ) The mortality rate of the predator
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The paper is arranged as follows. We will, in Sect. 2, formulate the system and
then prove some preliminary results. It is then followed by exploring the asymptotic
dynamics of themodel.Numerical simulationswill be conducted in Sect. 4, to illustrate
the dynamics of the stochastic system. Finally, we conclude our study with a brief
discussion in Sect. 5.

2 Model Formulation and Preliminaries

Let I (t) be the abundance of the infected prey, function g(S, I ) the infection rate of
I (t), b(I ,Y ) the attack rate of Y (t) on I (t),mb(I ,Y ), 0 ≤ m ≤ 1 the conversion rate
from the infected prey to the predator, and MI (I ) the mortality rate of the infected
prey. Supposing that the diseases spread only among the prey yields

⎧⎪⎨
⎪⎩

dS
dt = μ(S) − f (S,Y ) − g(S, I ),
d I
dt = g(S, I ) − b(I ,Y ) − MI (I )
dY
dt = δ f (S,Y ) + mb(I ,Y ) − MY (Y ),

(2)

where we take

μ(S) = r S(t)

(
1 − S(t)

K

)
,

as in [32], f (S,Y ) = 0 and b(I ,Y ) = pIY , p > 0, indicating that healthy prey
has an absolute escape advantage over infected prey, and g(S, I ) = βSI . In general,
depending on the case in question, MI (I ) and MY (Y ) may take different forms, such
as the linear mortality [37], the quadratic mortality [3,12] and the hyperbolic mortality
[36]. In this paper, the mortality rates take forms of

MI (t) = cI (t) + w I 2(t), MY (t) = dY (t) + hY 2(t), (3)

where c denotes the disease-related death rate of the infected prey. w is the density
dependence of the infected prey, d is the death rate of Y (t), h is the density dependence
of the predator. Please note that when w = h = 0, Eq. (3) are linear mortality rates;
however, when c = d = 0 they quadratic mortality rates. The mortality rate of Eq. (3)
has been used in modeling ecosystems of marine bays in [12]. With these specifics,
we reach ⎧⎪⎪⎨

⎪⎪⎩
dS
dt = r S(t)

(
1 − S(t)

K

)
− βS(t)I (t),

d I
dt = βS(t)I (t) − pI (t)Y (t) − cI (t) − w I 2(t),
dY
dt = mpI (t)Y (t) − dY (t) − hY 2(t).

(4)

Using the similar argument as [8], we can prove

Proposition 2.1 Let R0 = Kβ
c and R1 = mp

d
r(Kβ−c)
Kβ2+wr

. Then, for system (4), we know
that
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(1) if R0 < 1, the disease-free equilibrium E1(K , 0, 0) is globally asymptotically
stable (GAS);

(2) if R0 > 1 and R1 < 1, there exists a unique boundary equilibrium E2(S, I , 0) =(
K (wr+βc)
Kβ2+wr

,
r(Kβ−c)
Kβ2+wr

, 0
)

, which is GAS, while E1 is unstable;

(3) if R1 > 1, there exists a unique positive equilibrium

E3(S
∗, I ∗,Y ∗) =

(
K (r − β I ∗)

r
,

Kβrh + dpr − crh

Khβ2 + mp2r + wrh
,
mpI ∗ − d

h

)
,

which is GAS, while both E1 and E2 are unstable.

To incorporate small stochastic noise into the deterministic system (4), for any
initial value X0 and and 0 ≤ Δt � 1 we assume that the solution Xt = (St , It ,Yt )′
is a Markov process with the conditional mean

E[Xt+Δt − Xt |X = X0] ≈
⎡
⎣ r S(1 − S

K ) − βSI
βSI − pIY − cI − w I 2

mpIY − dY − hY 2

⎤
⎦Δt

and the conditional variance

Var[Xt+Δt − Xt |X = X0] ≈
⎡
⎢⎣

σ 2
1 S

2

σ 2
2 I

2

σ 2
3 Y

2

⎤
⎥⎦ Δt .

With these considerations,we obtain the stochastic version of the system (4) as follows:

⎧⎪⎪⎨
⎪⎪⎩
dS =

(
r S(t)

(
1 − S(t)

K

)
− βS(t)I (t)

)
dt + σ1S(t)dB1(t),

d I = (
βS(t)I (t) − cI (t) − pI (t)Y (t) − w I 2(t)

)
dt + σ2 I (t)dB2(t),

dY = (
mpI (t)Y (t) − dY (t) − hY 2(t)

)
dt + σ3Y (t)dB3(t),

(5)

where Bi (t) (i = 1, 2, 3) present the standard Brownian motions with intensities
σ 2
i . Similarly, we can obtain the stochastic Lévy predator–prey system as follows

accounted for the sudden catastrophic shocks

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS =
(
r S(t)

