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Abstract
We use the idea of ground states and excited states in nonlinear dispersive equations
(e.g. Klein-Gordon and Schrödinger equations) to characterize solutions in theN-body
problem with strong force under some energy constraints. Indeed, relative equilibria
of the N-body problem play a similar role as solitons in PDE.We introduce the ground
state and excited energy for the N-body problem. We are able to give a conditional
dichotomy of the global existence and singularity below the excited energy in Theorem
4, the proof of which seems original and simple. This dichotomy is given by the sign
of a threshold function Kω. The characterization for the two-body problem in this new
perspective is non-conditional and it resembles the results in PDE nicely. For N ≥ 3,
we will give some refinements of the characterization, in particular, we examine the
situation where there are infinitely transitions for the sign of Kω.

Keywords Celestial mechanics · Strong force · Global existence · Singularity ·
Central configurations

1 Introduction

1.1 Background andMotivation

Unstable dispersive Hamiltonian evolution equations, such as semi-linear Klein-
Gordon and Schrödinger equations, exhibit “soliton”-like solutions which correspond
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to relative equilibria in the N -body problem.Amongst those one singles out the ground
state, which has the lowest energy of all solitons. When the energy of solutions is
slightly above the ground state energy threshold one obtains a trichotomy in forward
time for this regime of energies:

(i) finite time blow-up;
(ii) scattering to zero;
(iii) convergence to the ground states.

The same holds in backward time, and all nine combinations allowed by the for-
ward/backward time trichotomy can occur (cf. [1–4]).

In this paper, we study if this mechanism can be applied to the N-body problem. In
particular, we consider N point particles moving in the Euclidean space R3. The mass
and the position of the i th particle is mi > 0 and xi ∈ R

3, and let ẋi be its velocity.
The potential is equal to

U (x) = −
∑

i< j

mim j

|xi − x j |α , α > 0. (1)

The potential U (x) is homogeneous with degree −α. When α = 1, U is the classical
Newtonian gravitational potential. When α ≥ 2, it is usually known as the “strong
force” problem [5]. There are strong force examples in physics, for example, the
Lennard-Jones potential which models interaction between a pair of neutral atoms or
molecules contains terms with α = 6 and α = 12 [6]. In fact, the Lennard-Jones
potential is a quasi-homogeneous function

ULJ(r) := − A

r6
+ B

r12
, A, B > 0. (2)

where r is the distance between two mass points. We remark that the singularity and
global existence dichotomy does not work for the Lennard-Jones potential, since its
effective potential resembles that of the Newtonian Kepler problem (cf. Sect. 2) for
some fixed angular momentum.However, if one considers the negative of the Lennard-
Jones potential, then one shall get the singularity and global existence dichotomy since
its effective potential would resemble the strong force Kepler problem. Physically one
can expect this from the fact that the negative Lennard-Jones potential would imply
the two molecules are attracting when they are close to each other and repelling when
far away from each other. As a matter of fact, as mentioned by Payne–Sattinger [4],
the analogy for the PDE comes originally from classical mechanics, when there is a
local maximum of the potential.

In the current paper, we would like to focus on the homogeneous potential N-body
problem only, and the generalizations to quasi-homogenous N-body problem will be
investigated in future work following ideas from [1,7,8].

The motion of the N-body is governed by the differential equation:

mi ẍi = −∇iU (x) = −α
∑

j �=i

mim j (xi − x j )

|xi − x j |α+2 , i = 1, . . . , N . (3)
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It is a Hamiltonian system, and x(t) enjoys the conservation of energy

E(x, ẋ) := 1

2

N∑

i=1

mi |ẋi |2 +U (x), (4)

the angular momentum

A(x, ẋ) :=
N∑

i=1

mi xi × ẋi , (5)

and the linear momentum

M(x, ẋ) :=
N∑

i=1

mi ẋi . (6)

Let

�i j = {x = (x1, . . . , xN ) ∈ (R3)N |xi = x j },
� =

⋃

i< j

�i j .

Then, the potential U is a real-analytic function on (R3)N\�, and for given x(0) ∈
(R3)N\� and ẋ(0) ∈ (R3)N , there exists a unique solution x(t) defined on [0, σ ),
where σ is maximal.

Definition 1 (Global existence and singularity) If σ < ∞, the solution x(t) is said to
experience a singularity at σ . Otherwise, we say x(t) exists globally.

Determining what constitutes a singularity of the N-body problem has been a
long-standing problem in celestial mechanics. The first major result is known as the
Painlevé’s theorem; asserting that the minimum distance between all pairs of particles
must approach zero at the singularity. The proof of Painlevé’s theorem works for the
α-potential without intrinsic difficulty. In fact, one can use the same argument as in
the proof of Theorem 2.2 of [9] for the Painlevé’s Theorem for all α > 0. In particular,
let d(x,�) be the distance of the point x to the set �, we have

Theorem 1 (Painlevé) If x(t) is a solution to the N-body problem (1) (3), and experi-
ences a singularity at t = σ , then

d(x(t),�) → 0, as t → σ.

Painlevé’s theorem makes it natural to ask whether x(t) must approach a definite
point on � as t → σ . We have the following definition.

Definition 2 (Collision versus non-collision singularity) If x(t) approaches a definite
point in � as t → σ , the singularity is called a collision singularity. Otherwise the
singularity is called a non-collision singularity.
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The existence of collision singularity is more or less trivial. For example, a homo-
thetic solution with a total collision. Also, binary collisions in the collinear N-body
problem are inevitable, since the configuration space is highly restricted. However, the
existence of non-collision singularity for the Newtonian N-body problem remained
open for about 100 years until Xia [10] gave the first affirmative answer in the early
1990s. An important difference between collision and non-collision singularities was
given by von Zeipel [11]. More precisely, let the moment of inertia be

I (x) :=
N∑

i=1

mi |xi |2,

which measures the size of the system, then

Theorem 2 (von Zeipel) If σ is a singularity, and limt→σ I < ∞, then σ is a collision
singularity. On the other hand, if σ is a non-collision singularity, then limt→σ I = ∞

Theorem 2 was proved for the Newtonian N-body problem, it is very likely to be
true forα ≥ 1. In this paper, we shall not get involvedwith the generalization of the von
Zeipel’s Theorem. We point out that there are intricate relationships between collision
and non-collision singularities. Saari and Xia [9] proposed a conjecture that the set
of points leading to non-collision singularities precisely corresponds to the set of all
accumulation points in the extended phase space. They proved some weaker results
to support the validity of the conjecture. We refer the reader to [9] and its references
for a more complete survey on this question. For strong force α > 2, we will show
that the moment of inertia I (t) remains bounded at the singularity, see Theorem 4.

We want to remark that the exponent α does play an important role in the dynamics
of the N-body problem, for example, see the numerical investigations of the restricted
three-body problem in [12], where one of the primaries generates a gravitational poten-
tial with exponent 1 ≤ α < 2 is studied. Also see [13] for the numerical simulations
for the Hill’s problem with homogeneous potential.

Our main goal in this paper is to characterize the set of initial conditions yielding
global solutions or singular solutions under some energy threshold constraints. That is,
we are interested in determining the finiteness/infiniteness ofσ based on the constraints
of the initial conditions, and we do not care about the eventual chaotic process of
the solution. Indeed, solutions which are known as relative equilibria (cf. Definition
4) seem to play an important role in such characterizations. These ideas have been
extensively exploited in PDEs.

1.2 Ground State Energy and Excited Energy

In the current paper, the energy will be considered to be smaller than some critical
value, which we shall call it the ground state energy. The first task is to define the
ground state energy. The Lagrange–Jacobi identity for the N-body problem is

d2

dt2
I (x(t)) = 2

3∑

i=1

mi |ẋi (t)|2 + 2
3∑

i=1

mi xi (t) · ẍi (t),
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= 2
3∑

i=1

mi |ẋi (t)|2 − 2x · ∇U ,

= 2
3∑

i=1

mi |ẋi (t)|2 + 2αU (x),

= 4[E(x, ẋ) + (α/2 − 1)U (x)]. (7)

Let V (x, ẋ) := E(x, ẋ) + (α/2 − 1)U (x), we define the ground state energy as

Definition 3 (Ground state energy)

E� := inf{E(x, ẋ)|V (x, ẋ) = 0}.

This minimizing problem is trivial. When V (x, ẋ) = 0, we have

E(x, ẋ) = −(α/2 − 1)U (x),

and it is equivalent to

1

2

N∑

i=1

mi |ẋi |2 = −α

2
U (x).

The supreme of −U (x) under the constraint V (x, ẋ) = 0 is ∞ and the infimum of
−U (x) under the constraint is 0. So E� = −∞ for α < 2 and E� = 0 for α ≥ 2.
When α > 2, the ground state energy E� = 0 is attained by the special state where all
bodies are at infinity with zero velocity, and we will call it the ground state.