(
1 − S(t)

K

)
− βS(t)I (t)

)
dt + σ1S(t)dB1(t)

+ ∫
Z
S(t−)γ1(u)Γ̃ (dt, du),

d I = (βS(t)I (t) − cI (t) − pI (t)Y (t) − w I 2(t))dt + σ2 I (t)dB2(t)

+ ∫
Z
I (t−)γ2(u)Γ̃ (dt, du),

dY = (mpI (t)Y (t) − dY (t) − hY 2(t))dt + σ3Y (t)dB3(t)

+ ∫
Z
Y (t−)γ3(u)Γ̃ (dt, du),

(6)
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where Γ̃ (dt, du) = Γ (dt, du) − λ(du)dt , Γ is a Poisson counting measure on a
measureable subset Z of (0,∞), and λ is the characteristic measure of the Poisson
counting measure Γ with λ(Z) < ∞.

Next, we will investigate model (6). For the sake of following discussion, we define

bi = 1

2
σi +

∫
Z

[
γi − ln(1 + γi )

]
,

〈X(t)〉 = 1

t

∫ t

0
X(s)ds, 〈X(t)〉∗ = lim inf

t→+∞〈X(t)〉, 〈X(t)〉∗ = lim sup
t→+∞

〈X(t)〉,

and introduce

Definition 2.1 System (6) is called stochastically ultimately bounded if for any ε ∈
(0, 1) there exists a χ(= χ(ω)) > 0 such that

lim sup
t→∞

P {|(S(t), I (t),Y (t))| > χ} < ε.

3 Main Results

Define

V (S, I ,Y ) = S − 1 − ln S + I − 1 − ln I + 1

m
(Y − 1 − ln Y ).

Applying the same argument as in [33], we have the following result, which suggests
the solution of (6) is always biological meaningful.

Theorem 3.1 Given (S(0), I (0),Y (0)) ∈ R
3+. System (6) has a unique positive solu-

tion on t ≥ 0 with probability one.

Theorem 3.2 The solution of (6) determined by Theorem 3.1 is stochastically ulti-
mately bounded, i.e.,

lim sup
t→∞

P {|(S(t), I (t),Y (t))| > χ} ≤ ε

provided r
K >

2β
3 , w >

β+2mp
3 and h >

mp
3 .

Proof Define V (S, I ,Y ) = S
1
2 + I

1
2 + Y

1
2 . By Itô’s formula, we obtain

dV = LVdt + 1

2
σ1S

1
2 dB1(t) + 1

2
σ2 I

1
2 dB2(t) + 1

2
σ3Y

1
2 dB3(t)

+ S
1
2

∫
Z

[(1 + γ1(u))
1
2 − 1]Γ̃ (dt, du) + I

1
2

∫
Z

[(1 + γ2(u))
1
2 − 1]Γ̃ (dt, du)

+ Y
1
2

∫
Z

[(1 + γ3(u))
1
2 − 1]Γ̃ (dt, du),
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where

LV =1

2
S

1
2

(
r(1 − S

K
) − β I

)
+1

2
I
1
2 (βS − c − pY−w I ) +1

2
Y

1
2 (mpI − d − hY )

− 1

8
σ 2
1 S

1
2 + S

1
2

∫
Z

[(1 + γ1(u))
1
2 − 1 − 1

2
γ1(u)]λ(du)

− 1

8
σ 2
2 I

1
2 + I

1
2

∫
Z

[(1 + γ2(u))
1
2 − 1 − 1

2
γ2(u)]λ(du)

− 1

8
σ 2
3 Y

1
2 + Y

1
2

∫
Z

[(1 + γ3(u))
1
2 − 1 − 1

2
γ3(u)]λ(du)

≤ − r

2K
S

3
2 + S

1
2

(
1

2
r − 1

8
σ 2
1 +

∫
Z

[(1 + γ1(u))
1
2 − 1 − 1

2
γ1(u)]λ(du)

)

− 1

2
w I

3
2 + I

1
2

(
1

2
c − 1

8
σ 2
2 +

∫
Z

[(1 + γ2(u))
1
2 − 1 − 1

2
γ2(u)]λ(du)

)

− 1

2
hY

3
2 + Y

1
2

(
−1

2
d − 1

8
σ 2
3 +

∫
Z

[(1 + γ3(u))
1
2 − 1 − 1

2
γ3(u)]λ(du)

)

+ 1

2
β I

1
2 S + 1

2
mpY

1
2 I .