Since E� = −∞ for α < 2, which is not applicable when we consider solutions
below the ground state energy, we will focus on the strong force case. In fact, Saari
[14,15] showed that it is improbable in the sense ofLebesguemeasure to have collisions
for the Newtonian (α = 1) gravitational system.

Theorem 3 (Saari, 1971–1973, [14,15]) The set of initial conditions for Newtonian
N-body problem leading to collisions has Lebesgue measure zero in the phase space.

More recently, Fleischer and Knauf [16] extended Saari’s improbability theorem
to 0 < α < 2. We remark that Saari’s improbability theorem holds for collision
singularities of the N-body problem for 0 < α < 2, and very likely for all singularities
of the problem. This is another motivation that why we do not consider α < 2. When
α ≥ 2, the collision set has positive Lebesgue measure as any solution with negative
energy has a collision. Indeed, for α ≥ 2 any solution with negative energy satisfies
Ï ≤ 4E < 0 implying that I (x(t)) is less than a concave downward parabola and
must become negative for t ≥ t∗, where t∗ is some positive finite number. But I (x)
is always nonnegative, thus σ ≤ t∗ < ∞. Physically speaking, strong force means
that there is no centripetal barrier, so that collisions occur for a set of initial conditions
which is of infinite Lebesgue measure. In [5], it has been shown that this condition on
α is equivalent to the Palais–Smale condition for various action integrals being valid.
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When α > 2, based on the Lagrange–Jacobi identity we observe that there is room
for positive energy solutions to experience singularities. To go beyond the zero energy,
we seek new ways to define the next threshold energy. The appropriate candidates are
the relative equilibria in the N-body problem.

Definition 4 (Relative equilibrium, cf. [17]) A solution x(t) = (x1(t), . . . , xN (t)) of
the N-body problem is called a relative equilibrium if there exists �(t) ∈ SO(3) such
that

xi (t) = �(t)xi (0),

for all i = 1, . . . , N .

A relative equilibrium of the N-body problem is a solution where the configuration
remains an isometry of the initial configuration, as if the configuration was a rigid
body. They are particular cases of homographic solutions. It is well-known that relative
equilibria of the N-body problem are planar solutions (cf. Proposition 2). We refer the
readers to [18] for a more in depth introduction of homographic solutions and relative
equilibria.

From the Principal Axis Theorem in geometry, a one-parameter subgroup in SO(3)
has the from

�(t) = P

⎛

⎝
cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

⎞

⎠ P−1, P ∈ SO(3).

Without loss of generality, let’s assume

Rω(t)q = (Rω(t)q1, . . . , Rω(t)qN ),

is a relative equilibrium, where Rω(t) =
⎛

⎝
cosωt − sinωt 0
sinωt cosωt 0
0 0 1

⎞

⎠, and q is the initial

configuration with qi3 = 0 for i = 1, . . . , N . Note that we have used q instead of x
to denote the special initial configurations that lead to relative equilibria. When using
x, we mean a general configuration point.

If Rω(t)q is a relative equilibrium, then

∇
(

ω2

2

N∑

i=1

mi |qi |2 −U (q)

)
= 0. (8)

The energy of the relative equilibrium is

Eω(q) := E(Rω(t)q, ˙(Rω(t)q)) = ω2

2

N∑

i=1

mi |qi |2 +U (q). (9)
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Now for each fixed frequency parameter ω > 0, we define a function

Kω : (R3)N\� → R,

where

Kω(x) := x · ∇
(

ω2

2

N∑

i=1

mi |xi |2 −U (x)

)
= ω2 I (x) + αU (x). (10)

Note that there are infinitely many such functions Kω in the PDE analogue [19],
here our Kω is the special case

Kω(x) = − d

dλ
(Ueff(λx))|λ=1,

where Ueff(x) := −(ω2

2 I (x) −U (x)) is known as the effective potential.
Let

Eω(x) := ω2

2

N∑

i=1

mi |xi |2 +U (x), x ∈ (R3)N\�. (11)

Definition 5 (Excited energy)

E∗(ω) := inf{Eω(x) : Kω(x) = 0}. (12)

We call E∗(ω) the excited energy. It only depends on the frequency ω.

The motivation of E∗(ω) is “the lowest energy among all relative equilibria with
a fixed frequency ω”. However, note that if �(t)q is a relative equilibrium, then
Kω(q) = 0, but the reverse is not true. That is, if x is a configuration satisfying
Kω(x)=0, then x may not lead to a relative equilibrium for any choice of the initial
velocities. This is because there are non-planar configurations (e.g. equal mass 4-body
tetrahedron configuration) satisfying Kω(x) = 0, while every relative equilibrium in
R
3 must be planar. More details could be found in Sect. 3.1. As a consequence, the

set of configurations {x : Kω(x) = 0} is larger than the configuration set of relative
equilibria with frequencyω.Wewill show that for α > 2 theminimum of Eω(x) under
the constraint Kω(x) = 0 is achieved by central configurations (cf. Proposition 3).
Central configurations are those x satisfying the equation∇Ueff(x) = 0. The finiteness
of the number of central configurations (modulo rotation and dilation symmetry) is
another big problem in the N-body problem. It was listed as a problem for the twenty-
first century by Smale [20], and we refer the readers to the rich literature out there.

When Kω(x) = 0, we have

Eω(x) = −
(α

2
− 1

)
U (x).

It is not hard to show that (cf. Lemma 2),

1. When α > 2, E∗(ω) is strictly positive.
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2. When α = 2, E∗(ω) = 0.
3. When 0 < α < 2, E∗(ω) is −∞ for more than 2 bodies.

We remark that when defining the excited energy, we choose to fix the frequency
ω instead of fixing the angular momentum. This is because the classical problem of
minimum energy configuration with a fixed level of angular momentum is ill-posed
for point mass N-body problem (cf. [21]) with N ≥ 3. In particular, by Sundman’s
inequality (cf. [17]), one has

|A(x, ẋ)|2
2I (x)

+U (x) ≤ E(x, ẋ). (13)

The minimum energy function for a fixed level of angular momentum |A(x, ẋ)| = c
is defined as

Ec(x) := c2

2I (x)
+U (x), (14)

moreover, the relation between the magnitude of the angular momentum and the fre-
quency of a relative equilibrium with the center of mass at the origin is c = ωI (x),
thus the energy of a relative equilibriumwith the magnitude of the angular momentum
c and initial configuration x is equal to Ec(x). The function Kω(x) in terms of c is

Kc(x) := c2

I (x)
+ αU (x).

If we fix the level of angular momentum as the parameter, the excited energy would
be

E∗(c) := inf{Ec(x) : Kc(x) = 0}. (15)

It is easy to check that if α > 2 and N ≥ 3, then E∗(c) = 0. That is, the minimum of
Ec(x) is attained by the ground state where all bodies are at rest at infinity. Apparently,
this is useless if we want to characterize solutions below the excited energy.

Now following ideas fromPDE,we consider two sets in the phase spacewith energy
below the excited energy distinguished by the sign of the threshold function:

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) ≥ 0}, (16)

K−(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) < 0}. (17)

We will show that if after some time a solution x(t) remains in K+(ω) then it exists
globally, and if it remains in K−(ω) then it experiences a singularity. Namely,

Theorem 4 (Dichotomy below the excited energy) For α > 2, let x(t) be a solution
of the N-body problem, if there exists t∗ > 0 so that for t > t∗,

(1) x(t) stays in K+(ω), then x(t) exists globally;
(2) x(t) stays in K−(ω), then x(t) has a singularity.

Moreover, the moment of inertia I (t) remains bounded at the singularity.
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When the energy is belowzero, the signof Kω either stays negative or there is exactly
one transition from positive to negative along each trajectory due to the Lagrange–
Jacobi identity. Thus every solution is singular below the ground state energy.When the
energy is above zero and below the excited energy, the problem is that the function Kω

is not sign-definite, and it may change the sign infinitely many times, see the example
in Sect. s4. Similar problems occur in PDE when one considers solutions above the
ground state and below the first excited state (cf. [3]). For the two-body problem the
sets K±(ω) are invariant by adding a constraint on the angular momentum (Lemma
1). And we get the dichotomy for the two-body problem

Theorem 5 (Dichotomy for the two-body problem) For α > 2, let m1 + m2 = 1 and
m1x1 + m2x2 = 0,

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| ≥ A∗(ω), Kω(x) ≥ 0},
K−(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| ≥ A∗(ω), Kω(x) < 0}.

then K±(ω) are invariant. Here, E∗(ω) = m1m2(
1
2 − 1

α
)α

2
2+α ω

2α
α+2 and A∗(ω) =

m1m2α
2

2+α ω
α−2
α+2 . Solutions in K+(ω) exist globally and solutions in K−(ω) experi-

ences a singularity.