By the Hölder inequation ab ≤ a p

p + bq
q , 1

p + 1
q = 1(p, q > 1), we have

I
1
2 S ≤ 1

3
I
3
2 + 2

3
S

3
2 , Y

1
2 I ≤ 1

3
Y

3
2 + 2

3
I
3
2 .

Thus

LV ≤ −1

2

(
r

K
− 2β

3

)
S

3
2 − 1

2

(
w − β + 2mp

3

)
I
3
2 − 1

2

(
h − mp

3

)
Y

3
2

+S
1
2

(
1

2
r + 1 − 1

8
σ 2
1 +

∫
Z

[(1 + γ1(u))
1
2 − 1 − 1

2
γ1(u)]λ(du)

)

+I
1
2

(
1

2
c + 1 − 1

8
σ 2
2 +

∫
Z

[(1 + γ2(u))
1
2 − 1 − 1

2
γ2(u)]λ(du)

)

+Y
1
2

(
−1

2
d + 1 − 1

8
σ 2
3 +

∫
Z

[(1 + γ3(u))
1
2 − 1 − 1

2
γ3(u)]λ(du)

)
−V (S, I ,Y )

≤ H − V (S, I ,Y ), H > 0 is a constant.

Applying Itô’s formula to et V (S, I ,Y ) yields

d(et V (S, I ,Y ))

= et [V (S, I ,Y )dt + dV (S, I ,Y )]
≤ et Hdt + et

[
1

2

(
σ1S

1
2 dB1(t) + σ2 I

1
2 dB2(t) + σ3Y

1
2 dB3(t)

)
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+ S
1
2

∫
Z

[(1 + γ1(u))
1
2 − 1]Γ̃ (dt, du) + I

1
2

∫
Z

[(1 + γ2(u))
1
2 − 1]Γ̃ (dt, du)

+ Y
1
2

∫
Z

[(1 + γ3(u))
1
2 − 1]Γ̃ (dt, du)

]
.

Therefore we have

etEV (S, I ,Y ) ≤ V (S(0), I (0),Y (0)) + Het

and

lim sup
t→+∞

EV (S, I ,Y ) ≤ H .

By elementary inequality

n(1−p/2)∧0|x |p ≤
n∑

i=1

x p
i ≤ n(1−p/2)∨0|x |p, R

n+ := {x ∈ R
n : xi > 0, 1 ≤ i ≤ n},

we have

lim sup
t→+∞

E|(S(t), I (t),Y (t))| 12 ≤ H .

For any ε > 0, set χ = H2

ε2
, the Chebyshev inequality implies

P {|(S(t), I (t),Y (t))| > χ} ≤ E |(S(t), I (t),Y (t))| 12√
χ

,

namely,

lim sup
t→∞

P {|(S(t), I (t),Y (t))| > χ} ≤ ε.

The proof is complete. ��
To study the persistence and extinction of Eq. (6), we define:

R11 = mpKβ(r − b1)

rmp(c + b2) + wr(d + b3)

and

R12 = mpKβh
[
wr(r − b1) − Kβ2(r − b1) + βr(c + b2)

] − w2r2h(d + b3)

mp[wr2h(c + b2) + pr (mpKβ(r − b1) − mpr(c + b2) − wr(d + b3))] .
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Theorem 3.3 For the solution of (6) determined by Theorem 3.1, we have

(i) If r <
σ 2
1
2 + ∫

Z
[γ1(u) − ln(1 + γ1(u))]λ(du), then we have

lim
t→+∞ S(t) = 0, lim

t→+∞ I (t) = 0, lim
t→+∞ Y (t) = 0 a.s.(almost surely),

i.e., the predator and prey populations are die out.
(ii) If R11 > 1 and R12 > 1, then we have

S(t)〉∗ > 0, 〈I (t)〉∗ > 0, 〈Y (t)〉∗ > 0 a.s.,

i.e., the predator and prey populations are persistence in the mean.

Proof Case (i). For the first equation of system (6),we apply the Itô’s formula, resulting

d ln S(t) =
(
r − r

K
S(t) − β I (t) − 1

2
σ 2
1 −

∫
Z

[
γ1(u) − ln(1 + γ1(u))

]
λ(du)

)
dt

+ σ1dB1(t) +
∫
Z

ln(1 + γ1(u)Γ̃ (dt, du),

integrating both sides of which gives

1

t
ln

S(t)

S(0)
= r − 1

2
σ 2
1 −

∫
Z

[
γ1(u) − ln(1 + γ1(u))

]
λ(du) − r

K
〈S(t)〉 − β〈I (t)〉

+ 1

t
σ1B1(t) + 1

t

∫ t

0

∫
Z

ln(1 + γ1(u))Γ̃ (dt, du)

≤ r − 1

2
σ 2
1 −

∫
Z

[
γ1(u) − ln(1 + γ1(u))

]
λ(du) − r

K
〈S(t)〉 + 1

t
σ1B1(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ1(u))Γ̃ (dt, du).

(7)
By using [21], we obtain limt→+∞ S(t) = 0 a.s. Similarly, we have

1

t
ln

I (t)

I (0)
= − c − 1

2
σ 2
2 −

∫
Z

[
γ2(u) − ln(1 + γ2(u))

]
λ(du) + β〈S(t)〉 − p〈Y (t)〉

− w〈I (t)〉 + 1

t
σ2B2(t) + 1

t

∫ t

0

∫
Z

ln(1 + γ2(u))Γ̃ (dt, du)

≤ − c − 1

2
σ 2
2 −

∫
Z

[
γ2(u) − ln(1 + γ2(u))

]
λ(du) + β〈S(t)〉 − w〈I (t)〉

+ 1

t
σ2B2(t) + 1

t

∫ t

0

∫
Z

ln(1 + γ2(u))Γ̃ (dt, du).

(8)
Since limt→+∞ S(t) = 0, for sufficiently large T , there is a constant ε > 0 such that

−c − 1

2
σ 2
2 −

∫
Z

[
γ2(u) − ln(1 + γ2(u))

]
λ(du) + ε < 0 for t > T
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Thus,
lim

t→+∞ I (t) = 0 almost surely.

Note that

1

t
ln

Y (t)

Y (0)
= − d − 1

2
σ 2
3 −

∫
Z

[
γ3(u) − ln(1 + γ3(u))

]
λ(du) + mp〈I (t)〉 − h〈Y (t)〉

+ 1

t
σ3B3(t) +

∫ t

0

∫
Z

ln(1 + γ3(u))Γ̃ (dt, du).

(9)
We conclude by limt→+∞ I (t) = 0 that

lim
t→+∞ Y (t) = 0 a.s.

Case (ii). From (7) and [21], we have

〈S(t)〉∗ ≤ K (r − b1)

r
, (10)

substituting which into (8) gives

1

t
ln

I (t)

I (0)
≤ − c − b2 + β〈S(t)〉∗ − w〈I (t)〉 + 1

t
σ2B2(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ2(u))Γ̃ (dt, du)

≤ − c − b2 + Kβ (r − b1)

r
− w〈I (t)〉 + 1

t
σ2B2(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ2(u))Γ̃ (dt, du).

Thus,

〈I (t)〉∗ ≤ Kβ(r − b1) − r(c + b2)

wr
. (11)

Then (11) and (7) yield

1

t
ln

S(t)

S(0)
≥ r − b1 − r

K
〈S(t)〉 − β〈I (t)〉∗ + 1

t
σ1B1(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ1(u))Γ̃ (dt, du)

≥ r − b1 − Kβ2(r − b1) − βr(c + b2)

wr
− r

K
〈S(t)〉 + 1

t
σ1B1(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ1(u))Γ̃ (dt, du).
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Using a result from [21],

〈S(t)〉∗ ≥ Kwr(r − b1) − K 2β2(r − b1) + Kβr(c + b2)

wr2
> 0. (12)

Similarly, by (11) and (9) one can obtain

1

t
ln

Y (t)

Y (0)
≤ − d − b3 + mp〈I (t)〉∗ − h〈Y (t)〉 + 1

t
σ3B3(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ3(u))Γ̃ (dt, du)

≤ − d − b3 + mpKβ(r − b1) − rmp(c + b2)

wr
− h〈Y (t)〉 + 1

t
σ3B3(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ3(u))Γ̃ (dt, du).

Thus,

〈Y (t)〉∗ ≤ mpKβ(r − b1) − rmp(c + b2) − wr(d + b3)

wrh
. (13)

Equations (12), (13) and (8) yield

1

t
ln

I (t)

I (0)
≥ −c − b2 + β〈S(t)〉∗ − p〈Y (t)〉∗ − w〈I (t)〉 + 1

t
σ2B2(t)

+1

t

∫ t

0

∫
Z

ln(1 + γ2(u))Γ̃ (dt, du)

≥ −c − b2+−w〈I (t)〉 + Kβwr(r−b1) − K 2β3(r − b1)+Kβ2r(c + b2)

wr2

−mp2Kβ(r − b1) − rmp2(c + b2) − wrp(d + b3)

wrh
+ 1

t
σ2B2(t)

+1

t

∫ t

0

∫
Z

ln(1 + γ2(u))Γ̃ (dt, du).

Note that

Kβh
[
wr(r − b1) − Kβ2(r − b1) + βr(c + b2)

]
wr2h(c + b2) + pr (mpKβ(r − b1) − mpr(c + b2) − wr(d + b3))

> 1.