For N ≥ 3, fixing the angular momentum does not guarantee the invariance. We
will give some weaker results in terms of the dichotomy of the fates of the solutions
for N ≥ 3.

Theorem 6 (Refinement of the characterization for N ≥ 3) For α > 2 and fixed ω,
we define

K+
1 = {(x, ẋ) ∈ K : |A(x, ẋ)| ≥ ωI (x), Kω(x) ≥ 0},

K−
1 = {(x, ẋ) ∈ K : |A(x, ẋ)| ≥ ωI (x), Kω(x) < 0},

K+
2 = {(x, ẋ) ∈ K : |A(x, ẋ)| < ωI (x), Kω(x) ≥ 0},

K−
2 = {(x, ẋ) ∈ K : |A(x, ẋ)| < ωI (x), Kω(x) < 0},

(18)

where K = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| �= 0} = K+
1 ∪ K−

1 ∪ K+
2 ∪ K−

2 is
invariant.

(a) K+
1 is empty.

(b) If x(t) starts inK−
2 , and entersK−

1 , then it stays inK−
1 and experiences a collision

singularity.
(c) If x(t) starts in K−

2 , and never enters K−
1 , then it stays in K+

2 ∪ K−
2 .

(c1) If there exists time t1, so that x(t) stays in K−
2 after t1, then it experiences a

collision;
(c2) If there exists time t1, so that x(t) stays in K+

2 after t2, then it exists globally;
(c3) If there are infinitely many transitions between K+

2 and K−
2 , then it exists

globally.

(d) If x(t) starts in K+
2 (resp. K−

1 ), and stays in K+
2 (resp. K−

1 ), then it exists
globally (resp. experiences a collision).
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(e) If x(t) starts in K+
2 (resp. K−

1 ), and enters K−
2 , then see (b) (c).

The paper is organized as follows. In Sect. 2, we study the two-body problem
in this new perspective. The characterization of the fates for the two-body problem
resembles the results in PDE nicely, and we give a proof for Theorem 5 using the
Kepler equation. In Sect. 3 we study the characterization of the fates of the solutions
below the excited state energy for N ≥ 3. More specifically, in Sect. 3.1 we review
relative equilibria and central configurations and study their relations to the excited
energy. In Sect. 3.2 we give a proof for Theorem 4. In Sects. 3.3 and 3.4 we add
constraints on the angular momentum and refine the characterization of the solutions
and give a proof for Theorem 6. In Sect. s4, we give an example where there are
possibly infinitely many transitions for the sign of the function Kω. We remark that
this example is only heuristic, we are not giving a rigorous proof. In Sect. 5, we give
some comments and future plans.

2 Two-Body Problem

In this section, we study the two-body problem for α �= 2, and one will see the
qualitative differences between the cases of α < 2 and α > 2. It is well known that
the two-body problem can be reduced to the Kepler problem.

ẍ = −∇U (x), U (x) = − 1

|x |α , α > 0, x ∈ R
2. (19)

Here x is the relative position of the two-body, i.e. x = x1 − x2 and we have
normalized the total masses to be 1. Since the motion of the two-body problem is
always in a plane, we assume x ∈ R

2 (cf. [17]). We remark that the motion of the
two-body problem and the Kepler problem is well-known. What is new here is the
characterization of themotion using the idea of excited energy and the function Kω(x).

In polar coordinates (r , θ), the Kepler equation is

r̈ − r θ̇2 = −U ′(r),
d

dt
(r2θ̇ ) = 0.

(20)

We see the angular momentum is preserved:

x × ẋ = r2θ̇ = c. (21)

The total energy is also preserved.

E(x, ẋ) = 1

2
|ẋ |2 +U (x),

= 1

2
(ṙ2 + r2θ̇2) +U (r).

(22)
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For fixed c,

E = 1

2
ṙ2 + c2

2r2
+U (r). (23)

Let

Vc(r) = c2

2r2
+U (r) = c2

2r2
− 1

rα
, (24)

where Vc(r) is known as the effective potential, we get a one-dimensional conserved
system with potential Vc(r). When c �= 0, we have

V ′
c(r) = −c2

r3
+ α

rα+1 = 0,

⇒ r0 =
(
c2

α

) 1
2−α

is the critical point,

⇒ V ∗
c := V (r0) = α

2
2−α

(
1

2
− 1

α

)
c

2α
α−2 .

(25)

The curves of Vc(r) are ascending when c ≥ 0 is increasing. See Fig. 1. Note that

when α = 2, the effective potential degenerates to c2/2−1
2r2

, which does not have any
critical point, thus no relative equilibrium.

When α �= 2, if Rω(t)q is a relative equilibrium (i.e. a circular motion for the
Kepler problem), we have |q| = r0 and r20 θ̇ = r20ω = c. The relation between c and
ω is given by:

ω = α
2

2−α c
α+2
α−2 ⇔ c = c(ω) = α

2
2+α ω

α−2
α+2 . (26)

Note that for the Kepler problem and the two-body problem, there is a unique relative
equilibrium for each assigned frequency ω, angular momentum c or radius r0. Any
one value of the ω, c, r0 uniquely determines the values of the other two for a relative
equilibrium, and

Kω(q) = ω2|q|2 − α

|q|α = ω2r20 − α

rα
0

= 0.

2 4 6 8

−0.5

−0.4

−0.3

−

−

0.2

0.1

0.1

(A) 0 < α < 2

2 4 6 8

−0.2

−0.1

0.1

0.2

(B) α > 2

Fig. 1 The effective potential Vc(r) = c2

2r2
− 1

rα for α �= 2, for ascending c
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r1 r0 r2

E

E

V∗

2 4 6 8
r

−0.4

−0.2

0.2

V (r)

Fig. 2 For fixed c �= 0 and 0 < α < 2, different energy cross sections of the effective potential Vc(r) =
c2

2r2
− 1

rα

2.1 When 0 < ˛ < 2, c �= 0

The behavior of the orbits resembles the gravitational central force. See Fig. 2.

1. When E = V ∗
c , the orbit is circular with radius r = r0.

2. When V ∗
c < E < 0, orbits oscillate between r1, r2 and exist globally.

3. When E = 0, the particle barely makes it out to infinity (its speed approaches zero
as r → ∞).

4. When E > 0, the particle makes it out to infinity with energy to spare.

Conclusion No collisions when c �= 0, and solution exists for all time. Collision can
occur only when c = 0, i.e. when the particle starts with zero tangential velocity:
θ̇ = 0. Again, we see the set of initial conditions leading to collisions has Lebesgue
measure zero for 0 < α < 2.

2.2 When˛ > 2, c �= 0

The effective potential Vc(r) is qualitatively different from that of the gravitational
case. See Fig. 3.

1. When E ≤ 0, the orbit will collide at the origin (r → 0).
2. When 0 < E < V ∗

c , orbits have two cases. If r < r1, it will collide at the origin;
if r > r2, the orbit will go to infinity and exist for all time.

3. When E = V ∗
c , the orbit will be circular.

4. When E > V ∗
c , the initial position does not give us definite information about the

fate of the solution. One also needs the initial radial velocity to determine the fate.
See more details at the end of Sect. 2 and Fig. 4.

Let’s get back to our attempt of dichotomy between singularity and global existence
below the excited energy for α > 2. If we do not propose conditions on the angular
momentum, the constraint E(x, ẋ) < V ∗

c(ω) is not enough to guarantee the invariance
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Fig. 3 For fixed c �= 0 andα > 2, different energy cross sections of the effective potential Vc(r) = c2
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r
.

Fig. 4 For fixed c �= 0 and α > 2, the phase portrait of the Kepler problem in the (r , ṙ) plane. Blue curves
have energy above the relative equilibrium, and red curves have energy below the relative equilibrium (Color
figure online)

ofK±(ω). Since the curves Vc(r) is ascending as c increases, to make the energy cross
section E below the critical value V ∗

c , we just need to make the angular momentum
greater than c(ω), where c(ω) is given by (26). Then we will get invariant sets.

Lemma 1 Fix α > 2 and ω. Let

K+(ω) = {(x, ẋ) : E(x, ẋ) < V ∗
c(ω), x × ẋ ≥ c(ω), Kω(x) ≥ 0},

K−(ω) = {(x, ẋ) : E(x, ẋ) < V ∗
c(ω), x × ẋ ≥ c(ω), Kω(x) < 0}. (27)
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then K±(ω) are invariant sets for the Kepler problem (19).