We have

〈I (t)〉∗ ≥ 1

w2r2h

[
Kβh

(
wr(r − b1) − Kβ2(r − b1) + βr(c + b2)

)
− wr2h(c + b2)

− pr (mpKβ(r − b1) − mpr(c + b2) − wr(d + b3))
]

> 0.
(14)
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Substituting Eq. (14) into Eq. (9), we have

1

t
ln

Y (t)

Y (0)
≥ − d − b3 + mp〈I (t)〉∗ − h〈Y (t)〉 + 1

t
σ3B3(t)

+ 1

t

∫ t

0

∫
Z

ln(1 + γ3(u))Γ̃ (dt, du)

≥ − d − b3 + mp

w2r2h

[
Kβh(wr(r − b1) − Kβ2(r − b1) + βr(c + b2))

− wr2h(c + b2) − pr(mpKβ(r − b1) − mpr(c + b2) − wr(d + b3))
]

− h〈Y (t)〉 + 1

t
σ3B3(t) + 1

t

∫ t

0

∫
Z

ln(1 + γ3(u))Γ̃ (dt, du).

Since R12 > 1, we obtain

〈Y (t)〉∗ ≥ 1

w2r2h2

[
mp

[
Kβh

(
wr(r − b1) − Kβ2(r − b1) + βr(c + b2)

)
− wr2h(c + b2) − pr (mpKβ(r − b1) − mpr(c + b2) − wr(d + b3))

]
− w2r2h(d + b3)

]
> 0.

The proof is complete. ��

Notes. Theorem 3.3 shows us the dynamics of birth and death of the prey-predator

system.ByTheorem3.3, if r <
σ 2
1
2 +∫

Z
[γ1(u)−ln(1+γ1(u))]λ(du), then the predator

and prey are die out; while if R11 > 1 and R12 > 1, then the predator and prey are

persistence in mean. Note that the right end of inequality r <
σ 2
1
2 + ∫

Z
[γ1(u)− ln(1+

γ1(u))]λ(du) is a function of the intensity of noise and is positively correlated with
the intensity of noise. This shows that as long as the intensity of the stochastic noise

is large enough, we have r <
σ 2
1
2 + ∫

Z
[γ1(u) − ln(1 + γ1(u))]λ(du), which means

that large environmental disturbances can lead to the extinction of the population.

Theorem 3.4 For the solution of (6), we have

(i) if R0 < 1, then

F1(S, I , V ) := lim sup
t→∞

1

t
E

∫ t

0

[
(S(s) − K )2 + I 2(s) + Y 2(s)

]
ds ≤ δ1

Θ
;

(ii) if R0 > 1 and R1 < 1, then

F2(S, I , V ) := lim sup
t→∞

1

t
E

∫ t

0

[
(S(s) − S)2 + (I (s) − I )2 + Y 2(s)

]
ds ≤ δ2

Θ
;
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(iii) if R1 > 1, then

F3(S, I , V ) := lim sup
t→∞

1

t
E

∫ t

0

[
(S(s)−S∗)2+(I (s)−I ∗)2+(Y (s)−Y ∗)2

]
ds

≤δ3

Θ
,

where Θ = min

{
r
K , w, h

m

}
and

δ1 =1

2
σ 2
1 K + K

∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du),

δ2 =σ 2
1 S

2
+ σ 2

2 I

2
+ S

∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du)

+ I
∫
Z

[γ2(u) − ln(1 + γ2(u))]λ(du),

δ3 =1

2
σ 2
1 S

∗ + 1

2
σ 2
2 I

∗ + 1

2m
σ 2
3 Y

∗ + S∗
∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du)

+ I ∗
∫
Z

[γ2(u) − ln(1 + γ2(u))]λ(du)

+ 1

m
Y ∗

∫
Z

[γ3(u) − ln(1 + γ3(u))]λ(du).

Proof Case (iii). Since (S∗, I ∗,Y ∗) is the positive equilibrium point of the system (4),
we have

r

(
1 − S∗

K

)
= β I ∗, βS∗ − c − pY ∗ − w I ∗ = 0, mpI ∗ − d − hY ∗ = 0.

Define the Lyapunov function:

V (S, I ,Y ) = S − S∗ − S∗ ln S

S∗ + I − I ∗ − I ∗ ln I

I ∗ + 1

m

(
Y − Y ∗ − Y ∗ ln Y

Y ∗

)
.

Applying Itô’s formula to the system (6), we have

dV = LVdt + σ1(S − S∗)dB1(t) +
∫
Z

[γ1(u)S − S∗ ln(1 + γ1(u))]Γ̃ (dt, du)

+ σ2(I − I ∗)dB2(t) +
∫
Z

[γ2(u)I − I ∗ ln(1 + γ2(u))]Γ̃ (dt, du)

+ 1

m
σ3(Y − Y ∗)dB3(t) + 1

m

∫
Z

[γ3(u)Y − Y ∗ ln(1 + γ3(u))]Γ̃ (dt, du),

(15)
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where

LV = (S − S∗)
(
r(1 − S

K
) − β I

)
+ σ 2

1 S
∗

2
+ S∗

∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du)

+ (I − I ∗) (βS − c − pY − w I ) + σ 2
2 I

∗

2
+ I ∗

∫
Z

[γ2(u) − ln(1 + γ2(u))]λ(du)

+ (Y − Y ∗)(pI − d

m
− h

m
Y ) + σ 2

3 Y
∗

2m
+ Y ∗

m

∫
Z

[γ3(u) − ln(1 + γ3(u))]λ(du)

= r(S − S∗) − r

K
(S − S∗)S − β(S − S∗)I + β(I − I ∗)S − c(I − I ∗)

− p(I − I ∗)Y − w(I − I ∗)I + p(Y − Y ∗)I − d

m
(Y − Y ∗) − h

m
(Y − Y ∗)Y

+ 1

2

(
σ 2
1 S

∗ + σ 2
2 I

∗ + 1

m
σ 2
3 Y

∗
)

+ S∗
∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du)

+ I ∗
∫
Z

[γ2(u) − ln(1 + γ2(u))]λ(du) + 1

m
Y ∗

∫
Z

[γ3(u) − ln(1 + γ3(u))]λ(du)

= − r

K
(S − S∗)2 − w(I − I ∗)2 − h

m
(Y − Y ∗)2 + 1

2

(
σ 2
1 S

∗ + σ 2
2 I

∗ + 1

m
σ 2
3 Y

∗
)

+ S∗
∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du) + I ∗
∫
Z

[γ2(u) − ln(1 + γ2(u))]λ(du)

+ 1

m
Y ∗

∫
Z

[
γ3(u) − ln(1 + γ3(u))

]
λ(du).

Integrating on both sides of Eq. (15) and then taking expectation result in

E

∫ t

0

{
r

K
(S(θ) − S∗)2 + w(I (θ) − I ∗)2 + h

m
(Y (θ) − Y ∗)2

}
dθ

≤ EV (0) +
[
1

2

(
σ 2
1 S

∗ + σ 2
2 I

∗ + 1

m
σ 2
3 Y

∗
)

+ S∗
∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du)

+ I ∗
∫
Z

[γ2(u) − ln(1 + γ2(u))]λ(du) + 1

m
Y ∗

∫
Z

[γ3(u) − ln(1 + γ3(u))]λ(du)

]
t .

(16)
Dividing Eq. (16) by t and letting t → ∞, we have

lim sup
t→∞

1

t
E

∫ t

0

[
(S(s) − S∗)2 + (I (s) − I ∗)2 + (Y (s) − Y ∗)2

]
ds ≤ δ3

Θ
.

The proof of case (iii) is complete. By defining the Lyapunov functions V (S, I ,Y ) =
S − K − K ln S

K + I + 1
m Y and V (S, I ,Y ) = S − S − S ln S

S
+ I − I − I ln I

I
+ 1

m Y ,
respectively, the proofs of cases (i) and (ii) are similar to case (iii), so we omit them
here. ��
Notes.Theorem3.4 shows that under different conditions, the solution of the stochastic
predator–prey system can fluctuate (around the equilibrium of the ODEs system (4))
in different states, and the amplitude of the fluctuation is positively correlated with the
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Fig. 1 The trajectories of (6) and (4) under the conditions of Theorem 3.3 (i). a The persistence of the ODE
system (4); b the predator and prey populations predicted by (6) go extinct with probability 1

intensity of stochastic noise. In particular, when the intensity of the noise is zero, i.e.,
σi = γi (u) = 0 (i = 1, 2, 3), we have

LV ≤ − r

K
(S − S∗)2 − w(I − I ∗)2 − h

m
(Y − Y ∗)2 ≤ 0,

which indicates that the interior solution E3(S∗, I ∗,Y ∗) of the ODEs model (4) is
GAS provided that R1 > 1. Similarly, we can obtain that the boundary equilibrium
E1(K , 0, 0) is GAS provided that R0 = Kβ

c < 1, and the disease-free equilibrium
E2(S, I , 0) is GAS provided that R0 > 1 and R1 < 1. Therefore, we generalised the
global stability of the ODEs system (4).

4 Numerical Simulation

In this section, all simulations are carried out with ©Matlab2013b, the initial value is
(2, 2, 3) and the numerical method is based on [15].