Proof Since the energy and angular momentum are preserved, K+(ω) ∪ K−(ω) is
invariant.We only need to showK−(ω) is invariant. Let x(t) be a solution of theKepler
problem with initial conditions in K−(ω). Thus its energy E and angular momentum
c satisfies E < V ∗

c(ω) and c ≥ c(ω). If there exists time t1 so that Kω(x(t1)) =
0, i.e. |x(t1)| = r0, then Vc(|x(t1)|) ≥ Vc(ω)(|x(t1)|) = V ∗

c(ω). Thus the energy
E(x(t1), ẋ(t1)) ≥ Vc(|x(t1)|) ≥ V ∗

c(ω), contradiction. ��
Note that Kω(x) < 0 is equivalent to |x | < r0, and Kω(x) ≥ 0 is equivalent to

|x | ≥ r0.

Proposition 1 For α > 2,

(1) Solutions in K−(ω) is singular, i.e. finite time collision.
(2) Solutions in K+(ω) exist globally.

Proof Proof of (1). For fixed ω, we will denote c = c(ω) and r0 = ( c
2

α
)

1
2−α is the

critical point of Vc(r). Let x(t) be a solution in K−(ω), then there is δ > 0 so that

E(x(t), ẋ(t)) < V ∗
c(ω) − δ = Vc(r0) − δ.

Let I (x) = |x |2, then

d2

dt2
I (x(t)) = 4

[
E(x, ẋ) + (1 − α/2)

1

|x |α
]

,

< 4

(
Vc(r0) + (1 − α/2)

1

rα

)
− 4δ.

(28)

Let f (r) = Vc(r0) + (1 − α/2) 1
rα and r < r0, easy to check that f (r) is increasing,

and f (r0) = 0. Thus we have Ï (t) < −4δ. Thus the time evolution of the moment of
inertia [i.e. I (x)] is controlled by a concave downward parabola which must become
negative for t ≥ t∗, where t∗ < ∞. It follows that the particle will collide at the origin
in finite time.

Proof of (2). Since K+(ω) is invariant and every solution in it satisfies |x(t)| > r0,
thus the solution exists for all time by Painlevé’s theorem. ��

Use the elementary relation between the two-body problem and theKepler problem,
more precisely, if m1 +m2 = 1, m1x1 +m2x2 = 0, then x1 = m2x and x2 = −m1x .
Let x = (x1, x2), then

E(x, ẋ) = 1

2

2∑

i=1

mi |ẋi |2 +U (x) = m1m2E(x, ẋ), (29)

A(x, ẋ) =
2∑

i=1

mi xi × ẋi = m1m2x × ẋ . (30)
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From Lemma 1 and Proposition 1, one can obtain the dichotomy for the two-body
problem as in Theorem 5.

Moreover, we can get rid of the ω by taking the union over all ω of K±(ω),

Theorem 7 For α > 2, let

K± =
⋃

ω>0

K±(ω),

where K±(ω) are given in Lemma 1 or Theorem 5, then K± are invariant. Solutions
in K+ exist globally and solutions in K− experiences a singularity.

Finally, the motions of the Kepler problem are completely predictable. Based on
the phase portrait in the (r , ṙ) plane (Fig. 4), one obtains a trichotomy in forward time:

(i) finite time collision (r → 0);
(ii) escaping to infinity (r → ∞);
(iii) approaching the relative equilibrium.

The same holds in backward time, and all nine combinations allowed by the for-
ward/backward time trichotomy can occur, which is similar to the results in PDE as
mentioned at the beginning of the paper.

3 N-Body Problem for the “˛ > 2”-Potential

Consider N -body (N ≥ 3) with masses m1, . . . ,mN moving in the Euclidean space
R
3 under the α-potential, where α > 2. We will fix the center of mass at the origin,

i.e. the configuration space is

X = {x ∈ (R3)N\� | m1x1 + · · · + mN xN = 0}.

In this configuration space, the moment of inertia can be expressed in terms of the
mutual distances ri j = |xi − x j |:

I (x) = 1

M

∑

i< j

mim jr
2
i j ,

where M = m1 + · · · + mN .

3.1 Relative Equilibrium and Excited Energy

Definition 6 (Central configuration, cf. [17]) A point x ∈ X satisfying the equation

∇
(

ω2

2
I (x) −U (x)

)
= 0,

for some ω is called a central configuration.
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Therefore �(t)q is a relative equilibrium of the N -body problem only if q is a
central configuration. The reverse is true for N = 3 but false for N ≥ 4. The reason
is that there are non-planar central configurations when N ≥ 4, but every relative
equilibrium of the N-body problem must be planar:

Proposition 2 Relative equilibria of the N-body problem are planar solutions.

Proof Let x(t) = �(t)q be a relative equilibrium of the N -body problem. Without
loss of generality, assume �(t) is in the normal form, i.e. the ω-rotation about the
z-axis. Plug x(t) into the differential equation (3). The third coordinate of each body’s
position is a constant xi3(t) = qi3, and satisfies

N∑

j=1, j �=i

qi3 − q j3

rα+2
i j

= 0, i = 1, . . . , N .

This is a homogeneous linear system for (q13, . . . , qN3) and the coefficient matrix is

C =

⎛

⎜⎜⎜⎜⎝

∑N
j=2 a1 j − a12 · · · − a1N
− a21

∑N
j=1, j �=2 a2 j · · · − a2N

. . .

− aN1 − aN2 · · · ∑N−1
j=1 aN j

⎞

⎟⎟⎟⎟⎠
,

whereai j = a ji = 1/rα+2
i j and ri j = |qi−q j |. TheKernel ofC is Span{(1, 1, . . . , 1)}.

Thus q13 = q23 = · · · = qN3 and the motion stays in a plane orthogonal to
the z-axis. ��
Lemma 2 (The sign of the excited energy) Fix α > 0 and ω,

E∗(ω) = inf{Eω(x) : Kω(x) = 0}.

1. When α > 2, E∗(ω) is strictly positive.
2. When α = 2, E∗(ω) = 0.
3. When 0 < α < 2, E∗(ω) is −∞ for N ≥ 3.

Proof Note that when Kω(x) = 0, we have

Eω(x) = −
(α

2
− 1

)
U (x). (31)

Let U∗(ω) = inf{−U (x) : Kω(x) = 0}, then E∗(ω) = (α
2 − 1)U∗(ω) for α ≥ 2.

When α = 2, E∗(ω) = 0 is trivial. We only need to show U∗(ω) is strictly positive.
In terms of mutual distances,

Kω(x) = ω2 I (x) + αU (x) = ω2

M

∑

i< j

mim jr
2
i j − α

∑

i< j

mim j

rα
i j

.
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Under the constraint Kω(x) = 0, U∗(ω) cannot be zero. Moreover, the infimum of
−U can be achieved in the set {x ∈ X : Kω(x) = 0}.

When α < 2, E∗(ω) = (α
2 − 1) sup{−U (x) : Kω(x) = 0}. The supreme of −U (x)

with Kω(x) = 0 is infinity for N ≥ 3. For example, when N = 3 one can find a
sequence of rn = (r (n)

12 , r (n)
13 , r (n)

23 ) so that Kω(rn) = 0 for all n and limn→∞ r (n)
12 = 0,

limn→∞ r (n)
23 = ∞, and limn→∞ r (n)

13 = ∞. Similarly for any N > 3. ��
Proposition 3 (Excited energy and central configuration) When α > 2, the excited
energy E∗(ω) is attained by a central configuration.

Proof When α > 2, we have

E∗(ω) = (α/2 − 1) inf{−U (x) : Kω(x) = 0},

and we know the infimum is strictly positive and achieved by some point q satisfying
Kω(q) = 0. By Lagrange multipliers of constrained optimization, we know there is
some λ ∈ R such that

−∇U (q) = λ∇Kω(q) = λ(ω2∇ I (q) + α∇U (q)).

Take inner product with q on both sides, we get

− q · ∇U = αU = λ(2ω2 I − α2U ) = −λ(2αU + α2U ), (32)

thus λ = − 1
2+α

. Therefore,

− ∇U (q) = − 1

2 + α
(ω2∇ I (q) + α∇U (q)), (33)

which implies

ω2∇ I (q) − 2∇U (q) = 0.

thus q is a central configuration. ��
We call a relative equilibrium an excited state if its energy is equal to E∗(ω) for the

corresponding frequency ω. The question about the excited states and different levels
of the excited states is not important in the current paper, because we only consider
energy below the first excited energy. What matters is the positivity of the excited
energy E∗(ω). In a subsequent work, we will investigate the excited states.

3.2 A Preliminary Dichotomy Below the Excited Energy

As been mentioned in the introduction, we let

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) ≥ 0},
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K−(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) < 0}.

We give a proof of Theorem 4 in this section. First, we present two lemmas.

Lemma 3 Let U∗(ω) := sup{U (x) : Kω(x) = ω2 I (x) + αU (x) = 0}. If Kω(x) < 0,
then U (x) < U∗(ω).

Proof For fixed x with Kω(x) < 0, let f (λ) = Kω(λx). By the homogeneity of I ,U
we have

Kω(λx) = ω2λ2 I (x) + (λ)−ααU (x).