We show the extinction and persistence of the system (6). The simulations of
the ODEs system (4) were also studied as a comparison. To proceed, we set σi =
0.5, γi (u) = 0.1, i = 1, 2, 3, r = 0.12, K = 4, β = 0.5,m = 1, p = 0.5, d =
0.1, h = 0.1, c = 0.1, w = 0.1. By straightforward calculation we obtain that:

R1 = mp

d

r(Kβ − c)

Kβ2 + wr
= 1.126 > 1

and

r = 0.12 <
σ 2
1

2
+

∫
Z

[γ1(u) − ln(1 + γ1(u))]λ(du) = 0.142.

By Theorem 3.3 (i), one can see that equilibrium E3(0.3415, 0.2195, 0.0976) of sys-
tem (4) is GAS, and the populations in the stochastic system (6) are die out. Figure 1a
shows that the ODE system (4) admits a positive equilibrium, while Fig. 1b shows that
stochastic solution of the predator and prey populations go to zero with probability
one.



Analysis of the Predator–Prey Interactions: A Stochastic… Page 15 of 20 55

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

t

S(
t)

,I
(t

),
Y

(t
)

(a) Deterministic model

 

 

S(t)
I(t)
Y(t)

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

t

S(
t)

,I
(t

),
Y

(t
)

(b) Levy jump model

 

 

S(t)
Y(t)
I(t)

Fig. 2 The trajectories of the stochastic system (6) and the ODEs system (4) under the conditions of
Theorem 3.3 (ii). a The persistence of the ODE system (4); b the persistence in mean of the stochastic
system (6)

Next, we set σi = 0.02, γi (u) = 0.01, i = 1, 2, 3, r = 22, K = 5, β = 0.1,m =
1, p = 0.1, d = 0.1, h = 0.1, c = 0.01, w = 0.182. It follows that:

R1 = 2.6591 > 1, R11 = 1.0637 > 1, R12 = 1.7401 > .1

ByTheorem 3.3 (ii), we know that the unique positive equilibrium E3(4.9528, 2.0755,
1.0755) of (4) is GAS, and the populations in (6) are persistence in mean. Figure 2a
shows that the ODE system (4) admits a positive equilibrium, while Fig. 2b shows
that stochastic solution of the predator and prey populations fluctuates around the
deterministic equilibrium point E3.

We now numerically illustrate the asymptotic dynamics of (6) with σi = 0.3, i =
1, 2, 3, r = 1, w = 0.2. The other parameters are given by:

(1) K = 1, β = 0.2,m = 0.2, p = 0.3, d = 0.1, h = 0.2, c = 0.3, w = 0.2;
(2) K = 3, β = 0.4,m = 0.2, p = 0.5, d = 0.6, h = 0.1, c = 0.3, w = 0.2;
(3) K = 4, β = 0.3,m = 0.8, p = 0.6, d = 0.3, h = 0.2, c = 0.1, w = 0.2.

In case (1), by direct calculation we obtain that R0 = 0.6667 < 1, it follows that
the ODEs model (4) admits a disease-free equilibrium E1(K , 0, 0) = (1, 0, 0). To
see the effects of noise on the stochastic system (6), we choose γi = 0, 0.2 and 0.3
respectively, i = 1, 2, 3. By straightforward calculations we obtain that F1(S, I , V ) ≤
δ1
Θ

= 0.225, 0.3134 and 0.4132, respectively. Figure 3a shows that the ODEs system
(4) admits a disease-free equilibrium E1(K , 0, 0) = (1, 0, 0). Figure 3b, d describe
that the level of the susceptible prey in the stochasticmodel vibrates around the solution
of the ODEs model, while the infected prey and predator go to zero with probability
one.

In case (2), by direct calculation we obtain that R0 = 4 > 1, R1 = 0.2206 < 1,
it follows that the ODEs model (4) admits a boundary equilibrium E2(S, I , 0) =
(1.4118, 1.3235, 0). To see the effects of noise on the stochastic system (6), we
choose γi = 0, 0.1 and 0.2 respectively, i = 1, 2, 3. By straightforward calculations
we obtain that F2(S, I , V ) ≤ δ2

Θ
= 0.6154, 0.6796 and 0.8572, respectively. Fig-

ure 4a shows that the ODEs system (4) admits a boundary equilibrium E2(S, I , 0) =
(1.4118, 1.3235, 0). Figure 4b–d show that stochastic solutions of the susceptible prey
and infected prey fluctuate around the solution of the ODEs model, while the predator
go to zero with probability one.
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Fig. 3 The trajectories of the stochastic system (6) and the ODEs system (4) under the conditions of
Theorem 3.4 (i). a The deterministic model; b the Brownian motion model; c the Lévy jump model with
γi = 0.2; d the Lévy jump model with γi = 0.3, i = 1, 2, 3
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Fig. 4 The trajectories of the stochastic system (6) and the ODEs system (4) under the conditions of
Theorem 3.4 (ii). a The deterministic model; b the Brownian motion model; and the Lévy jump model, c
for γi = 0.1 and d for γi = 0.2, i = 1, 2, 3