Therefore,

– λ = 1, f (1) = Kω(x) < 0,
– λ → ∞, f (λ) > 0.

Thus there exists λ∗ > 1 so that Kω(λ∗x) = 0, therefore

U∗(ω) ≥ U (λ∗x) = (λ∗)−αU (x),

U (x) ≤ (λ∗)αU∗(ω) < U∗(ω).

��

Lemma 4

E∗(ω) ≤ inf

{
ω2

2
I (x) +U (x) : Kω(x) > 0

}
.

Proof Fix x with Kω(x) > 0, let f (λ) = Kω(λx). By the homogeneity of I ,U :

Kω(λx) = ω2λ2 I (x) + (λ)−ααU (x).

Therefore,

– λ = 1, f (1) = Kω(x) > 0,
– λ → 0, f (λ) → −∞.

Thus there exists 0 < λ∗ < 1 so that Kω(λ∗x) = 0. Therefore

ω2

2
I (x) +U (x) > (λ∗)2ω2

2
I (x) + (λ∗)−αU (x),

= ω2

2
I (λ∗x) +U (λ∗x),

≥ E∗(ω).

(34)

��
Now we are ready to give a proof of Theorem 4.
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Proof of Theorem 4 Proof of (1). Suppose x(t) does not exist globally, by Painlevé’s
theorem, there exists σ > 0 so that

lim
t→σ

min
i �= j

ri j = 0.

Since x(t) stays in K+(ω), ω2 I (t) + αU (t) ≥ 0 for t > t∗, we have

I (t) → ∞,U (t) → −∞ as t → σ.

On the other hand, Ï = 4[E(x, ẋ) + (α/2− 1)U (x)], we have Ï (t) → −∞ as t → σ

and this is a contradiction to I (t) → ∞ as t → σ . Thus solutions in K+(ω) must
exist globally.

Proof of (2). Let E(x(t), ẋ(t)) = E∗(ω)− δ. When t > t∗, we have Kω(x(t)) < 0.

Ï (x(t)) = 4[E∗(ω) − δ + (α/2 − 1)U (x(t))],
= 4

[(
1 − α

2

)
U∗(ω) − δ + (α/2 − 1)U (x(t))

]
,

= 4
(α

2
− 1

)
[U (x(t)) −U∗(ω)] − 4δ,

< −4δ.

The last inequality is by Lemma 3. Thus the time evolution of the moment of inertia is
controlled by a concave downward parabola which must become negative for t ≥ t1,
where t1 < ∞. It follows that the solution must have a singularity.

Furthermore, if σ is a singularity, then

lim sup
t→σ

I (t) = +∞

cannot happen for α > 2, as seen in the proof of Theorem of (1). Thus the moment of
inertia remains bounded at the singularity for strong force. ��

As we have pointed out in the introduction, K±(ω) are not invariant sets. We show
this by two simple examples for N = 3.

Example 1 (Example for the non-invariance of K+(ω))

K+(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) ≥ 0},
Kω(x) = ω2

M

∑

i< j

mim jr
2
i j − α

∑

i< j

mim j

rα
i j

.

Let’s start with an equilateral triangle configuration x0 and initial velocity ẋ0 = 0. As
long as (

√
3|x0i |)2+α ≥ αM

ω2 for i = 1, 2, 3, then (x0, 0) ∈ K+(ω).
By the attracting forces of the 3 bodies, all of which point to the center of mass (the

origin), the 3 bodies will encounter a total collision in finite time. This corresponds
to a homothetic motion [18]. Clearly, the solution (x(t), ẋ(t)) with initial condition
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(x0, 0) ∈ K+(ω)will enterK−(ω) after some time t1 and stays inK−(ω). ThusK+(ω)

is not invariant under the flow.

Example 2 (Example for the non-invariance of K−(ω)) Similarly, let’s start with an
equilateral triangle configuration x0 and initial velocity ẋ0 = vx0, where v > 0. We
can choose (x0, ẋ0) ∈ K−(ω) and E(x0, ẋ0) > 0. Since

E(x, ẋ) = 1

2

3∑

i=1

mi |ẋi |2 +U (x), (35)

is conserved andU (x) < 0, the three bodies will keep going away (|ẋ| �= 0) and never
come back, thus enter the set K+(ω).

In Sect. 4, we will provide an example where there are infinitely many transitions
between K+(ω) and K−(ω). Now we would like to refine the characterization by
making use of the conservation of the angular momentum.

3.3 Angular Momentum and Rotating Coordinates

The angular momentum of the N-body system is another important integral besides
the total energy. Recall the angular momentum is

A(x, ẋ) =
N∑

i=1

mi xi × ẋi .

It is a constant vector inR3 under the motion. To make use of the angular momentum,
we first present some results about the rotational coordinates. Let’s take the uniform
rotating coordinates

x = exp(ωJ t)x̃,

where

J =
⎛

⎝
0 − 1 0
1 0 0
0 0 0

⎞

⎠ , exp(ωJ t) =
⎛

⎝
cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

⎞

⎠ .

The differential equations for the N -body problem in the uniform rotating coordinates
is:

mi ( ¨̃xi + 2ωJ ˙̃xi ) = −ω2mi J
2 x̃i − ∇iU (x̃) = ∇i

(
ω2

2

N∑

i=1

mi (x̃
2
i1 + x̃2i2) −U (x̃)

)
,

where i = 1, . . . , N .
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The energy is

E(x, ẋ) = 1

2

N∑

i=1

mi |ẋi |2 +U (x),

= 1

2

N∑

i=1

mi |ωJ x̃i + ˙̃xi |2 +U (x),

= ω2

2

N∑

i=1

mi (x̃
2
i1 + x̃2i2) − ω

N∑

i=1

mi x̃
T
i J ˙̃xi + 1

2

N∑

i=1

mi | ˙̃xi |2 +U (x).

(36)

The angular momentum is

A(x, ẋ) =
N∑

i=1

mi xi × ẋi ,

= exp(ωJ t)

[
N∑

i=1

mi x̃i × (ωJ x̃i ) +
N∑

i=1

mi x̃i × ˙̃xi
]

. (37)

In particular, the third coordinate of A(x, ẋ) is

(A(x, ẋ))3 = ω

N∑

i=1

mi (x̃
2
i1 + x̃2i2) +

N∑

i=1

mi (x̃i × ˙̃xi )3.

Elementary calculation shows that

N∑

i=1

mi x̃
T
i J ˙̃xi = −

N∑

i=1

mi (x̃i × ˙̃xi )3. (38)

Therefore the energy can be written as

E(x, ẋ) = −ω2

2

N∑

i=1

mi (x
2
i1 + x2i2) +U (x) + ω(A(x, ẋ))3 + 1

2

N∑

i=1

mi | ˙̃xi |2. (39)

Lemma 5 Fix α > 2 and ω. Let x(t) be a solution with energy E < E∗(ω). If there
exists time t1 so that Kω(x(t1)) = 0, then |A| < ωI (t1), where |A| is the magnitude
of the angular momentum of x(t).

Proof Let A(x(t), ẋ(t)) = a ∈ R
3, then there exists P ∈ SO(3) so that Pa =

(0, 0, |A|). Since Px(t) is also a solution and its angular momentum is (0, 0, |A|),
without loss of generality, wemay assume the angularmomentum of x(t) is (0, 0, |A|).
For the sake of contradiction, let’s suppose |A| ≥ ωI (t1), by Eq. (39) we have
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E(x(t1), ẋ(t1))

= −ω2

2

N∑

i=1

mi (x
2
i1(t1) + x2i2(t1)) +U (x(t1)) + ω|A| + 1

2

N∑

i=1

mi | ˙̃xi |2,

≥ −ω2

2

N∑

i=1

mi (x
2
i1(t1) + x2i2(t1)) +U (x(t1)) + ω2 I (x(t1)),

≥ ω2

2
I (x(t1)) +U (x(t1)) ≥ E∗(ω).

(40)

this is a contradiction to the assumption E < E∗(ω). ��

3.4 Four Subsets with Energy Below the Excited Energy

We define

K+
1 = {(x, ẋ) ∈ K : |A(x, ẋ)| ≥ ωI (x), Kω(x) ≥ 0},

K−
1 = {(x, ẋ) ∈ K : |A(x, ẋ)| ≥ ωI (x), Kω(x) < 0},

K+
2 = {(x, ẋ) ∈ K : |A(x, ẋ)| < ωI (x), Kω(x) ≥ 0},

K−
2 = {(x, ẋ) ∈ K : |A(x, ẋ)| < ωI (x), Kω(x) < 0}, (41)

where K = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| �= 0} = K+
1 ∪K−

1 ∪K+
2 ∪K−

2 is
invariant. Note that K±

1,2 depends on ω, for notational simplicity we omit the ω when
there is no confusion.

Lemma 6 The set K+
1 is empty. The set K−

2 can go to either K−
1 or K+

2 . The set K−
1

can only go to K−
2 , and K+

2 can only go to K−
2 . See Fig. 5.

Proof Let x(t) be a solution of theN-body problem inK. Let A(t) ≡ A(0), I (t), Kω(t)
be the values of A(x, ẋ), I (x), Kω(x) along the solution at time t . From Lemma 5 we
know |A(t)| = ωI (t) and Kω(t) = 0 cannot happen simultaneously. We study all the
possible transitions among these four sets along x(t).

1. Start in K+
1 . To leave K+

1 means there is time t1 > 0 so that

|A(t1)| = ωI (t1), Kω(t1) > 0, (i)

or
|A(t1)| > ωI (t1), Kω(t1) = 0. (ii)

Case (i) is not possible because of Lemma 4 and an obvious modification of
(40). Case (ii) is not possible by Lemma 5. Thus K+

1 must be invariant under the
flow of the N-body problem. Moreover, suppose x(t) is a solution inK+

1 , we know|A(t)| ≥ ωI (t), Kω(t) ≥ 0 cannot happen simultaneously similar to the reasoning
of cases (i) (ii). Therefore, K+

1 must be an empty set.
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Fig. 5 K+
1 is empty, K−

1 can go

to K−
2 , and K+

2 can go to K−
2 .

The set K−
2 can go to either K−

1
or K+

2

Kω

|A| − ωI

0

K+
1K−

1

K−
2 K+

2

2. Start in K−
1 . To leave K−

1 means there is time t1 > 0 so that

|A(t1)| = ωI (t1), Kω(t1) < 0, (iii)

or
|A(t1)| > ωI (t1), Kω(t1) = 0. (ii)

Case (ii) is not possible as we have seen, and case (iii) is possible. So K−
1 can go

to K−
2 .

3. Start in K+
2 . To leave K+

2 means there is time t1 > 0 so that

|A(t1)| = ωI (t1), Kω(t1) > 0, (i)

or
|A(t1)| < ωI (t1), Kω(t1) = 0. (iv)

Case (i) is not possible as we have seen, and case (iv) is possible. So K+
2 can go

to K−
2 .

4. Start in K−
2 . To leave K−

2 means there is time t1 > 0 so that

|A(t1)| = ωI (t1), Kω(t1) < 0, (iii)

or
|A(t1)| < ωI (t1), Kω(t1) = 0. (iv)

Both case (iii) and case (iv) are possible. So K−
2 can go to K−

1 or K+
2 .

��
Now we only need to characterize solutions in the setK\K+

1 . Let x(t) be a solution
inK\K+

1 , and δ = E∗(ω) − E(x(t), ẋ(t)). Note that whenever Kω(x(t)) < 0, Ï (t) ≤
−4δ.
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Lemma 7 Suppose x(t) starts in K+
2 ∪ K−

2 , if there exists t1 so that x(t1) ∈ K−
1 then

x(t) remains in K−
1 for all t > t1.

Proof Without loss, we assume t1 is the first time that I (t1) = |A|/ω. Since x(t) can
only go into K−

1 from K−
2 , and I (t) in K−

2 is concave downward and greater than
|A|/ω, we have İ (t1) < 0. So for t > t1 and close to t1 we have I (t) < |A|/ω and
Kω(t) < 0. Thus Ï (t) ≤ −4δ and I (t) is concave downward, thus I (t) remains less
than |A|/ω, i.e. the solution remains in K−

1 for all t > t1. ��
Lemma 8 Suppose x(t) starts inK−

1 , and İ (0) ≤ 0, then x(t) remains inK−
1 , and x(t)

must have a singularity.

Proof For t = 0, we have Ï (0) ≤ −4δ and İ (0) ≤ 0, thus I (t) remains less than
|A|/ω, i.e. the solution remains inK−

1 for all t > 0. By Theorem 4, x(t) is singular. ��
Lemma 9 Suppose x(t) has infinitely many transitions betweenK+

2 andK−
2 , then x(t)

exists globally.

Proof For the sake of contradiction we assume that x(t) is singular at t = σ . By
Theorem 4, we know lim supt→σ I (t) < C for some constant C > 0. Since U (t) →
−∞ as t → σ , we have

K (t) = ω2 I (t) + αU (t) → −∞, as t → σ.

Thus contradicting the fact that x(t) has infinitely many transitions between K+
2 and

K−
2 . ��
In conclusion, we get the characterization of solutions as in Theorem 6.

4 Infinitely Many Transitions BetweenK+ andK−

Recall

K+ = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) ≥ 0},
K− = {(x, ẋ) : E(x, ẋ) < E∗(ω), Kω(x) < 0}.

From the previous discussions, we know the major difficulty in characterizing
solutions below the excited energy is the non-invariance of the sets K±. In particular,
the possibility of infinitely many transitions betweenK± complicates the problem. In
this section, we provide an example to verify that infinitely many transitions between
K+ and K− exist, indicating that the characterization of solutions for the N-body
problem in this new perspective is challenging as well.

The threshold function Kω(x) is

ω2 I (x) + αU (x) = ω2

M

∑

i< j

mim jr
2
i j − α

∑

i< j

mim j

rα
i j

.
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Fig. 6 The elliptic Lagrange
homographic solutions

When all themutual distances ri j are “large”, Kω > 0; andwhen ri j are “small”, Kω <

0. A periodic or quasi-periodic solution whose mutual distances oscillate between
“large” and “small” would suffice. Such solutions are common in the Newtonian (α =
1) 3-body problem, for example, the elliptic Lagrange homographic solutions. The
configuration remains similar (equilateral triangle) and all three masses move along
elliptic Keplerian orbits, with all trajectories having the same eccentricity 0 < e < 1.
See Fig. 6. When e = 0, it’s the triangular relative equilibrium.

For the strong force, we only have the triangular relative equilibrium, while the
elliptic Lagrange homographic solutions do not exist. Because the only periodic solu-
tion of the Kepler problem for α > 2 is the circular orbit, and there are no elliptic
Kepler orbits for α > 2. To the author’s knowledge, we are not aware of any work
concerning periodic or quasi-periodic solutions of the N-body problem for α > 2,
except the relative equilibria and choreographies of the N-body problem. Our exam-
ple of infinitely many transitions between K± is motivated by the Sitnikov problem
[22]. The Sitnikov problem is a special case of the restricted 3-body problem that
allows oscillatory motions. In particular, what we will consider here is also known as
the MacMillan problem [23].

4.1 Setting of theMacMillan Problem

Let xi = (xi , yi , zi ) be the position of three point masses mi in R3. The motion of the
general 3-body problem is given by the differential equation

mi ẍi = −∇iU (x) = −α
∑

j �=i

mim j (xi − x j )

|xi − x j |α+2 , i = 1, 2, 3. (42)

where x = (x1, x2, x3).
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Fig. 7 The MacMillan problem

m1

m2

m3

Let m1 = m2 = m, referred as the primary bodies, assume they move in a circular
orbit around their center of mass. A massless body (m3 = 0) moves (oscillates) along
a straight line that is perpendicular to the orbital plane formed by the two equally
massed primary bodies (cf. Fig. 7). Since m3 = 0, its influence to the primary bodies
are negligible. We may assume the primary bodies move in the xy-plane, and m3
moves along the z-axis. Let’s take m = 1/2 and the radius of the circle is r = 1, then

the frequency of the circular motion is ω =
√

α
2α+2 . Let x3 = (0, 0, z3), the equation

of motion for m3 is given by

z̈3 + αz3
(√

1 + z23

)α+2 = 0, (43)

which is a Hamiltonian system. Let v = ż3, then the hamiltonian for (z3, v) is

H(z3, v) = v2

2
− 1(√

1 + z23

)α . (44)

The level curves of H(z3, v) are illustrated in Fig. 8. H(0, 0) = −1 is the global
minimum and when −1 < H < 0, the level curves are closed which yield periodic
solutions. Moreover, when H(z3, 0) → 0−, we have |z3| → ∞. That is, we find
periodic solutions of the restricted 3-body problem with mutual distances r12 = 2,
and r13 = r23 oscillates from 1 to arbitrarily large. But m3 = 0, and the primary
bodies form a relative equilibrium, thus the threshold function

Kω(x(t)) = ω2(x21 + y21 ) − α

2α+2(x21 + y21 )
α
2

= ω2 − α

2α+2 = 0,

for all time. We need to extend this system to positive mass for m3.
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Fig. 8 The contour plot for
H(z3, v) with α = 3
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Now let themassm3 = ε. Because of the symmetry of themasses, there aremotions
satisfying the constraints:

(x1, y1, z1) = (−x2,−y2, z2),

x3 = y3 = ẋ3 = ẏ3 = 0.