In case (3), by direct calculation we obtain that R1 = 3.1429 > 1, it follows that
the ODEs model (4) admits a positive equilibrium E3(S∗, I ∗,Y ∗) = (2.8, 1, 0.9). To
see the effects of noise on the stochastic system (6), we choose γi = 0, 0.1 and 0.2
respectively, i = 1, 2, 3. By straightforward calculations we obtain that F3(S, I , V ) ≤
δ3
Θ

= 0.7852, 0.8671 and 1.0937, respectively. Figure 5a shows that the ODEs system
(4) admits a positive equilibrium E3(S∗, I ∗,Y ∗) = (2.8, 1, 0.9). Figure 5b–d show
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Fig. 5 The trajectories of the stochastic system (6) and the ODEs system (4) under the conditions of
Theorem 3.4 (iii). a The deterministic model; b the Brownian motion model; c the Lévy jump model with
γi = 0.1; d the Lévy jump model with γi = 0.2, i = 1, 2, 3

that stochastic solutions of the predator and prey fluctuate around the deterministic
equilibrium point.

Note that in Fig. 1a, b, all parameters are the same except for the intensity of
stochastic noise. This indicates that high-intensity environmental disturbances can lead
to the extinction of the population. In addition, Figs. 2, 3, 4 and 5 show that when the
stochastic noise is sufficiently small, the environmental disturbance does not cause the
extinction of the population, but causes the density of the population to oscillate within
a certain small range. In summary, our results that: (i) High-intensity environmental
disturbances may lead to population extinction; (ii) Small-intensity environmental
disturbances may not cause population extinction, but will cause population size to
fluctuate within a certain interval. And the amplitude of the fluctuation is positively
correlated with the intensity of the environmental disturbance.

5 Discussion

This paper formulates a stochastic system to study the interactions between predator
and prey populations. The model is incorporating the disease invasion and sudden
catastrophic shocks. The globally unique positive solution is confirmed by using con-
ventional methods. The stochastic uniform boundedness of the solution is obtained
under certain conditions. Sufficient conditions for the persistence and extinction are
given to measure the level of population size. Asymptotic dynamics of the solutions
are carried out by two criteria parameters. The long-term dynamics of the solutions
are demonstrated by numerical simulations. By comparing the stochastic system with
the corresponding ODE system, we find that: (i) when the intensity of environmental
disturbance is large enough, environmental disturbance may lead to the extinction of
the population; (ii) when the intensity of environmental disturbances is small enough,
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environmental disturbances do not cause extinction of the population but cause the
population to fluctuate around a certain level, and the amplitude of the fluctuations
is proportional to the intensity of environmental disturbances. Our findings indicate
that: (i) when the intensity of environmental disturbances is small, the impact of envi-
ronmental disturbances on the population can be ignored, and the deterministic model
can be used to estimate the dynamics of the population. However, when the intensity
of environmental disturbance is large, the impact of environmental disturbance on the
dynamics of the population cannot be ignored. Otherwise, the estimation result may
be inaccurate.

Many researchers have made great efforts in studying the dynamics of population
and infectious diseases [29,30]. Notably, Lipsitch et al. [18] studied the transmission
mechanism of a SIRS infectious disease, but the results they have obtained were some-
what different from the actual situation. One persuasive reason is that they ignored
the effects of noise (such as earthquake, flood, drought, typhoon, tsunami). May [24]
indicated that the predation rate, environmental accommodation, and other factors
could be affected by environmental noise. The biosphere environment in which the
population located is often highly stochastic, and stochastic noise is also the cause
leading to the extinction of individuals. Hence the effects of noise cannot be ignored.
Accordingly, we introduced the Lévy jump into the proposed model and studied the
dynamics of the model where noise plays a crucial rule. Compared to the stochastic
system driven by Brownian motion in Ref. [34], our system is driven simultaneously
byBrownianmotion and Poissonmotion. Therefore, themodel inRef. [34] can be used
to study the effects of small environmental disturbances (such as wind and rain) on
population dynamics, and our model can be used to study the effects of small environ-
mental disturbances on population dynamics, as well as to study large environmental
disturbances (such as sudden volcanoes and floods) on population dynamics. There-
fore, our theoretical analysis is much more complicated than the theoretical analysis
in Ref. [34].

The system developed in this paper unifies much of the previous work. It encom-
passes the influential work of Xiao et al. [32] in understanding the asymptotic stability
of the model with the disease in prey and the more recent work on the random dis-
turbance in a predator–prey model [34]. The results may help for the further study of
such systems with singular diffusion, indicating that the variables or parameters are
subject to the same environmental noise.
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