The center of mass is fixed at the origin, i.e. we always assume z1 = −εz3 and
ż1 = −ε ż3. The assumptions we make allow us to investigate the reduced set of
differential equations:

ẍ1 = −α

(
x1

rα+2
12

+ εx1

rα+2
13

)
,

ÿ1 = −α

(
y1

rα+2
12

+ εy1

rα+2
13

)
,

z̈3 = −α(1 + ε)z3

rα+2
13

.

(45)

where r12 = |x1−x2| = 2
√
x21 + y21 , and r13 = |x1−x3| =

√
x21 + y21 + ((1 + ε)z3)2.

When ε = 0, we have z1 = 0. The primary bodies form a two-body problem and if
they are in the circular motion with x21 + y21 = 1, Eq. (45) reduces to the MacMillan
equation (43). We will call (45) the ε-MacMillan problem.
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The conserved energy of the ε-MacMillan problem is

E(x, ẋ; ε)

= 1

2
(ẋ21 + ẏ21 + ż21) + ε

2
ż23 −

(
1

2α+2(x21 + y21 )
α
2

+ ε

(x21 + y21 + (z1 − z3)2)
α
2

)
,

= 1

2
(ẋ21 + ẏ21 ) − 1

2α+2(x21 + y21 )
α
2

+ ε

[
1 + ε

2
ż23 − 1

(x21 + y21 + ((1 + ε)z3)2)
α
2

]
.

(46)
The angular momentum is

A(x, ẋ; ε) =
3∑

i=1

mixi × ẋi = (0, 0, x1 ẏ1 − y1 ẋ1). (47)

That is, the angular momentum is contributed by the primary bodies only. To make
the computations concrete, we choose the frequency parameter for the ε-MacMillan

problem as ω =
√

α
2α+2 ,

1 and we will restrict the solutions on the angular momentum

level set with |A(x, ẋ; ε)| = |x1 ẏ1 − y1 ẋ1| = ω. This is the angular momentum
level for the 0-MacMillan problem when the radius of the primary bodies is 1 and
frequency is ω. The energy for the relative equilibrium of the ε-MacMillan problem
with frequency ω is

E∗(ω; ε) =
(α

2
− 1

) (
ε + 1

2α+2

) 2
α+2

(
ω2

α

) α
α+2

,

=
(α

2
− 1

) (
ε + 1

2α+2

) 2
α+2 1

2α
.

(48)

and E∗(ω; 0) is the excited energy for the 0-MacMillan problem.
The threshold function Kω(x; ε) for the ε-MacMillan problem is

Kω(x; ε) = ω2(x21 + y21 ) − α

2α+2(x21 + y21 )
α
2

+ ε

[
(1 + ε)ω2z23 − α

(x21 + y21 + (1 + ε)2z23)
α
2

]
,

= Kω(x; 0) + ε

[
(1 + ε)ω2z23 − α

(x21 + y21 + (1 + ε)2z23)
α
2

]
.

(49)

1 If we choose a different frequency ω, the computations seem to be more complicated.
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4.2 Two Reference Equations for the�-MacMillan Problem

To study the motion of the ε-MacMillan problem, we introduce two extreme cases.
Namely the case when the third body m3 is at rest at the origin, and the case when m3
is infinitely far away from the origin.

Suppose z3 = ż3 = 0 then Eq. (45) is equivalent to

ẍ0 = ∇U (x0; ε), U (x0; ε) = 1 + 2α+1ε

|x0|α , x0 = (2x1, 2y1). (50)

Suppose z3 = ∞, then Eq. (45) is equivalent to

ẍ∞ = ∇U (x∞), U (x∞) = 1

|x∞|α , x∞ = (2x1, 2y1). (51)

Note that we have used x0 and x∞ to denote solutions for (50), (51) specifically, and
they are the horizontal relative position of the primary bodies.

Now we present some comparisons between x0 and x∞ with the restriction

x0 × ẋ0 = x∞ × ẋ∞ = c. (52)

In polar coordinates (r , θ), the effective potentials of x0 and x∞ are

V 0
c (r) = c2

2r2
− 1 + 2α+1ε

rα
,

V∞
c (r) = c2

2r2
− 1

rα
.

(53)

The graph of V 0
c (r) is below that of V∞

c (r), see Fig. 9.

Fig. 9 The effective potential V 0
c (r) (blue) and V∞

c (r) (black) (Color figure online)
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The critical points of V 0
c (r) and V∞

c (r), i.e. the radius for the corresponding relative
equilibrium, are

r0 =
(

α(1 + 2α+1ε)

c2

) 1
α−2

,

r∞ =
( α

c2

) 1
α−2

.

(54)

The maximal values of V 0
c (r) and V∞

c (r), i.e. the energy for the corresponding
relative equilibrium, are

v0c := V 0
c (r0) = α

2
2−α

(
1

2
− 1

α

)
c

2α
α−2

(
1

1 + 2α+1ε

) 2
α−2

,

v∞
c := V∞

c (r∞) = α
2

2−α

(
1

2
− 1

α

)
c

2α
α−2 .

(55)

The phase portraits of x0 and x∞ are illustrated in Fig. 10.
To facilitate our analysis for the ε-MacMillan problem, we will take c = 4ω. Note

we choose this value because x0 × ẋ0 = x∞ × ẋ∞ = 4(x1 ẏ1 − ẋ1y1). Moreover, we
will have

r0 = 2(1 + 2α+1ε)
1

α−2 , v04ω = 4
(α

2
− 1

) 1

2α+2

(
1

1 + 2α+1ε

) 2
α−2

. (56)

and

r∞ = 2, v∞
4ω = 4E∗(ω; 0) = 4

(α

2
− 1

) 1

2α+2 . (57)

Fig. 10 The threshold curves for
phase portraits of x0 and x∞
with x0 × ẋ0 = x∞ × ẋ∞ = c
in the (r , ṙ) phase plane. The
black solid curve is for x∞ and
the threshold energy is v∞

c . The
dashed blue curve is for x0 with
threshold energy v0c (Color
figure online)
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Note that v04ω is strictly less than 4E∗(ω; ε) in (48).

4.3 Infinitely Many Transitions

For the ε-MacMillan problem (45), and energy E(x, ẋ; ε) in (46), we restrict our
solutions on the set

S :=
{
(x, ẋ)|E(x, ẋ; ε) <

1

4
v04ω, |A| = ω

}
. (58)

This is an invariant set of the ε-MacMillan problem and 1
4v

0
4ω is strictly less than

E∗(ω; ε), i.e. S is a subset of K := {(x, ẋ)|E(x, ẋ; ε) < E∗(ω; ε)}. Let

S+ :=
{
(x, ẋ) ∈ S|2

√
x21 + y21 > r0

}
,

S− :=
{
(x, ẋ) ∈ S|2

√
x21 + y21 < r0

}
.

(59)

where r0 is defined in (56).

Lemma 10 The sets S± are invariant for the ε-MacMillan problem.

Proof Let

E(x1, y1, ẋ1, ẏ1; ε) := 1

2
(ẋ21 + ẏ21 ) − 1 + ε

2α+2(x21 + y21 )
α
2
,

which is E(x, ẋ; ε) by setting z3 = ż3 = 0. Thus

E(x1, y1, ẋ1, ẏ1; ε) ≤ E(x, ẋ; ε) <
1

4
v04ω.

By Fig. 11, note that r = 2
√
x21 + y21 , we get the invariance of the sets S±. Moreover,

we have S+ is the region E , S− = A ∪ B ∪ C ∪ D. A ∪ D is forward time invariant.
B is backward time invariant, see Fig. 11. ��

Let’s focus on the regionC and seek for a solution that stays inC . Roughly speaking,
when z3 is far away, the motion of (r , ṙ) is predicted by the black threshold curve;
when z3 is close to zero, the motion of (r , ṙ) is predicted by the blue threshold curve,
see Fig. 12. Suppose z3(0) = O(1/ε), ż3(0) = 0, and r∞ < r(0) < r0, ṙ(0) = 0,
then (r , ṙ) tends to go along the black curve. As z3 approaches zero, (r , ṙ) tends to
go along the blue curve. Then when z3 passes zero and continues to O(−1/ε), (r , ṙ)
tends to go along the black curve, etc. This is a solutionwith infinitelymany transitions
for Kω(x(t); ε) from positive to negative. More specifically,
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Fig. 11 Black curve corresponds
to the level curve
E(x1, y1, ẋ1, ẏ1; 0) =
E∗(ω; 0) = 1

4 v∞
4ω and blue

curve corresponds to the level
curve E(x1, y1, ẋ1, ẏ1; ε)

= 1
4 v04ω in the (r , ṙ) space with

x1 ẏ1 − ẋ1y1 = ω. Moreover,
S+ = E and S− = A ∪ B ∪
C ∪ D are invariant. A ∪ D is
forward time invariant. B is
backward time invariant (Color
figure online)

Kω(x(t); ε) = ω2(x21 + y21 ) − α

2α+2(x21 + y21 )
α
2
,

+ ε

[
(1 + ε)ω2z23 − α

(x21 + y21 + (1 + ε)2z23)
α
2

]
.

(60)

When r∞ < 2
√
x21 + y21 < r0, we have

ω2(x21 + y21 ) − α

2α+2(x21 + y21 )
α
2

> 0,

and

ω2(x21 + y21 ) − α(1 + 2α+2ε)

2α+2(x21 + y21 )
α
2

< 0.

Thus easy to see Kω(x(t); ε) is positive when z3 = O(±1/ε) and negative when
z3 = 0.

5 Some Comments and Future Plans

5.1 Excited Energy and the Frequency

When the frequency is small, the excited energy E∗(ω) is small, and it goes to zero
if ω → 0+, see Proposition 4 below. Since the angular momentum for a relative
equilibrium is |A| = ωI (x), if we fix the angular momentum, the frequency ω can
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Fig. 12 A solution where z3
oscillates, (r , ṙ) stays in C

exhaust all the positive values, thus the minimum energy for all relative equilibria with
fixed angular momentum will be

E∗|A| = lim
ω→0+ E∗(ω) = 0.

Therefore, we see again why we do not use the angular momentum as the parameter
when defining the excited energy.

Moreover, any solution with non-zero angular momentum can be characterized in
the way as summarized in Theorem 6. The reason is that E∗(ω) is increasing and goes
to infinity as ω → ∞, see Lemma 11 and Proposition 4, thus any trajectory will have
energy less than E∗(ω) for some ω.

Lemma 11 If ω1 ≤ ω2, then E∗(ω1) ≤ E∗(ω2).

Proof From Lemma 3, we have

inf{−U (x) : Kω(x) = 0} = inf{−U (x) : Kω(x) ≤ 0}.

When ω1 ≤ ω2, we have {Kω2(x) = 0} ⊆ {Kω1(x) ≤ 0}. Thus,

E∗(ω1) =
(α

2
− 1

)
inf{−U (x) : Kω1(x) = 0},

=
(α

2
− 1

)
inf{−U (x) : Kω1(x) ≤ 0},

≤
(α

2
− 1

)
inf{−U (x) : Kω2(x) = 0},

= E∗(ω2).

(61)

��
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Proposition 4

lim
ω→0+ E∗(ω) = 0, lim

ω→∞ E∗(ω) = +∞.

Proof When ω = 0, K0(x) = U (x) = 0, thus E0(x) = −(α/2 − 1)U (x) = 0, and
we have limω→0+ E∗(ω) = 0.

We compute the limit for ω → ∞. From the previous lemma, we know E∗(ω) is
non-decreasing, so the limit exists. Suppose limω→∞ E∗(ω) = C where 0 < C < ∞.
i.e.

lim
ω→∞ E∗(ω) = lim

ω→∞
(α

2
− 1

)
inf{−U (x) : Kω(x) = 0} = C . (62)

This is not possible under the constraint Kω = ω2 I+αU = 0 because of the following
claim.

Claim If −U (x) ≤ c, then I (x) ≥ m2

M (m2/c)2/α .

Proof of claim Let M = m1 + · · · +mN , and m = min{m1, . . . ,mN }. IfU ≤ c, then

min
i< j

rα
i j ≥ m2

c
,

thus

I (x) ≥ m2

M
(m2/c)2/α.

��

5.2 Excited State for the Equal Mass 3-Body Problem

Central configurations and relative equilibria of the 3-body problem are well-known.
Namely, the Euler (co-linear) and Lagrange (equilateral triangle) relative equilibria
[17]. In this section we compute the excited energy for 3-body problem with equal
masses.

Proposition 5 Let α > 2, for the 3-body problem with equal masses, the excited state
is the co-linear relative equilibrium.

Proof Without loss of generality, let the masses be m1 = m2 = m3 = 1.

Co-linear R.E. Let x1 < x2 < x3 and x = x2 − x1 and y = x3 − x2. The equation
for co-linear R.E. is

ω2x = α

(
m1 + m2

xα+1 − m3

yα+1 + m3

(x + y)α+1

)
, (63)

ω2y = α

(
m1

(x + y)α+1 − m1

xα+1 + m2 + m3

yα+1

)
. (64)
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when the masses are equal, we have x = y and

x =
[

α

ω2

(
1 + 1

2α+1

)] 1
α+2

.

The energy of the co-linear R.E. is

Elinear = −
(α

2
− 1

)
U =

(α

2
− 1

) (
2 + 1

2α

)
x−α

= 2
(α

2
− 1

) (
1 + 1

2α+1

) 2
α+2 ( α

ω2

)− α
α+2

.

Triangle R.E. The mutual distances are

r12 = r13 = r23 =
(

αM

2ω2

) 1
α+2

.

The energy of triangle R.E. is

Etriangle = −
(α

2
− 1

)
U =

(α

2
− 1

)
3r−α = 2

(α

2
− 1

) (
1 + 1

2

) 2
α+2 ( α

ω2

)− α
α+2

.

Therefore, Elinear < Etriangle. ��
By Moulton’s Theorem, for N ≥ 3, there are always N !/2 co-linear relative equi-

libria for some fixed ω.

Theorem 8 (Moulton [24]) In the co-linear N-body problem, for any choice of N
positive masses there are exactly N !/2 central configurations. One for each ordering
of the particles modulus a rotation by π .

Conjecture 1 The (first) excited states are the co-linear Relative equilibria for general
masses.

5.3 Invariance ofK±(!) and the Angular Momentum

We are aware of the fact that K(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω)} still contains
relative equilibria and this could be the reason why K±(ω) are not invariant. In the
PDE examples, the energy constraint is sufficient to exclude all the solitons in the
set. To tackle this problem, we could add a lower bound on the level of the angular
momentum like we did for the two-body problem, i.e. consider the set

K(ω) = {(x, ẋ) : E(x, ẋ) < E∗(ω), |A(x, ẋ)| ≥ A∗(ω)}. (65)
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The strongest choice of the lower bound A∗(ω) would be

A∗(ω) := sup{ωI (x)|Kω(x) = 0}. (66)

but A∗(ω) = ∞ as can be seen in the proof of Lemma 2. The next choice would
be A∗(ω) := ωI (q) where q is the configuration so that Eω(q) = E∗(ω). To show
that this condition excludes relative equilibria is highly related with the problem of the
central configurations of the N-body problem. For the equal mass three-body problem,
we are able to show that this choice works, see Proposition 6.

From Proposition 5, we know when m1 = m2 = m3 = 1, the colinear ω-R.E.
has smaller energy than the triangular ω-R.E. Now we want to compare their angular
momentum. The energy and angular momentum of the co-linear R.E. are

E∗(ω) = Elinear (ω) =
(α

2
− 1

) (
2 + 1

2α

)
x−α

= 2
(α

2
− 1

) (
1 + 1

2α+1

) 2
α+2 ( α

ω2

)− α
α+2

, (67)

A∗(ω) = Alinear (ω) = ωI (q) = ω2x2 = 2

[
α

(
1 + 1

2α+1

)] 2
α+2

ω
α−2
α+2 . (68)

Proposition 6 For the three-body problem with m1 = m2 = m3 = 1, let E∗(ω) and
A∗(ω) be as in (67) (68), let

K(ω) = {E (x, ẋ) < E∗(ω), |A| ≥ A∗(ω)},

then K(ω) does not contain any relative equilibria.

Proof It is easy to see that all the co-linear R.E. are excluded, let’s see if the triangular
R.E. is also excluded. The energy and angular momentum of a triangular R.E. is

Etriangle(ω) =
(α

2
− 1

)
3r−α = 2

(α

2
− 1

) (
1 + 1

2

) 2
α+2 ( α

ω2

)− α
α+2

, (69)

Atriangle(ω) = ωr2 = ω

(
3α

2ω2

) 2
α+2 =

[
α

(
1 + 1

2

)] 2
α+2

ω
α−2
α+2 . (70)

Fix ω, let’s see whether we can find ω1, so that the triangular ω1-R.E. is in the set
K(ω). From Etriangle(ω1) < Elinear (ω), we get

ω1 <

(
1 + 1

2α+1

1 + 1
2

) 1
α

ω < ω. (71)
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From Atriangle(ω1) ≥ Alinear (ω), we get

ω1 ≥ 2
α+2
α−2

(
1 + 1

2α+1

1 + 1
2

) 2
α−2

ω >

(
2 + 1

2α

3/2

) 2
α−2

ω > ω. (72)

So there is no triangular R.E. in the set K(ω) either. ��
It seems not an easy task to show this for general masses when N = 3, let alone

when N ≥ 4. However, this provides a good direction for us, and we will work on
these problems in our subsequent work.
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